
9
Transcendental Functions

9.1 Inverse fun
tions

Informally, two functions f and g are inverses if each reverses, or undoes, the other. More

precisely:

DEFINITION 9.1.1 Two functions f and g are inverses if for all x in the domain of

g, f(g(x)) = x, and for all x in the domain of f , g(f(x)) = x.

EXAMPLE 9.1.2 f = x3 and g = x1/3 are inverses, since (x3)1/3 = x and (x1/3)3 =

x.

EXAMPLE 9.1.3 f = x2 and g = x1/2 are not inverses. While (x1/2)2 = x, it is not

true that (x2)1/2 = x. For example, with x = −2, ((−2)2)1/2 = 41/2 = 2.

The problem in the previous example can be traced to the fact that there are two

different numbers with square equal to 4. This turns out to be precisely descriptive of

functions without inverses.

DEFINITION 9.1.4 Let A and B be sets and let f : A → B be a function. We say

that f is injective or one-to-one if f(x) = f(y) implies that x = y.

We say that f is surjective or onto if for every b ∈ B there is an a ∈ A such that

f(a) = b.

If f is both injective and surjective, then f is bijective or one-to-one and onto.
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180 Chapter 9 Transcendental Functions

We are interested only in the case that A and B are sets of real numbers, and in

this case there is a nice geometric interpretation of injectivity. It is often easy to use this

interpretation to decide whether a function is or is not 1-1.

THEOREM 9.1.5 Horizontal line test If f is a function defined on some subset

of the real numbers, then f is injective if and only if every horizontal line intersects the

graph of f at most once.

EXAMPLE 9.1.6 The function f = x2 fails this test: horizontal lines y = k for k > 0

intersect the graph of f twice. (The horizontal line y = 0 does intersect it only once, and

lines y = k, k < 0, do not intersect the graph at all.)

EXAMPLE 9.1.7 In each of these cases, we assume that f :A → R, where A is the set

of all real numbers for which f makes sense.

The function f(x) = x is bijective.

The function f(x) = x2 is neither injective nor surjective. If we think of f as a function

from R to the non-negative real numbers, then f is surjective; in other words, if a function

is not surjective this is not a major stumbling block.

The function f(x) = 1/x is injective but not surjective since there is no value of x such

that f(x) = 0.

The function f(x) = x(x− 1)(x+ 1) is surjective but not injective; f(x) = 0 for three

different values of x. On the other hand lim
x→∞

f(x) = ∞ and lim
x→−∞

f(x) = −∞. Since f is

continuous on R, the intermediate value theorem (2.5.6) guarantees that f takes all values

between −∞ and ∞.

The derivative furnishes us with a convenient criterion for injectivity without explicitly

looking for points where injectivity may fail.

THEOREM 9.1.8 If f is differentiable and f ′(x) > 0 then f is injective.

Proof. Suppose that f(a) = f(b) for some a < b. By Rolle’s theorem (6.5.1) there exists

c ∈ (a, b) such that f ′(c) = (f(b) − f(a))/(b − a) = 0, which contradicts the hypothesis

that f ′(x) > 0. Hence, if f(a) = f(b) then a = b.

In the same way, we can see that if f ′(x) < 0 then f is injective.

EXAMPLE 9.1.9 Let f(x) = x5 + x. Since f ′(x) = 5x4 + 1 > 0, f is injective.

EXAMPLE 9.1.10 Let f(x) = 2x + sinx. Then f ′(x) = 2 + cosx ≥ 1 for every x.

Hence, f is injective.
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EXAMPLE 9.1.11 Let f(x) = x3. This f is injective although the above theorem does

not apply, since f ′(0) = 0. Therefore, the conditions in the theorem are sufficient but not

necessary.

Our knowledge of derivatives can also lead us to conclude that a function is not injec-

tive.

THEOREM 9.1.12 If f is continuous and has a local maximum or minimum then f

is not injective.

Proof. Suppose that f has a local maximum at x = c. Then in some interval (c−h, c+h),

f(x) ≤ f(c). Let a ∈ (c − h, c). If f(a) = f(c) then f is not injective; otherwise,

f(a) < f(c).

Let b ∈ (c, c + h). If f(b) = f(c) or f(b) = f(a) then f is not injective. Otherwise,

either f(b) < f(a) < f(c) or f(a) < f(b) < f(c). If f(b) < f(a) then by the intermediate

value theorem, there is a number d ∈ (c, b) such that f(d) = f(a) and so f is not injective.

Likewise, if f(a) < f(b) then there is a number d in (a, c) such that f(d) = f(b) and so f

is not injective.

In every case, we see that f is not injective.

To return to our principal interest, inverse functions, we now connect bijections and

inverses.

THEOREM 9.1.13 Suppose f :A → B is a bijection. Then f has an inverse function

g:B → A.

Proof. Suppose b ∈ B. Since f is onto, there is an a ∈ A such that f(a) = b. Since f is

1–1, a is the only element of A with this property. We let g(b) = a. Now it is easy to see

that for all a ∈ A, g(f(a)) = a and for all b ∈ B, f(g(b)) = b.

We really don’t have any choice about how to define g in this proof; if f is a bijection,

its inverse is completely determined. Thus, instead of using a new symbol g, we normally

refer to the inverse of f as f−1.

Unfortunately, it is often difficult to find an explicit formula for the inverse of a given

function, f , even if it is known that f is bijective. Generally, we attempt to find an inverse

in this way:

1. Write y = f(x).

2. Interchange x and y.

3. Solve for y.

4. Replace y with f−1(x).
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Step 3 is the hard part; indeed it is sometimes impossible to perform using algebraic

operations.

EXAMPLE 9.1.14 Find the inverse of f(x) = (2x − 6)/(3x + 7). First we write

x = (2y − 6)/(3y + 7). Now we solve for y:

x =
2y − 6

3y + 7

x(3y + 7) = 2y − 6

3xy + 7x = 2y − 6

7x+ 6 = 2y − 3xy

7x+ 6 = y(2− 3x)

7x+ 6

2− 3x
= y

Finally, we say f−1(x) = (7x+ 6)/(2− 3x)

EXAMPLE 9.1.15 Find the inverse function of f(x) = x2−4x+8 where x ≥ 2. What

are the domain and range of the inverse function?

First, y = x2 − 4x + 8 becomes x = y2 − 4y + 8. Now we complete the square:

x = (y−2)2+4 and rearrange to get x−4 = (y−2)2. Since in the original function x−2 ≥ 0,

and we have switched x and y, we know that y − 2 ≥ 0. Thus taking the square root, we

know y − 2 =
√
x− 4, not y − 2 = −

√
x− 4. Finally we write y = f−1(x) = 2 +

√
x− 4.

The domain of f is x ≥ 4 and the range is y ≥ 2.

While simple in principle, this method is sometimes difficult or impossible to apply.

For example, consider f(x) = x3 + x. Since f ′(x) = 3x2 +1 > 0 for every x, f is injective.

(In fact it is bijective.) To find the inverse as above, we would need to solve x = y3 + y

for y; while possible, this is considerably more difficult than solving the quadratic of the

previous example. Some simple looking equations are impossible to solve using algebraic

manipulation.

For example, consider f(x) = x5+x3+x+1 a “quintic” polynomial (i.e., a fifth degree

polynomial). Since f ′(x) = 5x4 + 3x2 + 1 > 0, f is injective (and indeed f is bijective).

If there were a quintic formula, analogous to the quadratic formula, we could use that

to compute f−1. Unfortunately, no such formula exists—fifth degree equations cannot in

general be solved. (There are exceptions; x5 = 1 can be solved, for example.)

Fortunately, it is often more important to know that a function has an inverse then to

be able to come up with an explicit formula. Once an inverse is known to exist, numerical
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techniques can often be employed to obtain approximations of the inverse function. Thus,

theorem 9.1.8 and proposition 9.1.12 provide useful criteria for deciding whether a function

is invertible.

We now turn to the calculus of inverse functions.

THEOREM 9.1.16 Let A be an open interval and let f : A → R be injective and

continuous. Then f−1 is continuous on f(A).

Proof. Since A is an open interval and f is injective and continuous it follows by propo-

sition 9.1.12 that f has no local maxima or minima. Hence, f is either strictly increasing

or strictly decreasing. Without loss of generality, f is strictly increasing.

Fix b ∈ f(A) . Then there exists a unique a ∈ A such that f(a) = b. Let ǫ > 0 and

we may assume that (a − ǫ, a+ ǫ) ⊆ A. Let δ = min{b− f(a− ǫ), f(a+ ǫ) − b} and note

that δ > 0 since f is increasing. Then the interval (b − δ, b + δ) is mapped by f−1 into

(a− ǫ, a+ ǫ). Since ǫ was arbitrary, it follows that f−1 is continuous at b.

Our principal interest in inverses is the simple relationship between the derivative of

a function and its inverse.

THEOREM 9.1.17 Inverse function theorem Let A be an open interval and

let f : A → R be injective and differentiable. If f ′(x) 6= 0 for every x ∈ A then f−1 is

differentiable on f(A) and (f−1)′(x) = 1/f ′(f−1(x)).

Proof. Fix b ∈ f(A). Then there exists a unique a ∈ A such that f(a) = b. For y 6= b,

let x = f−1(y). Since f is differentiable, it follows that f and hence f−1 are continuous.

Then

lim
y→b

f−1(b)− f−1(y)

b− y
= lim

x→a

a− x

f(a)− f(x)
=

1

f ′(a)
.

In Leibniz notation, this can be written as
dx

dy
=

1

dy/dx
, which is easy to remember

since it looks like ordinary fractional algebra.

EXAMPLE 9.1.18 Let f(x) = 3x3 + 5x − 7. Since f(0) = −7, f−1(−7) = 0. Since

f ′(x) = 9x2 + 5, f ′(0) = 5 and so (f−1)′(−7) = 1/f ′(0) = 1/5.

Exercises 9.1.

1. Which of the following functions are injective? Which are surjective? Which are bijective?
Sketch the graph of each function to illustrate your answers.

a. f :R → R, f(x) = x2.
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b. f : [0,∞) → R, f(x) = x2.

c. f :R → [0,∞), f(x) = x2.

d. f : (−∞, 0] → [0,∞), f(x) = x2.

2. Which of the following functions are injective? Which are surjective? Which are bijective?
Sketch the graph of each function to illustrate your answers.

a. f :R → R, f(x) = x3.

b. f : [0,∞) → R, f(x) =
√
x.

c. f :R → [−1, 1], f(x) = sinx.

d. f : [0, π] → [−1, 1], f(x) = cos x.

3. Define

f(x) =

{

− 1

x
x 6= 0

1 x = 0

Show that f is not injective on R. Show that f ′(x) > 0 for x 6= 0. Why does this not
contradict theorem 9.1.8?

4. Define

f(x) =

{ 1− x −2 ≤ x < 0
0 x = 0
10 + x 0 < x ≤ 2

Show that f is injective and has a local minimum. Why does this not contradict theo-
rem 9.1.12?

5. If A = R sketch the graph of the identity function on A.

6. Find the inverse function of f(x) = (4x − 6)/(7x + 5). What are the domain and range of
f−1?

7. Find the inverse function of f(x) = 11x/(13x− 6). What are the domain and range of f−1?

8. Find the inverse function of f(x) = ax+ b when a 6= 0. What are the domain and range of
f−1?

9. Find the inverse function of f(x) = 1/(cx+ d) when c 6= 0. What are the domain and range
of f−1?

10. Suppose that ad− bc 6= 0. Find the inverse function of f(x) = (ax+ b)/(cx + d). What are
the domain and range of f−1? (The domain and range will depend on which if any of a, b, c,
and d are zero.)

Note: The condition ad − bc 6= 0 is a technical condition which ensures that both the
domain of f will be all real numbers with perhaps one exception and that that the range of
f will be all real numbers with perhaps one exception.

11. Find the inverse function of f(x) = |x − 4| for x ≤ 4. What are the domain and range of
f−1?

12. Find the inverse function of f(x) =
√
x− 5. What are the domain and range of f−1?

13. Find the inverse function of f(x) = x3 − 5. What are the domain and range of f−1?

14. Find the inverse function of f(x) = x7 − 2. What are the domain and range of f−1?

15. Find the inverse function of f(x) = 2x2+8x−4 for x ≥ −2. What are the domain and range
of f−1?
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16. Find the inverse function of f(x) = x2 − 9x+ 10 for x ≤ 3. What are the domain and range
of f−1?

17. Find the inverse function of f(x) = x2 + bx + c for x ≥ −b/2. What are the domain and
range of f−1?

18. Find the inverse function of f(x) = x2 + bx + c for x ≤ −b/2. What are the domain and
range of f−1?

19. Find the inverse function of f(x) = (1 +
√
x)/(1−√

x). What are the domain and range of
f−1?

20. Show that f(x) = x7 + 3x has an inverse function on R.

21. Show that f(x) = x19/9 + x5 has an inverse function on R.

22. Let A ⊂ R and let f : A → R be injective. Then f−1 exists on f(A).

Note that the point P (a, f(a)) is on the graph of f and that Q(f(a), a) is the corre-
sponding point on the graph of f−1.

a. Show that if a 6= f(a) then the slope of the line segment PQ is −1.

b. Conclude that if a 6= f(a) the line segment PQ is perpendicular to the graph, L, of the
identity function on R.

c. Show that the midpoint of PQ is on L.

d. Conclude that the graph of f−1 is the graph of f reflected through L.

23. Let f(x) = x3 + x. Sketch the graph of f and f−1 on the same diagram.

24. Let f(x) = x5 + x3 + 1. Sketch the graph of f and f−1 on the same diagram.

25.

a. Suppose that f is an increasing function on R. What can you say about f−1?

b. Suppose that f is a concave up function on R. What can you say about f−1?

In both parts, use exercise 22 to illustrate your claim.

26. Let f(x) = 3x3 + 9x+ 4. Compute (f−1)′(4).

27. Let f(x) = 2x2 + 11. Show that f is increasing at x = 0. Thus, there is an interval I
containing 0 such that f is injective on I. Compute (f−1)′(11).

28. Let f(x) = ax+ b with a 6= 0. Compute (f−1)′(b). Why do we need the condition a 6= 0?

29. Let f(x) = ax2 + bx + c with b 6= 0. Compute (f−1)′(c). Why do we need the condition
b 6= 0?

30. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 =
∑n

k=0 akx
k with a1 6= 0. Compute (f−1)′(a0).

Why do we need the condition a1 6= 0?

31. Suppose that f is injective on some interval containing 3. If f(3) = 4 and f ′(3) = 6 what is
(f−1)′(4)?

9.2 The natural logarithm

The function f(t) = 1/t is continuous on (0,∞). By the fundamental theorem of calculus,

f has an antiderivative on on the interval with end points x and 1 whenever x > 0. This

observation allows us to make the following definition.
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DEFINITION 9.2.1 The natural logarithm ln(x) is an antiderivative of 1/x, given

by

lnx =

∫ x

1

1

t
dt.

Figure 9.2.1 gives a geometric interpretation of ln. Note that when x < 1, lnx is

negative.

1 x

area is lnx
.....................................................

......

........
....

..........................................................................................................................................................................................................................................................................................................................................................

x 1

area is − lnx
..............................................

......

.........
...

..........................................................................................................................................................................................................................................................................................................................................................

Figure 9.2.1 ln(x) is an area.

Some properties of this function lnx are now easy to see.

THEOREM 9.2.2 Suppose that x, y > 0 and q ∈ Q.

a.
d

dx
lnx =

1

x
.

b. ln(1) = 0.

c. ln(xy) = lnx+ ln y

d. ln(x/y) = lnx− ln y

e. lnxq = q lnx.

Proof. Part (a) is simply the Fundamental Theorem of Calculus (7.2.2). Part (b) follows

directly from the definition, since

ln(1) =

∫ 1

1

1

t
dt.

Part (c) is a bit more involved; start with:

ln(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt = ln(x) +

∫ xy

x

1

t
dt.
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In the remaining integral, use the substitution u = t/x to get

∫ xy

x

1

t
dt =

∫ y

1

1

xu
x du =

∫ y

1

1

u
du = ln(y).

Parts (d) and (e) are left as exercises.

Part (e) is in fact true for any real number q (not just rationals) but one of the points

of our approach here is to give a rigorous definition of real powers which so far we have

not done.

We now turn to the task of sketching the graph of lnx.

THEOREM 9.2.3 lnx is increasing and its graph is concave down everywhere.

Proof. Since d
dx

lnx = 1/x is positive for x > 0, the Mean Value Theorem (6.5.2) implies

that lnx is increasing. The second derivative of lnx is then −1/x2 which is negative, so

the graph is concave down.

Notice that this theorem implies that lnx is injective.

THEOREM 9.2.4 lim
x→∞

lnx = ∞

Proof. Note that ln 2 > 0 and for n ∈ N, ln 2n = n ln 2. Since lnx is increasing, when

x > 2n, ln(x) > n ln 2. Since lim
n→∞

n ln 2 = ∞, also lim
x→∞

lnx = ∞.

COROLLARY 9.2.5 limx→0+ lnx = −∞

Proof. If 0 < x < 1, then (1/x) > 1 and limx→0+(1/x) = ∞. Let y = 1/x; then

limx→0+ lnx = limy→∞ ln(1/y) = limy→∞ ln(1)− ln(y) = limy→∞ − ln(y) = −∞.

Thus, the domain of ln is (0,∞) and the range is R; ln(x) is shown in figure 9.2.2.
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Figure 9.2.2 The graph of ln(x).
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By the intermediate value theorem (2.5.6) there is a number e such that ln e = 1. The

number e is also known as Napier’s constant.

It turns out that e is not rational. In fact, e is not the root of a polynomial with

rational coefficients which means that e is a transcendental number. We will not prove

these assertions here. The value of e is approximately 2.718.

EXAMPLE 9.2.6 Let f(x) = ln(x5 + 7x+ 12). Compute f ′(x).

Using the chain rule: f ′(x) =
1

x5 + 7x+ 12
(5x+ 7).

EXAMPLE 9.2.7 Let f(x) = ln(−x) for x < 0. Compute f ′(x).

f ′(x) =
1

−x
(−1) =

1

x
.

So the derivatives of ln(x) and ln(−x) are the same. Thus, you will often see

∫

1

x
dx =

ln |x|+ C as the general antiderivative of 1/x.

EXAMPLE 9.2.8 Compute

∫

tanx dx.

Use u = cosx:
∫

tanx dx =

∫

sinx

cosx
dx =

∫

− 1

u
du = − ln |u|+ C = − ln | cosx|+ C.

Using one of the properties of the logarithm, we could go further:

− ln | cosx|+ C = ln |(cosx)−1|+ C = ln | secx|+ C.

EXAMPLE 9.2.9 Let f(x) =
x18(x+ 2)6/7

(x10 + 4x2 + 1)6
. Compute f ′(x)

Computing the derivative directly is straightforward but irritating. We therefore take

an indirect approach. Note that f(x) > 0 for every x. Let g(x) = ln f(x). Then g′(x) =

f ′(x)/f(x) and so f ′(x) = f(x)g′(x). Now

g(x) = ln

(

x18(x+ 2)6/7

(x10 + 4x2 + 1)6

)

= 18 lnx+
6

7
ln(x+ 2)− 6 ln(x10 + 4x2 + 1)

Hence,

g′(x) =
18

x
+

6

7(x+ 2)
− 6(10x9 + 8x)

x10 + 4x2 + 1
.

Therefore,

f ′(x) =
x18(x+ 2)6/7

(x10 + 4x2 + 1)6

(

18

x
+

6

7(x+ 2)
− 6(10x9 + 8x)

x10 + 4x2 + 1

)

.
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Exercises 9.2.

1. Prove parts (d) and (e) of theorem 9.2.2.

In subsequent exercises, it is understood that the arguments in any logarithms are positive unless
otherwise stated.

2. Expand ln((x+ 45)7(x− 2)).

3. Expand ln
x3

3x− 5 + (7/x)
.

4. Sketch the graph of y = ln(x− 7)3 + 14.

5. Sketch the graph of y = ln |x| for x 6= 0.

6. Write ln 3x+ 17 ln(x− 2)− 2 ln(x2 + 4x+ 1) as a single logarithm.

7. Differentiate f(x) = x lnx.

8. Differentiate f(x) = ln(ln(3x)).

9. Sketch the graph of ln(x2 − 2x).

10. Differentiate f(x) =
1 + ln(3x2)

1 + ln(4x)
.

11. Differentiate f(x) = ln | sec x+ tanx|.
12. Find the second derivative of f(x) =

√

ln(x4 − 2).

13. Find the equation of the tangent line to f(x) = lnx at x = a.

14. Differentiate f(x) =
x8(x− 23)1/2

27x6(4x− 6)8
.

15. If f(x) = ln(x3 + 2) compute f ′(e1/3).

16. Compute

∫ e

1

1

x
dx.

17. Compute the derivative with respect to x of

∫ ln x

1

ln t dt. (Assume that x > 1.)

18. Compute

∫ π/6

0

tan(2x) dx.

19. Compute

∫

lnx

x
dx.

20. Compute

∫

sin(2x)

1 + cos2 x
dx.

21. Find the volume of the solid obtained by rotating the region under y = 1/
√
x from 1 to e

about the x-axis.

9.3 The exponential fun
tion

In this section, we define what is arguably the single most important function in all of

mathematics. We have already noted that the function lnx is injective, and therefore it

has an inverse.
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DEFINITION 9.3.1 The inverse function of ln(x) is y = exp(x), called the natural

exponential function.

The domain of exp(x) is all real numbers and the range is (0,∞). Note that because

exp(x) is the inverse of ln(x), exp(lnx) = x for x > 0, and ln(expx) = x for all x. Also,

our knowledge of ln(x) tells us immediately that exp(1) = e, exp(0) = 1, lim
x→∞

expx = ∞,

and lim
x→−∞

expx = 0.

THEOREM 9.3.2
d

dx
exp(x) = exp(x).

Proof. By the Inverse Function Theorem (9.1.17), exp(x) has a derivative everywhere.

The theorem also tells us what the derivative is. Alternately, we may compute the deriva-

tive using implicit differentiation: Let y = expx, so ln y = x. Differentiating with respect

to x we get
1

y

dy

dx
= 1. Hence, dy

dx = y = expx.

COROLLARY 9.3.3 Since expx > 0, expx is an increasing function whose graph is

concave up.

The graph of the natural exponential function is indicated in figure 9.3.1. Compare

this to the graph of lnx, figure 9.2.2.
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Figure 9.3.1 The graph of exp(x).

COROLLARY 9.3.4 The general antiderivative of expx is expx+ C.
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Of course, the word “exponential” already has a mathematical meaning, and this

meaning extends in a natural way to the exponential function exp(x).

LEMMA 9.3.5 For any rational number q, exp(q) = eq.

Proof. Let y = eq. Then ln y = ln(eq) = q ln e = q, and so y = exp(q).

In view of this lemma, we usually write exp(x) as ex for any real number x. Conve-

niently, it turns out that the usual laws of exponents apply to ex.

THEOREM 9.3.6 For every x, y ∈ R and q ∈ Q:

(a) ex+y = exey

(b) ex−y = ex/ey

(c) (ex)q = exq

Proof. Parts (b) and (c) are left as exercises. For part (a), ln(exey) = ln ex+ln ey = x+y,

so exey = ex+y .

EXAMPLE 9.3.7 Solve e4x+5 − 3 = 0 for x.

If e4x+5 − 3 = 0 then 4x+ 5 = ln 3 and so x =
ln 3− 5

4
.

EXAMPLE 9.3.8 Find the derivative of f(x) = ex
3

sin(4x).

By the product and chain rules, f ′(x) = 3x2ex
3

sin(4x) + 4ex
3

cos(4x).

EXAMPLE 9.3.9 Evaluate
∫

xex
2

dx.

Let u = x2, so du = 2x dx. Then

∫

xex
2

dx =
1

2

∫

eu du =
1

2
eu =

1

2
ex

2

+ C.

Exercises 9.3.

1. Prove parts (b) and (c) of theorem 9.3.6.

2. Solve ln(1 +
√
x) = 6 for x.

3. Solve ex
2

= 8 for x.

4. Solve ln(ln(x)) = 1 for x.

5. Sketch the graph of f(x) = e4x−5 + 6.

6. Sketch the graph of f(x) = 3ex+6 − 4.

7. Find the equation of the tangent line to f(x) = ex at x = a.

8. Compute the derivative of f(x) = 3x2e5x−6.
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9. Compute the derivative of f(x) = ex −
(

1 + x+
x2

2
+

x3

3!
+ · · ·+ xn

n!

)

.

10. Prove that ex > 1 for x ≥ 0. Then prove that ex > 1 + x for x ≥ 0.

11. Using the previous two exercises, prove (using mathematical induction) that ex > 1 + x +

x2

2
+

x3

3!
+ · · ·+ xn

n!
=

n
∑

k=0

xk

k!
for x ≥ 0.

12. Use the preceding exercise to show that e > 2.7.

13. Differentiate
ekx + e−kx

2
with respect to x.

14. Compute lim
x→∞

ex + e−x

ex − e−x
.

15. Integrate 5x4ex
5

with respect to x.

16. Compute

∫ π/3

0

cos(2x)esin 2x dx.

17. Compute

∫

e1/x
2

x3
dx.

18. Let F (x) =

∫ ex

0

et
4

dt. Compute F ′(0).

19. If f(x) = ekx what is f (940)(x)?

9.4 Other bases

Notice that if q ∈ Q and a > 0 then aq = eln(a
q) = eq ln a. This equation motivates the

following definition.

DEFINITION 9.4.1 For a > 0 and x ∈ R, we define ax = ex ln a. The function

f(x) = ax is the exponential function with base a. Separately, we define 0x = 0 for

x > 0.

Notice also that for x ∈ R and a > 0, ln ax = ln(ex ln a) = x lna. Hence, the power

rule for the natural logarithm works even when the power is irrational.

We now show that the familiar rules for exponents are valid.

THEOREM 9.4.2 For x, y ∈ R and a, b > 0:

a ax+y = axay

b ax−y = ax/ay

c (ax)y = axy

d (ab)x = axbx

Proof.
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(a) We compute: ax+y = e(x+y) ln a = ex ln a+y ln a = ex ln aey ln a = axay.

The proof of (b) is similar and left as an exercise.

(c) We compute: (ax)y = ey ln(ax) = eyx ln a = axy.

(d) We compute: (ab)x = ex ln(ab) = ex ln a+x ln b = ex ln aex ln b = axbx.

THEOREM 9.4.3 If f(x) = ax (with a > 0) then f ′(x) = ax ln a.

Proof.

f ′(x) =
d

dx
(ex ln a) = ex ln a ln a = ax ln a.

COROLLARY 9.4.4 For a > 0 and a 6= 1,

∫

ax dx =
ax

lna
+ C.

We are now in a position to prove the general power rule.

THEOREM 9.4.5 Power Rule If f(x) = xn, x > 0, and n is any real number, then

f ′(x) = nxn−1.

Proof. f ′(x) =
d

dx
xn =

d

dx
en lnx = en lnxn

x
=

nxn

x
= nxn−1.

The restriction that x > 0 is necessary since we have not defined exponential expres-

sions with negative bases and arbitrary real powers.

We now turn to logarithms base a. Note that if a > 0 and a 6= 1 then ax ln a 6= 0 for

every x. Hence, the function f(x) = ax is injective.

DEFINITION 9.4.6 If a > 0 and a 6= 1, the inverse of ax is called the logarithmic

function base a. In symbols, we write this function as loga x.

We exclude a = 1 because 1x = 1 is not injective on any domain containing more than

one point.

Remark. If a = 10 we usually write log instead of log10, and of course loge = ln. In more

advanced texts, “log” refers to the natural logarithm.

THEOREM 9.4.7 The following hold for a, x, y > 0, a 6= 1, and q ∈ R:

a. loga(xy) = loga x+ loga y

b. loga
x

y
= loga x− loga y

c. loga x
q = q loga x.

Proof. (a) Let u = loga x and v = loga y. Then au = x and av = y, and xy = auav =

au+v, so loga(xy) = u+ v = loga x+ loga y.
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The other parts are left as exercises.

When computing decimal approximations to logs of arbitrary bases with a calculator

or a computer algebra system the following result comes in handy.

LEMMA 9.4.8 If a, b > 0, a, b 6= 1, and x > 0, ¡loga x =
logb x

logb a
.

Proof. Let y = loga x, so ay = x. Then logb x = logb(a
y) = y logb a = loga x logb a.

Typically this is useful when b = e and b = 10, since calculators can typically compute

logarithms to those bases.

THEOREM 9.4.9
d

dx
loga x =

1

x ln a
.

Proof. By the preceding lemma, f(x) = lnx/ lna, and the derivative is then easy.

Finally, we express ex as a limit. When x = 1 we get a limit expression for e which is

sometimes taken as the definition of e.

THEOREM 9.4.10 If x ≥ 0, ex = lim
n→∞

(

1 +
x

n

)n

.

Proof. If x = 0 both expressions are 1.

If x > 0 we begin by rewriting the right side as we have before:

(

1 +
x

n

)n

=
(

eln(1+x/n)
)n

= en ln(1+x/n).

Now because ex is continuous,

lim
n→∞

en ln(1+x/n) = elimn→∞ n ln(1+x/n).

So really we need to compute lim
n→∞

n ln(1 + x/n), for which we use L’Hôpitals rule:

lim
n→∞

n ln(1 + x/n) = lim
n→∞

ln(1 + x/n)

1/n
= lim

n→∞

1
1+x/n

−x
n2

−1/n2
= lim

n→∞

1

1 + x/n
x = x.

This same simple fact, a = eln a, is useful in many similar situations.

EXAMPLE 9.4.11 Let f(x) = xx, x > 0. Compute f ′(x) and lim
x→0+

f(x).
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Start with f(x) = xx = ex lnx. Then

f ′(x) = ex ln x

(

x
1

x
+ lnx

)

= xx(1 + lnx).

For the limit, we again notice that

lim
x→0+

xx = lim
x→0+

ex lnx = elimx→0+
x lnx.

Then we compute the limit by L’Hôpital’s rule again:

lim
x→0+

x lnx = lim
x→0+

lnx

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0.

Thus lim
x→0+

xx = e0 = 1.

EXAMPLE 9.4.12 Compute

∫ π/3

π/6

2cosx sinx dx.

Let u = cosx, so du = − sinx dx. Changing the limits, when x = π/6, u =
√
3/2, and

when x = π/3, u = 1/2. Then

∫ π/3

π/6

2cosx sinx dx = −
∫ 1/2

√
3/2

2udu = − 2u

ln 2

∣

∣

∣

∣

1/2

√
3/2

=
−21/2 + 2

√
3/2

ln 2
.

Exercises 9.4.

1. Prove part (b) of theorem 9.4.2.

2. Sketch the graph of y = ax in the three cases a > 1, a = 1, and 0 < a < 1. What happens
to the graph as a → 0+? What happens to the graph as a → ∞?

3. Sketch the graph of y = loga x in the two cases a > 1 and 0 < a < 1. What happens to
the graph as a → 0+? What happens to the graph as a → ∞? (Use the previous exercise
together with exercise 22 in section 9.1.)

4. Prove parts (b) and (c) of theorem 9.4.7.

5. Sketch the graph of y = 36x−1 + 5.

6. Sketch the graph of y = −(1/2)−3x.

7. Sketch the graph of y = 4 log2(12x+ 6)− 2.

8. Compute the second derivative of f(x) = xx.

9. Compute f ′(π/4) when f(x) = 5sin 3x + log7 x.

10. Compute the derivative of f(x) = 3x − 4x2 + sin(3x)− πe.
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11. Compute

∫ 2

1

3x − x3 dx.

12. Compute
∫

sin(2x)2xdx.

13. Find the area of the region given by {(x, y) | 1 ≤ x ≤ 2, 2x ≤ y ≤ 3x}.
14. Find the average of the function f(x) = 2x · 5x

2

on the interval [4, 9].

15. Find the volume of the solid obtained by rotating the region {(x, y) | 2 ≤ x ≤ 4, (log2 x)/x ≤
y ≤ 2x} about the line y = −1.

16. Show that loga x = − log1/a x for any a > 0, a 6= 1. Interpret this result geometrically; that
is, sketch the graph of y = loga x and y = log1/a x on the same diagram and point out how
the graphs are related to each other.

9.5 Inverse Trigonometri
 Fun
tions

The trigonometric functions frequently arise in problems, and often it is necessary to

invert the functions, for example, to find an angle with a specified sine. Of course, there

are many angles with the same sine, so the sine function doesn’t actually have an inverse

that reliably “undoes” the sine function. If you know that sinx = 0.5, you can’t reverse

this to discover x, that is, you can’t solve for x, as there are infinitely many angles with

sine 0.5. Nevertheless, it is useful to have something like an inverse to the sine, however

imperfect. The usual approach is to pick out some collection of angles that produce all

possible values of the sine exactly once. If we “discard” all other angles, the resulting

function does have a proper inverse.

The sine takes on all values between −1 and 1 exactly once on the interval [−π/2, π/2].

If we truncate the sine, keeping only the interval [−π/2, π/2], as shown in figure 9.5.1, then

this truncated sine has an inverse function. We call this the inverse sine or the arcsine,

and write y = arcsin(x).
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Figure 9.5.1 The sine, the truncated sine, the inverse sine.
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Recall that a function and its inverse undo each other in either order, for example,

( 3
√
x)3 = x and

3
√
x3 = x. This does not work with the sine and the “inverse sine” because

the inverse sine is the inverse of the truncated sine function, not the real sine function.

It is true that sin(arcsin(x)) = x, that is, the sine undoes the arcsine. It is not true that

the arcsine undoes the sine, for example, sin(5π/6) = 1/2 and arcsin(1/2) = π/6, so doing

first the sine then the arcsine does not get us back where we started. This is because 5π/6

is not in the domain of the truncated sine. If we start with an angle between −π/2 and

π/2 then the arcsine does reverse the sine: sin(π/6) = 1/2 and arcsin(1/2) = π/6.

What is the derivative of the arcsine? Since this is an inverse function, we can discover

the derivative by using implicit differentiation. Suppose y = arcsin(x). Then

sin(y) = sin(arcsin(x)) = x.

Now taking the derivative of both sides, we get

y′ cos y = 1

y′ =
1

cos y

As we expect when using implicit differentiation, y appears on the right hand side here.

We would certainly prefer to have y′ written in terms of x, and as in the case of lnx we

can actually do that here. Since sin2 y + cos2 y = 1, cos2 y = 1 − sin2 y = 1 − x2. So

cos y = ±
√

1− x2 , but which is it—plus or minus? It could in general be either, but this

isn’t “in general”: since y = arcsin(x) we know that −π/2 ≤ y ≤ π/2, and the cosine of

an angle in this interval is always positive. Thus cos y =
√

1− x2 and

d

dx
arcsin(x) =

1√
1− x2

.

Note that this agrees with figure 9.5.1: the graph of the arcsine has positive slope every-

where.

We can do something similar for the cosine. As with the sine, we must first truncate

the cosine so that it can be inverted, as shown in figure 9.5.2. Then we use implicit

differentiation to find that
d

dx
arccos(x) =

−1√
1− x2

.

Note that the truncated cosine uses a different interval than the truncated sine, so that if

y = arccos(x) we know that 0 ≤ y ≤ π. The computation of the derivative of the arccosine

is left as an exercise.
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−1

1

π/2 π

...................................................................................................................................................................................................................................

π/2

π

−1 1

...................................................................................................................................................................................................................................

Figure 9.5.2 The truncated cosine, the inverse cosine.
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Figure 9.5.3 The tangent, the truncated tangent, the inverse tangent.

Finally we look at the tangent; the other trigonometric functions also have “partial

inverses” but the sine, cosine and tangent are enough for most purposes. The tangent,

truncated tangent and inverse tangent are shown in figure 9.5.3; the derivative of the

arctangent is left as an exercise.

Exercises 9.5.

1. Show that the derivative of arccos x is − 1√
1− x2

.

2. Show that the derivative of arctan x is
1

1 + x2
.

3. The inverse of cot is usually defined so that the range of arccot is (0, π). Sketch the graph
of y = arccotx. In the process you will make it clear what the domain of arccot is. Find the
derivative of the arccotangent. ⇒

4. Show that arccotx+ arctan x = π/2.

5. Find the derivative of arcsin(x2). ⇒
6. Find the derivative of arctan(ex). ⇒
7. Find the derivative of arccos(sinx3) ⇒
8. Find the derivative of ln((arcsin x)2) ⇒
9. Find the derivative of arccos ex ⇒
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10. Find the derivative of arcsin x+ arccos x ⇒
11. Find the derivative of log5(arctan(x

x)) ⇒

12. Compute

∫

arcsec x

x
√
x2 − 1

dx

13. Compute

∫

ln(arcsin x)

arcsin x
√
1− x2

dx

14. Compute

∫

√
2

0

(

1 + x3 + xex
2

− 1

1 + x2

)

dx

15. Compute

∫

dx

1 + 9x2

16. Find the equation of the tangent line to f(x) = arccsc x at x = π/6.

17. Let

A =

{

(x, y) | 1
2
≤ x ≤

√
3

2
, 0 ≤ y ≤ 1

(1− x2)1/4

}

.

Sketch the region A. Let S be the solid obtained from rotating A about the x-axis. Compute
the volume of S.

9.6 Hyperboli
 Fun
tions

The hyperbolic functions appear with some frequency in applications, and are quite similar

in many respects to the trigonometric functions. This is a bit surprising given our initial

definitions.

DEFINITION 9.6.1 The hyperbolic cosine is the function

coshx =
ex + e−x

2
,

and the hyperbolic sine is the function

sinhx =
ex − e−x

2
.

Notice that cosh is even (that is, cosh(−x) = cosh(x)) while sinh is odd (sinh(−x) =

− sinh(x)), and coshx + sinh x = ex. Also, for all x, cosh x > 0, while sinh x = 0 if and

only if ex − e−x = 0, which is true precisely when x = 0.

LEMMA 9.6.2 The range of cosh x is [1,∞).
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Proof. Let y = coshx. We solve for x:

y =
ex + e−x

2

2y = ex + e−x

2yex = e2x + 1

0 = e2x − 2yex + 1

ex =
2y ±

√

4y2 − 4

2

ex = y ±
√

y2 − 1

From the last equation, we see y2 ≥ 1, and since y ≥ 0, it follows that y ≥ 1.

Now suppose y ≥ 1, so y ±
√

y2 − 1 > 0. Then x = ln(y ±
√

y2 − 1) is a real number,

and y = coshx, so y is in the range of cosh(x).

DEFINITION 9.6.3 The other hyperbolic functions are

tanhx =
sinhx

coshx

cothx =
coshx

sinhx

sech x =
1

coshx

csch x =
1

sinhx

The domain of coth and csch is x 6= 0 while the domain of the other hyperbolic functions

is all real numbers. Graphs are shown in figure 9.6.1
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Figure 9.6.1 The hyperbolic functions: cosh, sinh, tanh, sech, csch, coth.
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Certainly the hyperbolic functions do not closely resemble the trigonometric functions

graphically. But they do have analogous properties, beginning with the following identity.

THEOREM 9.6.4 For all x in R, cosh2 x− sinh2 x = 1.

Proof. The proof is a straightforward computation:

cosh2 x−sinh2 x =
(ex + e−x)2

4
− (ex − e−x)2

4
=

e2x + 2 + e−2x − e2x + 2− e−2x

4
=

4

4
= 1.

This immediately gives two additional identities:

1− tanh2 x = sech2 x and coth2 x− 1 = csch2 x.

The identity of the theorem also helps to provide a geometric motivation. Recall that

the graph of x2 − y2 = 1 is a hyperbola with asymptotes x = ±y whose x-intercepts are

±1. If (x, y) is a point on the right half of the hyperbola, and if we let x = cosh t, then

y = ±
√

x2 − 1 = ±
√

cosh2 t− 1 = ± sinh t. So for some suitable t, cosh t and sinh t are

the coordinates of a typical point on the hyperbola. In fact, it turns out that t is twice the

area shown in the first graph of figure 9.6.2. Even this is analogous to trigonometry; cos t

and sin t are the coordinates of a typical point on the unit circle, and t is twice the area

shown in the second graph of figure 9.6.2.

1 2 3

−3

−2

−1

0

1

2

3

(cosh t, sinh t)
•

1

(cos t, sin t)
•

Figure 9.6.2 Geometric definitions of sin, cos, sinh, cosh: t is twice the shaded area in
each figure.

Given the definitions of the hyperbolic functions, finding their derivatives is straight-

forward. Here again we see similarities to the trigonometric functions.

THEOREM 9.6.5
d

dx
cosh x = sinh x and

d

dx
sinhx = coshx.
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Proof.
d

dx
coshx =

d

dx

ex + e−x

2
=

ex − e−x

2
= sinhx, and

d

dx
sinhx =

d

dx

ex − e−x

2
=

ex + e−x

2
= coshx.

Of course, this immediately gives us two anti-derivatives as well.

Since coshx > 0, sinhx is increasing and hence injective, so sinhx has an inverse,

arcsinhx. Also, sinhx > 0 when x > 0, so coshx is injective on [0,∞) and has a (partial)

inverse, arccosh x. The other hyperbolic functions have inverses as well, though arcsech x

is only a partial inverse. We may compute the derivatives of these functions as we have

other inverse functions.

THEOREM 9.6.6
d

dx
arcsinh x =

1√
1 + x2

.

Proof. Let y = arcsinhx, so sinh y = x. Then
d

dx
sinh y = cosh(y) · y′ = 1, and so

y′ =
1

cosh y
=

1
√

1 + sinh2 y
=

1√
1 + x2

.

The other derivatives are left to the exercises.

Exercises 9.6.

1. Show that the range of sinh x is all real numbers. (Hint: show that if y = sinhx then

x = ln(y +
√

y2 + 1).)

2. Compute the following limits:

a. lim
x→∞

cosh x

b. lim
x→∞

sinh x

c. lim
x→∞

tanh x

d. lim
x→∞

(cosh x− sinh x)

3. Show that the range of tanh x is (−1, 1). What are the ranges of coth, sech, and csch? (Use
the fact that they are reciprocal functions.)

4. Prove that for every x, y ∈ R, sinh(x + y) = sinhx cosh y + cosh x sinh y. Obtain a similar
identity for sinh(x− y).

5. Prove that for every x, y ∈ R, cosh(x + y) = cosh x cosh y + sinhx sinh y. Obtain a similar
identity for cosh(x− y).

6. Use exercises 4 and 5 to show that sinh(2x) = 2 sinh x cosh x and cosh(2x) = cosh2 x+sinh2 x
for every x. Conclude also that (cosh(2x)− 1)/2 = sinh2 x.

7. Show that
d

dx
(tanhx) = sech2 x. Compute the derivatives of the remaining hyperbolic

functions as well.

8. What are the domains of the six inverse hyperbolic functions?
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9. Sketch the graphs of all six inverse hyperbolic functions.

The following four exercises expand on the geometric interpretation of the hyperbolic functions.
Refer to figure 9.6.2.

10. Use exercises 4 and 5 to show that sinh(2x) = 2 sinh x cosh x and cosh(2x) = cosh2 x+sinh2 x
for every x. Conclude that (cosh(2x)− 1)/2 = sinh2 x.

11. Compute

∫

√

x2 − 1 dx. (Hint: make the substitution u = arccosh x and then use the

preceding exercise.)

12. Fix t > 0. Sketch the region R in the right half plane bounded by the curves y = tanh t,
y = − tanh t, and y2 − x2 = 1. Note well: t is fixed, the plane is the x-y plane.

13. Prove that the area of R is t.




