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Trigonometric Functions

So far we have used only algebraic functions as examples when finding derivatives, that is,

functions that can be built up by the usual algebraic operations of addition, subtraction,

multiplication, division, and raising to constant powers. Both in theory and practice there

are other functions, called transcendental, that are very useful. Most important among

these are the trigonometric functions, the inverse trigonometric functions, exponential

functions, and logarithms. In this chapter we investigate the trigonometric functions.

4.1 Trigonometri Funtions

When you first encountered the trigonometric functions it was probably in the context of

“triangle trigonometry,” defining, for example, the sine of an angle as the “side opposite

over the hypotenuse.” While this will still be useful in an informal way, we need to use a

more expansive definition of the trigonometric functions. First an important note: while

degree measure of angles is sometimes convenient because it is so familiar, it turns out to

be ill-suited to mathematical calculation, so (almost) everything we do will be in terms of

radian measure of angles.
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To define the radian measurement system, we consider the unit circle in the xy-plane:
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x

(cosx, sinx)

y

A

B

(1, 0)

An angle, x, at the center of the circle is associated with an arc of the circle which is said

to subtend the angle. In the figure, this arc is the portion of the circle from point (1, 0)

to point A. The length of this arc is the radian measure of the angle x; the fact that the

radian measure is an actual geometric length is largely responsible for the usefulness of

radian measure. The circumference of the unit circle is 2πr = 2π(1) = 2π, so the radian

measure of the full circular angle (that is, of the 360 degree angle) is 2π.

While an angle with a particular measure can appear anywhere around the circle, we

need a fixed, conventional location so that we can use the coordinate system to define

properties of the angle. The standard convention is to place the starting radius for the

angle on the positive x-axis, and to measure positive angles counterclockwise around the

circle. In the figure, x is the standard location of the angle π/6, that is, the length of the

arc from (1, 0) to A is π/6. The angle y in the picture is −π/6, because the distance from

(1, 0) to B along the circle is also π/6, but in a clockwise direction.

Now the fundamental trigonometric definitions are: the cosine of x and the sine of x

are the first and second coordinates of the point A, as indicated in the figure. The angle x

shown can be viewed as an angle of a right triangle, meaning the usual triangle definitions

of the sine and cosine also make sense. Since the hypotenuse of the triangle is 1, the “side

opposite over hypotenuse” definition of the sine is the second coordinate of point A over

1, which is just the second coordinate; in other words, both methods give the same value

for the sine.

The simple triangle definitions work only for angles that can “fit” in a right triangle,

namely, angles between 0 and π/2. The coordinate definitions, on the other hand, apply
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to any angles, as indicated in this figure:
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x

A

(cos x, sinx)

The angle x is subtended by the heavy arc in the figure, that is, x = 7π/6. Both

coordinates of point A in this figure are negative, so the sine and cosine of 7π/6 are both

negative.

The remaining trigonometric functions can be most easily defined in terms of the sine

and cosine, as usual:

tanx =
sinx

cosx

cot x =
cosx

sinx

sec x =
1

cosx

csc x =
1

sinx

and they can also be defined as the corresponding ratios of coordinates.

Although the trigonometric functions are defined in terms of the unit circle, the unit

circle diagram is not what we normally consider the graph of a trigonometric function.

(The unit circle is the graph of, well, the circle.) We can easily get a qualitatively correct

idea of the graphs of the trigonometric functions from the unit circle diagram. Consider

the sine function, y = sinx. As x increases from 0 in the unit circle diagram, the second

coordinate of the point A goes from 0 to a maximum of 1, then back to 0, then to a

minimum of −1, then back to 0, and then it obviously repeats itself. So the graph of

y = sinx must look something like this:
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Similarly, as angle x increases from 0 in the unit circle diagram, the first coordinate of

the point A goes from 1 to 0 then to −1, back to 0 and back to 1, so the graph of y = cosx

must look something like this:
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Exercises 4.1.

Some useful trigonometric identities are in appendix B.

1. Find all values of θ such that sin(θ) = −1; give your answer in radians. ⇒
2. Find all values of θ such that cos(2θ) = 1/2; give your answer in radians. ⇒
3. Use an angle sum identity to compute cos(π/12). ⇒
4. Use an angle sum identity to compute tan(5π/12). ⇒
5. Verify the identity cos2(t)/(1− sin(t)) = 1 + sin(t).

6. Verify the identity 2 csc(2θ) = sec(θ) csc(θ).

7. Verify the identity sin(3θ)− sin(θ) = 2 cos(2θ) sin(θ).

8. Sketch y = 2 sin(x).

9. Sketch y = sin(3x).

10. Sketch y = sin(−x).

11. Find all of the solutions of 2 sin(t)− 1− sin2(t) = 0 in the interval [0, 2π]. ⇒

4.2 The Derivative of sinx

What about the derivative of the sine function? The rules for derivatives that we have are

no help, since sinx is not an algebraic function. We need to return to the definition of the

derivative, set up a limit, and try to compute it. Here’s the definition:

d

dx
sinx = lim

∆x→0

sin(x+∆x)− sinx

∆x
.

Using some trigonometric identities, we can make a little progress on the quotient:

sin(x+∆x)− sinx

∆x
=

sinx cos∆x+ sin∆x cosx− sinx

∆x

= sinx
cos∆x− 1

∆x
+ cosx

sin∆x

∆x
.
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This isolates the difficult bits in the two limits

lim
∆x→0

cos∆x− 1

∆x
and lim

∆x→0

sin∆x

∆x
.

Here we get a little lucky: it turns out that once we know the second limit the first is quite

easy. The second is quite tricky, however. Indeed, it is the hardest limit we will actually

compute, and we devote a section to it.

4.3 A hard limit

We want to compute this limit:

lim
∆x→0

sin∆x

∆x
.

Equivalently, to make the notation a bit simpler, we can compute

lim
x→0

sinx

x
.

In the original context we need to keep x and ∆x separate, but here it doesn’t hurt to

rename ∆x to something more convenient.

To do this we need to be quite clever, and to employ some indirect reasoning. The

indirect reasoning is embodied in a theorem, frequently called the squeeze theorem.

THEOREM 4.3.1 Squeeze Theorem Suppose that g(x) ≤ f(x) ≤ h(x) for all x

close to a but not equal to a. If limx→a g(x) = L = limx→a h(x), then limx→a f(x) = L.

This theorem can be proved using the official definition of limit. We won’t prove it

here, but point out that it is easy to understand and believe graphically. The condition

says that f(x) is trapped between g(x) below and h(x) above, and that at x = a, both g

and h approach the same value. This means the situation looks something like figure 4.3.1.

The wiggly curve is x2 sin(π/x), the upper and lower curves are x2 and −x2. Since the

sine function is always between −1 and 1, −x2 ≤ x2 sin(π/x) ≤ x2, and it is easy to see

that limx→0 −x2 = 0 = limx→0 x
2. It is not so easy to see directly, that is algebraically,

that limx→0 x
2 sin(π/x) = 0, because the π/x prevents us from simply plugging in x = 0.

The squeeze theorem makes this “hard limit” as easy as the trivial limits involving x2.

To do the hard limit that we want, limx→0(sinx)/x, we will find two simpler functions

g and h so that g(x) ≤ (sinx)/x ≤ h(x), and so that limx→0 g(x) = limx→0 h(x). Not too

surprisingly, this will require some trigonometry and geometry. Referring to figure 4.3.2,

x is the measure of the angle in radians. Since the circle has radius 1, the coordinates of
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Figure 4.3.1 The squeeze theorem.

point A are (cosx, sinx), and the area of the small triangle is (cosx sinx)/2. This triangle

is completely contained within the circular wedge-shaped region bordered by two lines and

the circle from (1, 0) to point A. Comparing the areas of the triangle and the wedge we

see (cosx sinx)/2 ≤ x/2, since the area of a circular region with angle θ and radius r is

θr2/2. With a little algebra this turns into (sinx)/x ≤ 1/ cosx, giving us the h we seek.
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Figure 4.3.2 Visualizing sin x/x.

To find g, we note that the circular wedge is completely contained inside the larger

triangle. The height of the triangle, from (1, 0) to point B, is tanx, so comparing areas we

get x/2 ≤ (tanx)/2 = sinx/(2 cosx). With a little algebra this becomes cosx ≤ (sinx)/x.

So now we have

cosx ≤ sinx

x
≤ 1

cosx
.
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Finally, the two limits limx→0 cosx and limx→0 1/ cosx are easy, because cos(0) = 1. By

the squeeze theorem, limx→0(sinx)/x = 1 as well.

Before we can complete the calculation of the derivative of the sine, we need one other

limit:

lim
x→0

cosx− 1

x
.

This limit is just as hard as sinx/x, but closely related to it, so that we don’t have to do

a similar calculation; instead we can do a bit of tricky algebra.

cosx− 1

x
=

cosx− 1

x

cosx+ 1

cosx+ 1
=

cos2 x− 1

x(cosx+ 1)
=

− sin2 x

x(cosx+ 1)
= −sin x

x

sinx

cosx+ 1
.

To compute the desired limit it is sufficient to compute the limits of the two final fractions,

as x goes to 0. The first of these is the hard limit we’ve just done, namely 1. The second

turns out to be simple, because the denominator presents no problem:

lim
x→0

sinx

cosx+ 1
=

sin 0

cos 0 + 1
=

0

2
= 0.

Thus,

lim
x→0

cosx− 1

x
= 0.

Exercises 4.3.

1. Compute lim
x→0

sin(5x)

x
⇒ 2. Compute lim

x→0

sin(7x)

sin(2x)
⇒

3. Compute lim
x→0

cot(4x)

csc(3x)
⇒ 4. Compute lim

x→0

tanx

x
⇒

5. Compute lim
x→π/4

sin x− cos x

cos(2x)
⇒

6. For all x ≥ 0, 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7. Find lim
x→4

f(x). ⇒

7. For all x, 2x ≤ g(x) ≤ x4 − x2 + 2. Find lim
x→1

g(x). ⇒

8. Use the Squeeze Theorem to show that lim
x→0

x4 cos(2/x) = 0.
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4.4 The Derivative of sinx , ontinued

Now we can complete the calculation of the derivative of the sine:

d

dx
sinx = lim

∆x→0

sin(x+∆x)− sinx

∆x

= lim
∆x→0

sinx
cos∆x− 1

∆x
+ cosx

sin∆x

∆x

= sinx · 0 + cosx · 1 = cosx.

The derivative of a function measures the slope or steepness of the function; if we

examine the graphs of the sine and cosine side by side, it should be that the latter appears

to accurately describe the slope of the former, and indeed this is true:
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cos x

Notice that where the cosine is zero the sine does appear to have a horizontal tangent

line, and that the sine appears to be steepest where the cosine takes on its extreme values

of 1 and −1.

Of course, now that we know the derivative of the sine, we can compute derivatives of

more complicated functions involving the sine.

EXAMPLE 4.4.1 Compute the derivative of sin(x2).

d

dx
sin(x2) = cos(x2) · 2x = 2x cos(x2).

EXAMPLE 4.4.2 Compute the derivative of sin2(x3 − 5x).

d

dx
sin2(x3 − 5x) =

d

dx
(sin(x3 − 5x))2

= 2(sin(x3 − 5x))1 cos(x3 − 5x)(3x2 − 5)

= 2(3x2 − 5) cos(x3 − 5x) sin(x3 − 5x).
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Exercises 4.4.

Find the derivatives of the following functions.

1. sin2(
√
x) ⇒ 2.

√
x sin x ⇒

3.
1

sinx
⇒ 4.

x2 + x

sinx
⇒

5.
√

1− sin2 x ⇒

4.5 Derivatives of the Trigonometri Funtions

All of the other trigonometric functions can be expressed in terms of the sine, and so their

derivatives can easily be calculated using the rules we already have. For the cosine we

need to use two identities,

cosx = sin(x+
π

2
),

sinx = − cos(x+
π

2
).

Now:
d

dx
cosx =

d

dx
sin(x+

π

2
) = cos(x+

π

2
) · 1 = − sinx

d

dx
tanx =

d

dx

sinx

cosx
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x

d

dx
secx =

d

dx
(cosx)−1 = −1(cosx)−2(− sinx) =

sinx

cos2 x
= sec x tanx

The derivatives of the cotangent and cosecant are similar and left as exercises.

Exercises 4.5.

Find the derivatives of the following functions.

1. sin x cos x ⇒ 2. sin(cos x) ⇒
3.

√
x tan x ⇒ 4. tan x/(1 + sin x) ⇒

5. cotx ⇒ 6. csc x ⇒
7. x3 sin(23x2) ⇒ 8. sin2 x+ cos2 x ⇒
9. sin(cos(6x)) ⇒

10. Compute
d

dθ

sec θ

1 + sec θ
. ⇒

11. Compute
d

dt
t5 cos(6t). ⇒

12. Compute
d

dt

t3 sin(3t)

cos(2t)
. ⇒

13. Find all points on the graph of f(x) = sin2(x) at which the tangent line is horizontal. ⇒
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14. Find all points on the graph of f(x) = 2 sin(x)−sin2(x) at which the tangent line is horizontal.
⇒

15. Find an equation for the tangent line to sin2(x) at x = π/3. ⇒
16. Find an equation for the tangent line to sec2 x at x = π/3. ⇒
17. Find an equation for the tangent line to cos2 x− sin2(4x) at x = π/6. ⇒
18. Find the points on the curve y = x+ 2 cos x that have a horizontal tangent line. ⇒
19. Let C be a circle of radius r. Let A be an arc on C subtending a central angle θ. Let B be

the chord of C whose endpoints are the endpoints of A. (Hence, B also subtends θ.) Let
s be the length of A and let d be the length of B. Sketch a diagram of the situation and
compute lim

θ→0+
s/d.

4.6 Impliit Differentiation

We have not yet verified the power rule,
d

dx
xa = axa−1, for non-integer a. There is a

close relationship between x2 and x1/2—these functions are inverses of each other, each

“undoing” what the other has done. Not surprisingly, this means there is a relationship

between their derivatives.

Let’s rewrite y = x1/2 as y2 = x. We say that this equation defines the function

y = x1/2 implicitly because while it is not an explicit expression y = . . ., it is true that if

x = y2 then y is in fact the square root function. Now, for the time being, pretend that

all we know of y is that x = y2; what can we say about derivatives? We can take the

derivative of both sides of the equation:

d

dx
x =

d

dx
y2.

Then using the chain rule on the right hand side:

1 = 2y

(

d

dx
y

)

= 2yy′.

Then we can solve for y′:

y′ =
1

2y
=

1

2x1/2
=

1

2
x−1/2.

This is the power rule for x1/2.

There is one little difficulty here. To use the chain rule to compute d/dx(y2) = 2yy′

we need to know that the function y has a derivative. All we have shown is that if it has a

derivative then that derivative must be x−1/2/2. When using this method we will always

have to assume that the desired derivative exists, but fortunately this is a safe assumption

for most such problems.
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Here’s another interesting feature of this calculation. The equation x = y2 defines

more than one function implicitly: y = −
√
x also makes the equation true. Following

exactly the calculation above we arrive at

y′ =
1

2y
=

1

2(−x1/2)
= −1

2
x−1/2.

So the single calculation leading to y′ = 1/(2y) simultaneously computes the derivatives

of both functions.

We can use the same technique to verify the product rule for any rational power.

Suppose y = xm/n. Write instead xm = yn and take the derivative of each side to get

mxm−1 = nyn−1y′. Then

y′ =
mxm−1

nyn−1
=

mxm−1

n(xm/n)n−1
=

m

n
xm−1x−m(n−1)/n =

m

n
xm/n−1.

This example involves an inverse function defined implicitly, but other functions can

be defined implicitly, and sometimes a single equation can be used to implicitly define

more than one function. Here’s a familiar example. The equation r2 = x2 + y2 describes

a circle of radius r. The circle is not a function y = f(x) because for some values of x

there are two corresponding values of y. If we want to work with a function, we can break

the circle into two pieces, the upper and lower semicircles, each of which is a function.

Let’s call these y = U(x) and y = L(x); in fact this is a fairly simple example, and it’s

possible to give explicit expressions for these: U(x) =
√

r2 − x2 and L(x) = −
√

r2 − x2 .

But it’s somewhat easier, and quite useful, to view both functions as given implicitly by

r2 = x2 + y2: both r2 = x2 + U(x)2 and r2 = x2 + L(x)2 are true, and we can think of

r2 = x2 + y2 as defining both U(x) and L(x).

Now we can take the derivative of both sides as before, remembering that y is not

simply a variable but a function—in this case, y is either U(x) or L(x) but we’re not yet

specifying which one. When we take the derivative we just have to remember to apply the

chain rule where y appears.
d

dx
r2 =

d

dx
(x2 + y2)

0 = 2x+ 2yy′

y′ =
−2x

2y
= −x

y

Now we have an expression for y′, but it contains y as well as x. This means that if we

want to compute y′ for some particular value of x we’ll have to know or compute y at that

value of x as well. It is at this point that we will need to know whether y is U(x) or L(x).
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Occasionally it will turn out that we can avoid explicit use of U(x) or L(x) by the nature

of the problem

EXAMPLE 4.6.1 Find the slope of the circle 4 = x2 + y2 at the point (1,−
√
3). Since

we know both the x and y coordinates of the point of interest, we do not need to explicitly

recognize that this point is on L(x), and we do not need to use L(x) to compute y—but

we could. Using the calculation of y′ from above,

y′ = −x

y
= − 1

−
√
3
=

1√
3
.

It is instructive to compare this approach to others.

We might have recognized at the start that (1,−
√
3) is on the function y = L(x) =

−
√

4− x2. We could then take the derivative of L(x), using the power rule and the chain

rule, to get

L′(x) = −1

2
(4− x2)−1/2(−2x) =

x√
4− x2

.

Then we could compute L′(1) = 1/
√
3 by substituting x = 1.

Alternately, we could realize that the point is on L(x), but use the fact that y′ = −x/y.

Since the point is on L(x) we can replace y by L(x) to get

y′ = − x

L(x)
=

x√
4− x2

,

without computing the derivative of L(x) explicitly. Then we substitute x = 1 and get the

same answer as before.

In the case of the circle it is possible to find the functions U(x) and L(x) explicitly, but

there are potential advantages to using implicit differentiation anyway. In some cases it is

more difficult or impossible to find an explicit formula for y and implicit differentiation is

the only way to find the derivative.

EXAMPLE 4.6.2 Find the derivative of any function defined implicitly by yx2+y2 = x.

We treat y as an unspecified function and use the chain rule:

d

dx
(yx2 + y2) =

d

dx
x

(y · 2x+ y′ · x2) + 2yy′ = 1

y′ · x2 + 2yy′ = 1− y · 2x

y′ =
1− 2xy

x2 + 2y
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You might think that the step in which we solve for y′ could sometimes be difficult—

after all, we’re using implicit differentiation here because we can’t solve the equation

yx2 + ey = x for y, so maybe after taking the derivative we get something that is hard to

solve for y′. In fact, this never happens. All occurrences y′ come from applying the chain

rule, and whenever the chain rule is used it deposits a single y′ multiplied by some other

expression. So it will always be possible to group the terms containing y′ together and

factor out the y′, just as in the previous example. If you ever get anything more difficult

you have made a mistake and should fix it before trying to continue.

It is sometimes the case that a situation leads naturally to an equation that defines a

function implicitly.

EXAMPLE 4.6.3 Consider all the points (x, y) that have the property that the distance

from (x, y) to (x1, y1) plus the distance from (x, y) to (x2, y2) is 2a (a is some constant).

These points form an ellipse, which like a circle is not a function but can viewed as two

functions pasted together. Because we know how to write down the distance between two

points, we can write down an implicit equation for the ellipse:

√

(x− x1)2 + (y − y1)2 +
√

(x− x2)2 + (y − y2)2 = 2a.

Then we can use implicit differentiation to find the slope of the ellipse at any point, though

the computation is rather messy.

Exercises 4.6.

In exercises 1–8, find a formula for the derivative y′ at the point (x, y):

1. y2 = 1 + x2 ⇒
2. x2 + xy + y2 = 7 ⇒
3. x3 + xy2 = y3 + yx2 ⇒
4. 4 cosx sin y = 1 ⇒
5.

√
x+

√
y = 9 ⇒

6. tan(x/y) = x+ y ⇒
7. sin(x+ y) = xy ⇒

8.
1

x
+

1

y
= 7 ⇒

9. A hyperbola passing through (8, 6) consists of all points whose distance from the origin is a
constant more than its distance from the point (5,2). Find the slope of the tangent line to
the hyperbola at (8, 6). ⇒

10. Compute y′ for the ellipse of example 4.6.3.

11. If y = loga x then ay = x. Use implicit differentiation to find y′.

12. The graph of the equation x2 −xy+ y2 = 9 is an ellipse. Find the lines tangent to this curve
at the two points where it intersects the x-axis. Show that these lines are parallel. ⇒
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13. Repeat the previous problem for the points at which the ellipse intersects the y-axis. ⇒
14. Find the points on the ellipse from the previous two problems where the slope is horizontal

and where it is vertical. ⇒
15. Find an equation for the tangent line to x4 = y2+x2 at (2,

√
12). (This curve is the kampyle

of Eudoxus.) ⇒
16. Find an equation for the tangent line to x2/3 + y2/3 = a2/3 at a point (x1, y1) on the curve,

with x1 6= 0 and y1 6= 0. (This curve is an astroid.) ⇒
17. Find an equation for the tangent line to (x2+y2)2 = x2−y2 at a point (x1, y1) on the curve,

when y1 6= 0. (This curve is a lemniscate.) ⇒

Definition. Two curves are orthogonal if at each point of intersection, the angle between
their tangent lines is π/2. Two families of curves, A and B, are orthogonal trajectories of each
other if given any curve C in A and any curve D in B the curves C and D are orthogonal. For
example, the family of horizontal lines in the plane is orthogonal to the family of vertical lines in
the plane.

18. Show that x2 − y2 = 5 is orthogonal to 4x2 + 9y2 = 72. (Hint: You need to find the
intersection points of the two curves and then show that the product of the derivatives at
each intersection point is −1.)

19. Show that x2+y2 = r2 is orthogonal to y = mx. Conclude that the family of circles centered
at the origin is an orthogonal trajectory of the family of lines that pass through the origin.

Note that there is a technical issue when m = 0. The circles fail to be differentiable
when they cross the x-axis. However, the circles are orthogonal to the x-axis. Explain why.
Likewise, the vertical line through the origin requires a separate argument.

20. For k 6= 0 and c 6= 0 show that y2 − x2 = k is orthogonal to yx = c. In the case where k and
c are both zero, the curves intersect at the origin. Are the curves y2 − x2 = 0 and yx = 0
orthogonal to each other?

21. Suppose that m 6= 0. Show that the family of curves {y = mx + b | b ∈ R} is orthogonal to
the family of curves {y = −(x/m) + c | c ∈ R}.

4.7 Limits revisited

We have defined and used the concept of limit, primarily in our development of the deriva-

tive. Recall that lim
x→a

f(x) = L is true if, in a precise sense, f(x) gets closer and closer to

L as x gets closer and closer to a. While some limits are easy to see, others take some

ingenuity; in particular, the limits that define derivatives are always difficult on their face,

since in

lim
∆x→0

f(x+∆x)− f(x)

∆x

both the numerator and denominator approach zero. Typically this difficulty can be re-

solved when f is a “nice” function and we are trying to compute a derivative. Occasionally

such limits are interesting for other reasons, and the limit of a fraction in which both nu-

merator and denominator approach zero can be difficult to analyze. Now that we have
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the derivative available, there is another technique that can sometimes be helpful in such

circumstances.

Before we introduce the technique, we will also expand our concept of limit, in two

ways. When the limit of f(x) as x approaches a does not exist, it may be useful to note in

what way it does not exist. We have already talked about one such case: one-sided limits.

Another case is when “f goes to infinity”. We also will occasionally want to know what

happens to f when x “goes to infinity”.

EXAMPLE 4.7.1 What happens to 1/x as x goes to 0? From the right, 1/x gets bigger

and bigger, or goes to infinity. From the left it goes to negative infinity.

EXAMPLE 4.7.2 What happens to the function cos(1/x) as x goes to infinity? It

seems clear that as x gets larger and larger, 1/x gets closer and closer to zero, so cos(1/x)

should be getting closer and closer to cos(0) = 1.

As with ordinary limits, these concepts can be made precise. Roughly, we want

lim
x→a

f(x) = ∞ to mean that we can make f(x) arbitrarily large by making x close enough

to a, and lim
x→∞

f(x) = L should mean we can make f(x) as close as we want to L by

making x large enough. Compare this definition to the definition of limit in section 2.3,

definition 2.3.2.

DEFINITION 4.7.3 If f is a function, we say that lim
x→a

f(x) = ∞ if for every N > 0

there is a δ > 0 such that whenever |x − a| < δ, f(x) > N . We can extend this in the

obvious ways to define lim
x→a

f(x) = −∞, lim
x→a−

f(x) = ±∞, and lim
x→a+

f(x) = ±∞.

DEFINITION 4.7.4 Limit at infinity If f is a function, we say that lim
x→∞

f(x) = L

if for every ǫ > 0 there is an N > 0 so that whenever x > N , |f(x) − L| < ǫ. We may

similarly define lim
x→−∞

f(x) = L, and using the idea of the previous definition, we may

define lim
x→±∞

f(x) = ±∞.

We include these definitions for completeness, but we will not explore them in detail.

Suffice it to say that such limits behave in much the same way that ordinary limits do; in

particular there are some analogs of theorem 2.3.6.

Now consider this limit:

lim
x→π

x2 − π2

sinx
.
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As x approaches π, both the numerator and denominator approach zero, so it is not

obvious what, if anything, the quotient approaches. We can often compute such limits by

application of the following theorem.

THEOREM 4.7.5 L’Hôpital’s Rule For “sufficiently nice” functions f(x) and

g(x), if lim
x→a

f(x) = 0 = lim
x→a

g(x) or both lim
x→a

f(x) = ±∞ and limx→a g(x) = ±∞, and if

lim
x→a

f ′(x)

g′(x)
exists, then lim

x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. This remains true if “x → a” is replaced by

“x → ∞” or “x → −∞”.

This theorem is somewhat difficult to prove, in part because it incorporates so many

different possibilities, so we will not prove it here. We also will not need to worry about

the precise definition of “sufficiently nice”, as the functions we encounter will be suitable.

EXAMPLE 4.7.6 Compute lim
x→π

x2 − π2

sinx
in two ways.

First we use L’Hôpital’s Rule: Since the numerator and denominator both approach

zero,

lim
x→π

x2 − π2

sinx
= lim

x→π

2x

cosx
,

provided the latter exists. But in fact this is an easy limit, since the denominator now

approaches −1, so

lim
x→π

x2 − π2

sinx
=

2π

−1
= −2π.

We don’t really need L’Hôpital’s Rule to do this limit. Rewrite it as

lim
x→π

(x+ π)
x− π

sinx

and note that

lim
x→π

x− π

sinx
= lim

x→π

x− π

− sin(x− π)
= lim

x→0
− x

sinx

since x− π approaches zero as x approaches π. Now

lim
x→π

(x+ π)
x− π

sinx
= lim

x→π
(x+ π) lim

x→0
− x

sin x
= 2π(−1) = −2π

as before.

EXAMPLE 4.7.7 Compute lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
in two ways.
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As x goes to infinity both the numerator and denominator go to infinity, so we may

apply L’Hôpital’s Rule:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

4x− 3

2x+ 47
.

In the second quotient, it is still the case that the numerator and denominator both go to

infinity, so we are allowed to use L’Hôpital’s Rule again:

lim
x→∞

4x− 3

2x+ 47
= lim

x→∞

4

2
= 2.

So the original limit is 2 as well.

Again, we don’t really need L’Hôpital’s Rule, and in fact a more elementary approach

is easier—we divide the numerator and denominator by x2:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

2x2 − 3x+ 7

x2 + 47x+ 1

1
x2

1
x2

= lim
x→∞

2− 3
x
+ 7

x2

1 + 47
x + 1

x2

.

Now as x approaches infinity, all the quotients with some power of x in the denominator

approach zero, leaving 2 in the numerator and 1 in the denominator, so the limit again is

2.

EXAMPLE 4.7.8 Compute lim
x→0

secx− 1

sinx
.

Both the numerator and denominator approach zero, so applying L’Hôpital’s Rule:

lim
x→0

sec x− 1

sinx
= lim

x→0

secx tanx

cosx
=

1 · 0
1

= 0.

Exercises 4.7.

Compute the limits.

1. lim
x→0

cosx− 1

sin x
⇒ 2. lim

x→∞

√

x2 + x−
√

x2 − x ⇒

3. lim
x→0

√
9 + x− 3

x
⇒ 4. lim

t→1+

(1/t)− 1

t2 − 2t+ 1
⇒

5. lim
x→2

2−
√
x+ 2

4− x2
⇒ 6. lim

t→∞

t+ 5− 2/t− 1/t3

3t+ 12− 1/t2
⇒

7. lim
y→∞

√
y + 1 +

√
y − 1

y
⇒ 8. lim

x→1

√
x− 1

3
√
x− 1

⇒

9. lim
x→0

(1− x)1/4 − 1

x
⇒ 10. lim

t→0

(

t+
1

t

)

((4− t)3/2 − 8) ⇒
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11. lim
t→0+

(

1

t
+

1√
t

)

(
√
t+ 1− 1) ⇒ 12. lim

x→0

x2

√
2x+ 1− 1

⇒

13. lim
u→1

(u− 1)3

(1/u)− u2 + 3u− 3
⇒ 14. lim

x→0

2 + (1/x)

3− (2/x)
⇒

15. lim
x→0+

1 + 5/
√
x

2 + 1/
√
x

⇒ 16. lim
x→0+

3 + x−1/2 + x−1

2 + 4x−1/2
⇒

17. lim
x→∞

x+ x1/2 + x1/3

x2/3 + x1/4
⇒ 18. lim

t→∞

1−
√

t
t+1

2−
√

4t+1

t+2

⇒

19. lim
t→∞

1− t
t−1

1−
√

t
t−1

⇒ 20. lim
x→−∞

x+ x−1

1 +
√
1− x

⇒

21. lim
x→π/2

cos x

(π/2)− x
⇒ 22. lim

x→1

x1/4 − 1

x
⇒

23. lim
x→1+

√
x

x− 1
⇒ 24. lim

x→1

√
x− 1

x− 1
⇒

25. lim
x→∞

x−1 + x−1/2

x+ x−1/2
⇒ 26. lim

x→∞

x+ x−2

2x+ x−2
⇒

27. lim
x→∞

5 + x−1

1 + 2x−1
⇒ 28. lim

x→∞

4x√
2x2 + 1

⇒

29. lim
x→0

3x2 + x+ 2

x− 4
⇒ 30. lim

x→0

√
x+ 1− 1√
x+ 4− 2

⇒

31. lim
x→0

√
x+ 1− 1√
x+ 2− 2

⇒ 32. lim
x→0+

√
x+ 1 + 1√
x+ 1− 1

⇒

33. lim
x→0

√
x2 + 1− 1√
x+ 1− 1

⇒ 34. lim
x→∞

(x+ 5)

(

1

2x
+

1

x+ 2

)

⇒

35. lim
x→0+

(x+ 5)

(

1

2x
+

1

x+ 2

)

⇒ 36. lim
x→1

(x+ 5)

(

1

2x
+

1

x+ 2

)

⇒

37. lim
x→2

x3 − 6x− 2

x3 + 4
⇒ 38. lim

x→2

x3 − 6x− 2

x3 − 4x
⇒

39. lim
x→1+

x3 + 4x+ 8

2x3 − 2
⇒

40. The function f(x) =
x√

x2 + 1
has two horizontal asymptotes. Find them and give a rough

sketch of f with its horizontal asymptotes. ⇒


