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Trigonometric Functions

So far we have used only algebraic functions as examples when finding derivatives, that is,
functions that can be built up by the usual algebraic operations of addition, subtraction,
multiplication, division, and raising to constant powers. Both in theory and practice there
are other functions, called transcendental, that are very useful. Most important among
these are the trigonometric functions, the inverse trigonometric functions, exponential
functions, and logarithms. In this chapter we investigate the trigonometric functions.

4.1 TRIGONOMETRIC FUNCTIONS

‘When you first encountered the trigonometric functions it was probably in the context of
“triangle trigonometry,” defining, for example, the sine of an angle as the “side opposite
over the hypotenuse.” While this will still be useful in an informal way, we need to use a
more expansive definition of the trigonometric functions. First an important note: while
degree measure of angles is sometimes convenient because it is so familiar, it turns out to
be ill-suited to mathematical calculation, so (almost) everything we do will be in terms of
radian measure of angles.
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to any angles, as indicated in this figure:

A

(cos, sinx)

The angle x is subtended by the heavy arc in the figure, that is, 2 = 77 /6. Both coordinates
of point A in this figure are negative, so the sine and cosine of 77 /6 are both negative.

The remaining trigonometric functions can be most easily defined in terms of the sine
and cosine, as usual:

sinx
tanz = ——
cos T
cosT
cotxr = —
smarT
1
secT =
cos T
1
CSCT = —
ST

and they can also be defined as the corresponding ratios of coordinates.

Although the trigonometric functions are defined in terms of the unit circle, the unit
circle diagram is not what we normally consider the graph of a trigonometric function.
(The unit circle is the graph of, well, the circle.) We can easily get a qualitatively correct
idea of the graphs of the trigonometric functions from the unit circle diagram. Consider
the sine function, y = sinz. As x increases from 0 in the unit circle diagram, the second
coordinate of the point A goes from 0 to a maximum of 1, then back to 0, then to a
minimum of —1, then back to 0, and then it obviously repeats itself. So the graph of
y = sinz must look something like this:

]

—2r  —3m/2 -7 —n/2 J /2 « 37/2 2
-1
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To define the radian measurement system, we consider the unit circle in the zy-plane:

(cosz, sinx)

A

B

L (1,0)

An angle, x, at the center of the circle is associated with an arc of the circle which is said
to subtend the angle. In the figure, this arc is the portion of the circle from point (1,0)
to point A. The length of this arc is the radian measure of the angle x; the fact that the
radian measure is an actual geometric length is largely responsible for the usefulness of
radian measure. The circumference of the unit circle is 27r = 27(1) = 2, so the radian
measure of the full circular angle (that is, of the 360 degree angle) is 2.

‘While an angle with a particular measure can appear anywhere around the circle, we
need a fixed, conventional location so that we can use the coordinate system to define
properties of the angle. The standard convention is to place the starting radius for the
angle on the positive z-axis, and to measure positive angles counterclockwise around the
circle. In the figure, x is the standard location of the angle 7 /6, that is, the length of the
arc from (1,0) to A is 7/6. The angle y in the picture is —7/6, because the distance from
(1,0) to B along the circle is also /6, but in a clockwise direction.

Now the fundamental trigonometric definitions are: the cosine of = and the sine of x
are the first and second coordinates of the point A, as indicated in the figure. The angle z
shown can be viewed as an angle of a right triangle, meaning the usual triangle definitions
of the sine and cosine also make sense. Since the hypotenuse of the triangle is 1, the “side
opposite over hypotenuse” definition of the sine is the second coordinate of point A over
1, which is just the second coordinate; in other words, both methods give the same value
for the sine.

The simple triangle definitions work only for angles that can “fit” in a right triangle,
namely, angles between 0 and /2. The coordinate definitions, on the other hand, apply
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Similarly, as angle x increases from 0 in the unit circle diagram, the first coordinate of the
point A goes from 1 to 0 then to —1, back to 0 and back to 1, so the graph of y = cosz
must look something like this:

—or %W/z J /2 ~ 42 27
-1

Ezercises 4.1.

Some useful trigonometric identities are in appendix B.

-

. Find all values of # such that sin(f) = —1; give your answer in radians. =
2. Find all values of 0 such that cos(20) = 1/2; give your answer in radians. =
3. Use an angle sum identity to compute cos(7/12). =
4. Use an angle sum identity to compute tan(57/12). =
5. Verify the identity cos(t)/(1 — sin(t)) = 1 + sin(t).

6. Verify the identity 2 csc(26) = sec(f) csc(6).
7. Verify the identity sin(30) — sin(6) = 2 cos(26) sin(6).
8. Sketch y = 2sin(z).
9. Sketch y = sin(3z).
10. Sketch y = sin(—z).
11. Find all of the solutions of 2sin(t) — 1 — sin’(¢) = 0 in the interval [0, 27]. =

4.2 THE DERIVATIVE OF sinzx

‘What about the derivative of the sine function? The rules for derivatives that we have are
no help, since sinz is not an algebraic function. We need to return to the definition of the
derivative, set up a limit, and try to compute it. Here’s the definition:

d . . sin(z + Az) —sinz

—sinz = lim —————F———.

dx Az—0 Ax
Using some trigonometric identities, we can make a little progress on the quotient:

sin(z + Ax) —sinaz _ sinz cos Az + sin Az cosx — sinz
Az B Az

. cosAx—1 sin Az
=sing———— +cosz——.
Az

This isolates the difficult bits in the two limits

. cosAx—1 . sinAxz
lim ————  and im
Az—0 Az Az—0 Az
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Here we get a little lucky: it turns out that once we know the second limit the first is quite
easy. The second is quite tricky, however. Indeed, it is the hardest limit we will actually
compute, and we devote a section to it.

4.3 A HARD LIMIT

‘We want to compute this limit:
I sin Az
im ———.
Az—0 Az

Equivalently, to make the notation a bit simpler, we can compute

In the original context we need to keep z and Az separate, but here it doesn’t hurt to
rename Az to something more convenient.

To do this we need to be quite clever, and to employ some indirect reasoning. The
indirect reasoning is embodied in a theorem, frequently called the squeeze theorem.

THEOREM 4.1 Squeeze Theorem  Suppose that g(z) < f(z) < h(z) for all =
close to a but not equal to a. If lim,_,, g(x) = L = lim,_,, h(z), then lim,_,, f(z) = L.

This theorem can be proved using the official definition of limit. We won’t prove it
here, but point out that it is easy to understand and believe graphically. The condition
says that f(z) is trapped between g(z) below and h(z) above, and that at = a, both g
and h approach the same value. This means the situation looks something like figure 4.1.

2sin(m/z), the upper and lower curves are 22 and —2. Since the

The wiggly curve is z
sine function is always between —1 and 1, —2? < 2?sin(r/z) < 22, and it is easy to see
that lim, 0 —2? = 0 = lim, 0 22. It is not so easy to see directly, that is algebraically,
that lim,_,o 2 sin(7/x) = 0, because the 7/z prevents us from simply plugging in = = 0.
The squeeze theorem makes this “hard limit” as easy as the trivial limits involving 22.
To do the hard limit that we want, lim,_,o(sinz)/z, we will find two simpler functions
g and h so that g(z) < (sinz)/z < h(z), and so that lim,_, g(x) = lim,_,o h(x). Not too
surprisingly, this will require some trigonometry and geometry. Referring to figure 4.2, x
is the measure of the angle in radians. Since the circle has radius 1, the coordinates of
point A are (cosz,sinz), and the area of the small triangle is (coszsinx)/2. This triangle
is completely contained within the circular wedge-shaped region bordered by two lines and
the circle from (1,0) to point A. Comparing the areas of the triangle and the wedge we
see (coszsinz)/2 < x/2, since the area of a circular region with angle 6 and radius r is
0r%/2. With a little algebra this turns into (sinz)/z < 1/ cosz, giving us the h we seek.
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This limit is just as hard as sinz/z, but closely related to it, so that we don’t have to a
similar calculation; instead we can do a bit of tricky algebra.

cosz—1 cosx—1lcosx+1 cos?x — 1 —sin® sinz  sinz

z r  cosz+1  w(cosz+1) a(cosz+1)  x cosz+1

To compute the desired limit it is sufficient to compute the limits of the two final fractions,
as x goes to 0. The first of these is the hard limit we've just done, namely 1. The second
turns out to be simple, because the denominator presents no problem:

n sinx sin0 0 0
m —— = ——— =_-=0.
z=0cosx+1 cosO+1 2
Thus,

lim 7L

50 T
Ezxercises 4.3.

sin(7z)

in(5
sin(5z) N
x

1. Compute lim 2. Compute lim
2550 -

—0 sin(2z)
cot(4z)
cse(3x)

sinz — cosx

. . tan
3. Compute lim 4. Compute lim
20 z-0

5. Compute rhgl/’1 cos(22)
6. Forallz > 0,42 —9 < f(z) <2 — 42+ 7. Find limlf(z). =
Y
7. For all z, 2z < g(v) < o' —2® +2. Find lim g(). =
s

8. Use the Squeeze Theorem to show that lir% z* cos(2/z) = 0.
o

4.4 THE DERIVATIVE OF sinx, CONTINUED

Now we can complete the calculation of the derivative of the sine:

d . . sin(z + Az) —sinz
—sinz = lim ———F—"———
Az

dx —0 Az
i . cosAx —1 4 sin Az
= lim sing————— + cosz———
Az—0 Az Az

=sinz -0+ cosx-1=cosz.

The derivative of a function measures the slope or steepness of the function; if we
examine the graphs of the sine and cosine side by side, it should be that the latter appears
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Figure 4.1 The squeeze theorem.

1

1
Figure 4.2  Visualizing sinz/x.

To find g, we note that the circular wedge is completely contained inside the larger
triangle. The height of the triangle, from (1,0) to point B, is tanz, so comparing areas we
get 2/2 < (tanz)/2 = sinz/(2 cos ). With a little algebra this becomes cosz < (sinz)/x.
So now we have .

cosw < i < L
x cos &

Finally, the two limits lim, o cosz and lim,_,o 1/ cosz are easy, because cos(0) = 1. By
the squeeze theorem, lim, _,o(sinz)/z =1 as well.

Before we can complete the calculation of the derivative of the sine, we need one other
limit:
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to accurately describe the slope of the former, and indeed this is true:

1 1

T T T 1
J /2 x 3m/2 P J ﬂw/z 27
-1 ) —1
sinz cosx
Notice that where the cosine is zero the sine does appear to have a horizontal tangent line,
and that the sine appears to be steepest where the cosine takes on its extreme values of 1

and —1.
Of course, now that we know the derivative of the sine, we can compute derivatives of

more complicated functions involving the sine.

EXAMPLE 4.2 Compute the derivative of sin(z?).

d%‘ sin(2?) = cos(a?) - 2 = 22 cos(x?). o

EXAMPLE 4.3 Compute the derivative of sin?(z® — 5z).

a sin?(¢® — 5z) = d (sin(2® — 5z))?

dx dx
= 2(sin(z® — 52))* cos(z® — 52)(3z% — 5)
=2(322 — 5) cos(z® — 5z) sin(z® — 5z). o

Ezxercises 4.4.

Find the derivatives of the following functions.

1. sin®*(vz) = 2. asinz =
2 1
3. .1 N 4. »L‘+.L‘
sinz sina

5. V1-sin’z =

4.5 DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS

All of the other trigonometric functions can be expressed in terms of the sine, and so their
derivatives can easily be calculated using the rules we already have. For the cosine we
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need to use two identities,

cosz = sin(z + E)4,

2
sinz = — cos(z + g)
Now:

% cosz = d—(i sin(z + g) = cos(z + g) -1=—sinz

d tanx = S =sec’x

dx N ©ocos?z

d d sin @

T seeT = a(cosz)’l = —1(cosz) " ?(—sinz) = ;;:;1 = secztanz

The derivatives of the cotangent and cosecant are similar and left as exercises.

Ezxercises 4.5.

Find the derivatives of the following functions.

1. sinzcosz = 2. sin(cosz) =

3. Vrtanz = 4. tanz/(1+sinz) =
5. cotz = 6. cscx =

7. 2%sin(232%) = 8. sin’z +cos’x =
9. sin(cos(6z)) =

d  secf
10. Compute 011 socl =

11. Compute %tﬁ cos(6t). =

d t*sin(3t)
12. C te —————=.
ompute g cos(2t)

13. Find all points on the graph of f(z) = sinz(fr,) at which the tangent line is horizontal. =

14. Find all points on the graph of f(z) = 2sin(z)—sin®(z) at which the tangent line is horizontal.
=

15. Find an equation for the tangent line to sin®(z) at & = /3. =

16. Find an cquation for the tangent line to sec’z at & = /3. =

17. Find an equation for the tangent line to cos® z — sin®(4z) at z = /6. =

18. Find the points on the curve y = z + 2cos x that have a horizontal tangent line. =

19. Let C be a circle of radius 7. Let A be an arc on C' subtending a central angle 0. Let B be
the chord of C' whose endpoints are the endpoints of A. (Hence, B also subtends 6.) Let
s be the length of A and let d be the length of B. Sketch a diagram of the situation and
compute Qli[;]+ s/d.
—
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ma™ ' = ny""'y'. Then
m—1 m—1
I _ o mr —Mm=1y—mn=1)/n _ M m/n—1
1 ny"—1 7L(17n/71)71—1 n : n )

This example involves an inverse function defined implicitly, but other functions can
be defined implicitly, and sometimes a single equation can be used to implicitly define
more than one function. Here’s a familiar example. The equation r? = 22 + 32 describes
a circle of radius r. The circle is not a function y = f(x) because for some values of x
there are two corresponding values of y. If we want to work with a function, we can break
the circle into two pieces, the upper and lower semicircles, each of which is a function.
Let’s call these y = U(z) and y = L(z); in fact this is a fairly simple example, and it’s
possible to give explicit expressions for these: U(z) = /r2 — 22 and L(z) = —\/r2 — 22 .
But it’s somewhat easier, and quite useful, to view both functions as given implicitly by
r2 = 22 4+ y* both 72 = 2% + U(x)? and r2 = 22 4 L(x)? are true, and we can think of
r? = 2% + y? as defining both U(z) and L(x).

Now we can take the derivative of both sides as before, remembering that y is not
simply a variable but a function—in this case, y is either U(z) or L(z) but we’re not yet
specifying which one. When we take the derivative we just have to remember to apply the
chain rule where y appears.

d o_d o o
" 7dz(m +v)
0=2x+2yy
,  —2x T
V===

Y Y

Now we have an expression for ¢/, but it contains y as well as . This means that if we
want to compute y' for some particular value of z we’ll have to know or compute y at that
value of z as well. It is at this point that we will need to know whether y is U(z) or L(z).
Occasionally it will turn out that we can avoid explicit use of U(z) or L(z) by the nature
of the problem

EXAMPLE 4.4 Find the slope of the circle 4 = 22 + y? at the point (1, —\/3). Since
we know both the z and y coordinates of the point of interest, we do not need to explicitly
recognize that this point is on L(z), and we do not need to use L(z) to compute y—but
we could. Using the calculation of y’ from above,

, T 1 1

YTy T TS

It is instructive to compare this approach to others.
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4.6 IMPLICIT DIFFERENTIATION

d
We have not yet verified the power rule, %l‘a = az®"', for non-integer a. There is a

close relationship between 22 and 2'/2—these functions are inverses of each other, each
“undoing” what the other has done. Not surprisingly, this means there is a relationship
between their derivatives.

Let’s rewrite y = z'/? as y? = 2. We say that this equation defines the function
y = 2'/? implicitly because while it is not an explicit expression y = ..., it is true that if
x = y? then y is in fact the square root function. Now, for the time being, pretend that
all we know of y is that 2 = y?; what can we say about derivatives? We can take the

derivative of both sides of the equation:

Then using the chain rule on the right hand side:

d
1=2y (@”) =2y

Then we can solve for y':
1 1 1 1

Y

Ty w2 2
This is the power rule for z'/2.

There is one little difficulty here. To use the chain rule to compute d/dz(y2) =2y
we need to know that the function y has a derivative. All we have shown is that if it has a
derivative then that derivative must be $’1/2/2. When using this method we will always
have to assume that the desired derivative exists, but fortunately this is a safe assumption
for most such problems.

Here’s another interesting feature of this calculation. The equation z = 3 defines
more than one function implicitly: y = —+/z also makes the equation true. Following
exactly the calculation above we arrive at

yeto L Lo
2y 2(—z'/?) 2
So the single calculation leading to 3’ = 1/(2y) simultaneously computes the derivatives
of both functions.

We can use the same technique to verify the product rule for any rational power.

m/n

Suppose y = Write instead 2™ = y" and take the derivative of each side to get
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We might have recognized at the start that (1, —v/3) is on the function y = L(z) =
—v/4 — 2. We could then take the derivative of L(z), using the power rule and the chain

rule, to get

L(z) = 54— a?)/(~22) =

Then we could compute L'(1) = 1/v/3 by substituting z = 1.
Alternately, we could realize that the point is on L(z), but use the fact that ¢’ = —z/y.
Since the point is on L(z) we can replace y by L(z) to get

, T T

e 7 R e

without computing the derivative of L(z) explicitly. Then we substitute z = 1 and get the

same answer as before. [u}

In the case of the circle it is possible to find the functions U(z) and L(x) explicitly, but
there are potential advantages to using implicit differentiation anyway. In some cases it is
more difficult or impossible to find an explicit formula for y and implicit differentiation is
the only way to find the derivative.

EXAMPLE 4.5 Find the derivative of any function defined implicitly by yz? +3? = z.
We treat y as an unspecified function and use the chain rule:

d, 5 4, d
dz(.w +y )—dzw
/

(y-2z+y -2 +2yy =1
y a2y =~y 2
,_ "2y
% 42y o

You might think that the step in which we solve for ¥’ could sometimes be difficult—
after all, we're using implicit differentiation here because we can’t solve the equation
ya? + ¢¥ = x for y, so maybe after taking the derivative we get something that is hard to
solve for y'. In fact, this never happens. All occurrences y’ come from applying the chain
rule, and whenever the chain rule is used it deposits a single ¥’ multiplied by some other
expression. So it will always be possible to group the terms containing y’ together and
factor out the y/, just as in the previous example. If you ever get anything more difficult
you have made a mistake and should fix it before trying to continue.

It is sometimes the case that a situation leads naturally to an equation that defines a
function implicitly.
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EXAMPLE 4.6 Consider all the points (z,y) that have the property that the distance
from (z,y) to (z1,y1) plus the distance from (z,y) to (z2,y2) is 2a (a is some constant).
These points form an ellipse, which like a circle is not a function but can viewed as two
functions pasted together. Because we know how to write down the distance between two
points, we can write down an implicit equation for the ellipse:

V=20 + - 9)2+ V(@ —22)% + (y — 12)? = 2a.

Then we can use implicit differentiation to find the slope of the ellipse at any point, though

the computation is rather messy. o

Ezxercises 4.6.

In exercises 1-8, find a formula for the derivative ' at the point (z,y):

1. y2 =1+2a2" =

2. 2 fay+yt =7

3. m3+zy2 :y3+yz2 =

4. 4dcosxsiny =1 =

5 VI+,y=9=

6. tan(z/y) =z +y =

7. sin(z +y) =xy =

11

8. —+-=T=

9. A hyperbola passing through (8,6) consists of all points whose distance from the origin is a
constant more than its distance from the point (5,2). Find the slope of the tangent line to
the hyperbola at (8,6). =

10. Compute ¢’ for the ellipse of example 4.6.

11. The graph of the equation z° — zy 4+ y* = 9 is an ellipse. Find the lines tangent to this curve
at the two points where it intersects the xz-axis. Show that these lines are parallel. =

12. Repeat the previous problem for the points at which the ellipse intersects the y-axis. =

13. Find the points on the ellipse from the previous two problems where the slope is horizontal
and where it is vertical. =

14. Find an equation for the tangent line to «* = y* +2* at (2,v/12). (This curve is the kampyle
of Eudoxus.) =

15. Find an cquation for the tangent line to 2%/ + y a®/* at a point (x1,y1) on the curve,
with z1 # 0 and y1 # 0. (This curve is an astroid.) =

2/3 _

16. Find an equation for the tangent line to (z° +y?)? = 2> —y* at a point (x1,y1) on the curve,
with z; # 0,—1,1. (This curve is a lemniscate.) =

Definition. Two curves are orthogonal if at each point of intersection, the angle between
their tangent lines is 7/2. Two families of curves, A and B, are orthogonal trajectories of each
other if given any curve C' in A and any curve D in B the curves C' and D are orthogonal. For
example, the family of horizontal lines in the plane is orthogonal to the family of vertical lines in
the plane.
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DEFINITION 4.8 Limit at infinity If f is a function, we say that lim f(z) =L
200

if for every € > 0 there is an N > 0 so that whenever 2 > N, |f(z) — L| < e. We may
similarly define lim f(x) = L.
z—r—00

‘We include this definition for completeness, but we will not explore it in detail. Suffice
it to say that such limits behave in much the same way that ordinary limits do; in particular
there is a direct analog of theorem 2.7.

Now consider this limit:

lim
=7 sinx

As x approaches m, both the numerator and denominator approach zero, so it is not
obvious what, if anything, the quotient approaches. We can often compute such limits by
application of the following theorem.

THEOREM 4.9 L’Hépital’s Rule For “sufficiently nice” functions f(z) and g(z),

/
if lim f(z) = 0 = lim g(z) or lim f(z) = £oo = lim g(z), and if lim f/(‘t) exists,
e o i foai oa g'(x)
; 10
then lim M = lim S (I) This remains true if “c — a” is replaced by “x — o0” or
z—a g(z)  a—a g(z)
“r — —oa”.

This theorem is somewhat difficult to prove, in part because it incorporates so many
different possibilities, so we will not prove it here. We also will not need to worry about
the precise definition of “sufficiently nice”, as the functions we encounter will be suitable.

22 2
EXAMPLE 4.10 Compute lim u in two ways.
7 sinz

First we use L’Hopital’s Rule: Since the numerator and denominator both approach
zero,

. . 2z
lim —— = lim s

x—=m  SINT r—m COST

provided the latter exists. But in fact this is an easy limit, since the denominator now
approaches —1, so

2

ey = —27.
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17. Show that 2® — y* = 5 is orthogonal to 42> 4+ 9y® = 72. (Hint: You need to find the
intersection points of the two curves and then show that the product of the derivatives at
each intersection point is —1.)

18. Show that 2* + 3 = r? is orthogonal to y = ma. Conclude that the family of circles centered
at the origin is an orthogonal trajectory of the family of lines that pass through the origin.
Note that there is a technical issue when m = 0. The circles fail to be differentiable when they
cross the z-axis. However, the circles are orthogonal to the z-axis. Explain why. Likewise,
the vertical line through the origin requires a separate argument.

19. For k # 0 and ¢ # 0 show that y* — 2% = k is orthogonal to yz = c. In the case where k and
¢ are both zero, the curves intersect at the origin. Are the curves y* —2° = 0 and yz = 0
orthogonal to each other?

20. Suppose that m # 0. Show that the family of curves {y = ma + b | b € R} is orthogonal to
the family of curves {y = —(z/m) +c| ¢ € R}.

4.7 LIMITS REVISITED

We have defined and used the concept of limit, primarily in our development of the deriva-

tive. Recall that lim f(z) = L is true if, in a precise sense, f(z) gets closer and closer to
-

L as z gets closer and closer to a. While some limits are easy to see, others take some
ingenuity; in particular, the limits that define derivatives are always difficult on their face,
since in

Ja+

lim
2>

both the numerator and denominator approach zero. Typically this difficulty can be re-
solved when f is a “nice” function and we are trying to compute a derivative. Occasionally
such limits are interesting for other reasons, and the limit of a fraction in which both nu-
merator and denominator approach zero can be difficult to analyze. Now that we have
the derivative available, there is another technique that can sometimes be helpful in such
circumstances.

Before we introduce the technique, we will also expand our concept of limit. We will
occasionally want to know what happens to some quantity when a variable gets very large

or “goes to infinity”.

EXAMPLE 4.7 What happens to the function cos(1/x) as  goes to infinity? It seems
clear that as x gets larger and larger, 1/x gets closer and closer to zero, so cos(1/x) should
be getting closer and closer to cos(0) = 1. u]

As with ordinary limits, this concept of “limit at infinity” can be made precise.
Roughly, we want lim f(z) = L to mean that we can make f(z) as close as we want
T30

to L by making z large enough. Compare this definition to the definition of limit in
section 2.3.
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and note that

im ——
20 sinx

since & — 7 approaches zero as x approaches m. Now

lim (z + 7r)aC — T~ lim (z +7) lim -z = 2m(—1) = =27
T sinz  zor =0 sinz
as before. u]
222 — 3z
EXAMPLE 4.11 Compute lim w in two ways.
a0 p2 + 4Tz + 1

As x goes to infinity both the numerator and denominator go to infinity, so we may
apply L’Hopital’s Rule:

lim 212—314—77 im 4r —3
200 g2 + 4T+ 1 w00 22 + 47"

In the second quotient, it is still the case that the numerator and denominator both go to

infinity, so we are allowed to use L'Hopital’s Rule again:

4z — 3 4
z—3 . é:Z.
2

e rar
So the original limit is 2 as well.
Again, we don’t really need L'Hopital’s Rule, and in fact a more elementary approach
is casier—we divide the numerator and denominator by z%:

3 7
2-34+ 5

222 —3x+7 . 22?2 =3z + )
lim = lim T
amvoo 1 AT 4 L

=1
o300 22 + ATw + 1 oovoo 2% 4 ATz +

z

Now as x approaches infinity, all the quotients with some power of  in the denominator

approach zero, leaving 2 in the numerator and 1 in the denominator, so the limit again is

2. [u}

secw — 1

EXAMPLE 4.12 Compute lim ———
z=0  sinx

Both the numerator and denominator approach zero, so applying L’Hopital’s Rule:

sec x tan ; 1-0
_ iy SeCTtenz —o.
z—0  cosT 1




Exercises 4.7.

Compute the limits.

1. lim 21
=0 sina

3. lim V9tz-3 =
250 x
L 2—Vz+2

5. lim ————

=
z—2 4 —gx?

VITT4VE=T
Yy

7. lim
ey .
1—a)/t -1
9. lim L =
=0 x

11, lim G +it) (ViFi-1) =

+
(=1

t—0+

13. lim

AT — 2+ 3/u—3

5
15. lim M =
0t 24+ 1/\/x

z+z/? 423

17. 11320 By =

19. lim

oo _

cos T

21. 1l —_—
o2 (1)2) — @

23. lim
=1+ T
o1 ~—1/2
Lor tx
®e e T
-1
B x
2 g
92 | g
29. lim i tz+2 =
=0 T
Lo Vr+l1-1
31, lim —(——
=0/ +2-2
Lo Ve +l-1
33. lim ———
e=0 \r+1-1
1 1
35. i N+ —=
1_1:3+(x+ )(21, +;v-¢—2
3 _ —
37. £y 6x — 2

i
i 3 +4

)=

10.

14.

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

38.

4.7 Limits revisited 89 90

39.

lim Va2 +z— Va2 -z = 40.
2200

-1
1 -t
o 22t 1

5 3
i LB 2/ =1t
oo B+ 12— 1/17

-1

limﬁiﬁ
-

Nz -1

Jim, (t+ %) (A—12 —8) =

22

lim —— =

PN T

.24 (1/x)

1 7

290 3= (2/x)

lim 3 +a 4ot N
w0t 24 Ag 1/

¢
R Viss
lim

—_— =
tooo o [atel
2

z4a!

lim ——— =
AT VI e
/-1

lim — =
z—1 x

lim
a1 x—1

2

lim i =
w00 20 + 42
lim _ e
T
lim vrtl-1
=0 \/z +4 —
i VEFIHL
a0t Vo +1—1

. 1 1
s o9 (54 ) =
. 1 1
e+ (5 155) =

2 —6r—2
lim ————
z=2  x —dx

=

=

Chapter 4 Trigonometric Functions

lim 23+ 4z +8 N
a1+ 223 —2

The function f(z) =

has two horizontal asymptotes. Find them and give a rough

Va2 +1
sketch of f with its horizontal asymptotes. =



