
8

Applications of Integration

8.1 Area between 
urves

We have seen how integration can be used to find an area between a curve and the x-axis.

With very little change we can find some areas between curves; indeed, the area between

a curve and the x-axis may be interpreted as the area between the curve and a second

“curve” with equation y = 0. In the simplest of cases, the idea is quite easy to understand.

EXAMPLE 8.1.1 Find the area below f(x) = −x2 + 4x+ 3 and above g(x) = −x3 +

7x2 − 10x+5 over the interval 1 ≤ x ≤ 2. In figure 8.1.1 we show the two curves together,

with the desired area shaded, then f alone with the area under f shaded, and then g alone

with the area under g shaded.
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Figure 8.1.1 Area between curves as a difference of areas.
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It is clear from the figure that the area we want is the area under f minus the area

under g, which is to say

∫ 2

1

f(x) dx−
∫ 2

1

g(x) dx =

∫ 2

1

f(x)− g(x) dx.

It doesn’t matter whether we compute the two integrals on the left and then subtract or

compute the single integral on the right. In this case, the latter is perhaps a bit easier:

∫ 2

1

f(x)− g(x) dx =

∫ 2

1

−x2 + 4x+ 3− (−x3 + 7x2 − 10x+ 5) dx

=

∫ 2

1

x3 − 8x2 + 14x− 2 dx

=
x4

4
− 8x3

3
+ 7x2 − 2x

∣

∣

∣

∣

2

1

=
16

4
− 64

3
+ 28− 4− (

1

4
− 8

3
+ 7− 2)

= 23− 56

3
− 1

4
=

49

12
.

It is worth examining this problem a bit more. We have seen one way to look at it,

by viewing the desired area as a big area minus a small area, which leads naturally to the

difference between two integrals. But it is instructive to consider how we might find the

desired area directly. We can approximate the area by dividing the area into thin sections

and approximating the area of each section by a rectangle, as indicated in figure 8.1.2.

The area of a typical rectangle is ∆x(f(xi)− g(xi)), so the total area is approximately

n−1
∑

i=0

(f(xi)− g(xi))∆x.

This is exactly the sort of sum that turns into an integral in the limit, namely the integral

∫ 2

1

f(x)− g(x) dx.

Of course, this is the integral we actually computed above, but we have now arrived at it

directly rather than as a modification of the difference between two other integrals. In that

example it really doesn’t matter which approach we take, but in some cases this second

approach is better.
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Figure 8.1.2 Approximating area between curves with rectangles.

EXAMPLE 8.1.2 Find the area below f(x) = −x2 + 4x+ 1 and above g(x) = −x3 +

7x2 − 10x+3 over the interval 1 ≤ x ≤ 2; these are the same curves as before but lowered

by 2. In figure 8.1.3 we show the two curves together. Note that the lower curve now dips

below the x-axis. This makes it somewhat tricky to view the desired area as a big area

minus a smaller area, but it is just as easy as before to think of approximating the area

by rectangles. The height of a typical rectangle will still be f(xi)− g(xi), even if g(xi) is

negative. Thus the area is

∫ 2

1

−x2 + 4x+ 1− (−x3 + 7x2 − 10x+ 3) dx =

∫ 2

1

x3 − 8x2 + 14x− 2 dx.

This is of course the same integral as before, because the region between the curves is

identical to the former region—it has just been moved down by 2.
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Figure 8.1.3 Area between curves.

EXAMPLE 8.1.3 Find the area between f(x) = −x2 +4x and g(x) = x2− 6x+5 over

the interval 0 ≤ x ≤ 1; the curves are shown in figure 8.1.4. Generally we should interpret
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“area” in the usual sense, as a necessarily positive quantity. Since the two curves cross,

we need to compute two areas and add them. First we find the intersection point of the

curves:
−x2 + 4x = x2 − 6x+ 5

0 = 2x2 − 10x+ 5

x =
10±

√
100− 40

4
=

5±
√
15

2
.

The intersection point we want is x = a = (5−
√
15)/2. Then the total area is

∫ a

0

x2 − 6x+ 5− (−x2 + 4x) dx+

∫ 1

a

−x2 + 4x− (x2 − 6x+ 5) dx

=

∫ a

0

2x2 − 10x+ 5 dx+

∫ 1

a

−2x2 + 10x− 5 dx

=
2x3

3
− 5x2 + 5x

∣

∣

∣

∣

a

0

+ −2x3

3
+ 5x2 − 5x

∣

∣

∣

∣

1

a

= −52

3
+ 5

√
15,

after a bit of simplification.
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Figure 8.1.4 Area between curves that cross.

EXAMPLE 8.1.4 Find the area between f(x) = −x2 + 4x and g(x) = x2 − 6x + 5;

the curves are shown in figure 8.1.5. Here we are not given a specific interval, so it must
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be the case that there is a “natural” region involved. Since the curves are both parabolas,

the only reasonable interpretation is the region between the two intersection points, which

we found in the previous example:

5±
√
15

2
.

If we let a = (5−
√
15)/2 and b = (5 +

√
15)/2, the total area is

∫ b

a

−x2 + 4x− (x2 − 6x+ 5) dx =

∫ b

a

−2x2 + 10x− 5 dx

= −2x3

3
+ 5x2 − 5x

∣

∣

∣

∣

b

a

= 5
√
15.

after a bit of simplification.
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Figure 8.1.5 Area bounded by two curves.

Exercises 8.1.

Find the area bounded by the curves.

1. y = x4 − x2 and y = x2 (the part to the right of the y-axis) ⇒
2. x = y3 and x = y2 ⇒
3. x = 1− y2 and y = −x− 1 ⇒
4. x = 3y − y2 and x+ y = 3 ⇒
5. y = cos(πx/2) and y = 1− x2 (in the first quadrant) ⇒
6. y = sin(πx/3) and y = x (in the first quadrant) ⇒
7. y =

√
x and y = x2 ⇒

8. y =
√
x and y =

√
x+ 1, 0 ≤ x ≤ 4 ⇒

9. x = 0 and x = 25− y2 ⇒
10. y = sinx cos x and y = sin x, 0 ≤ x ≤ π ⇒
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11. y = x3/2 and y = x2/3 ⇒
12. y = x2 − 2x and y = x− 2 ⇒

8.2 Distan
e, Velo
ity, A

eleration

We next recall a general principle that will later be applied to distance-velocity-acceleration

problems, among other things. If F (u) is an anti-derivative of f(u), then

∫ b

a

f(u) du =

F (b) − F (a). Suppose that we want to let the upper limit of integration vary, i.e., we

replace b by some variable x. We think of a as a fixed starting value x0. In this new

notation the last equation (after adding F (a) to both sides) becomes:

F (x) = F (x0) +

∫ x

x0

f(u) du.

(Here u is the variable of integration, called a “dummy variable,” since it is not the variable

in the function F (x). In general, it is not a good idea to use the same letter as a variable

of integration and as a limit of integration. That is,

∫ x

x0

f(x)dx is bad notation, and can

lead to errors and confusion.)

An important application of this principle occurs when we are interested in the position

of an object at time t (say, on the x-axis) and we know its position at time t0. Let s(t)

denote the position of the object at time t (its distance from a reference point, such as

the origin on the x-axis). Then the net change in position between t0 and t is s(t)− s(t0).

Since s(t) is an anti-derivative of the velocity function v(t), we can write

s(t) = s(t0) +

∫ t

t0

v(u)du.

Similarly, since the velocity is an anti-derivative of the acceleration function a(t), we have

v(t) = v(t0) +

∫ t

t0

a(u)du.

EXAMPLE 8.2.1 Suppose an object is acted upon by a constant force F . Find v(t)

and s(t). By Newton’s law F = ma, so the acceleration is F/m, where m is the mass of
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the object. Then we first have

v(t) = v(t0) +

∫ t

t0

F

m
du = v0 +

F

m
u

∣

∣

∣

∣

t

t0

= v0 +
F

m
(t− t0),

using the usual convention v0 = v(t0). Then

s(t) = s(t0) +

∫ t

t0

(

v0 +
F

m
(u− t0)

)

du = s0 + (v0u+
F

2m
(u− t0)

2)

∣

∣

∣

∣

t

t0

= s0 + v0(t− t0) +
F

2m
(t− t0)

2.

For instance, when F/m = −g is the constant of gravitational acceleration, then this is

the falling body formula (if we neglect air resistance) familiar from elementary physics:

s0 + v0(t− t0)−
g

2
(t− t0)

2,

or in the common case that t0 = 0,

s0 + v0t−
g

2
t2.

Recall that the integral of the velocity function gives the net distance traveled, that is,

the displacement. If you want to know the total distance traveled, you must find out where

the velocity function crosses the t-axis, integrate separately over the time intervals when

v(t) is positive and when v(t) is negative, and add up the absolute values of the different

integrals. For example, if an object is thrown straight upward at 19.6 m/sec, its velocity

function is v(t) = −9.8t + 19.6, using g = 9.8 m/sec2 for the force of gravity. This is a

straight line which is positive for t < 2 and negative for t > 2. The net distance traveled

in the first 4 seconds is thus

∫ 4

0

(−9.8t+ 19.6)dt = 0,

while the total distance traveled in the first 4 seconds is

∫ 2

0

(−9.8t+ 19.6)dt+

∣

∣

∣

∣

∫ 4

2

(−9.8t+ 19.6)dt

∣

∣

∣

∣

= 19.6 + | − 19.6| = 39.2

meters, 19.6 meters up and 19.6 meters down.
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EXAMPLE 8.2.2 The acceleration of an object is given by a(t) = cos(πt), and its

velocity at time t = 0 is 1/(2π). Find both the net and the total distance traveled in the

first 1.5 seconds.

We compute

v(t) = v(0) +

∫ t

0

cos(πu)du =
1

2π
+

1

π
sin(πu)

∣

∣

∣

∣

t

0

=
1

π

(1

2
+ sin(πt)

)

.

The net distance traveled is then

s(3/2)− s(0) =

∫ 3/2

0

1

π

(

1

2
+ sin(πt)

)

dt

=
1

π

(

t

2
− 1

π
cos(πt)

)
∣

∣

∣

∣

3/2

0

=
3

4π
+

1

π2
≈ 0.340 meters.

To find the total distance traveled, we need to know when (0.5 + sin(πt)) is positive and

when it is negative. This function is 0 when sin(πt) is −0.5, i.e., when πt = 7π/6, 11π/6,

etc. The value πt = 7π/6, i.e., t = 7/6, is the only value in the range 0 ≤ t ≤ 1.5. Since

v(t) > 0 for t < 7/6 and v(t) < 0 for t > 7/6, the total distance traveled is

∫ 7/6

0

1

π

(

1

2
+ sin(πt)

)

dt+
∣

∣

∣

∫ 3/2

7/6

1

π

(

1

2
+ sin(πt)

)

dt
∣

∣

∣

=
1

π

(

7

12
+

1

π
cos(7π/6) +

1

π

)

+
1

π

∣

∣

∣

3

4
− 7

12
+

1

π
cos(7π/6)

∣

∣

∣

=
1

π

(

7

12
+

1

π

√
3

2
+

1

π

)

+
1

π

∣

∣

∣

3

4
− 7

12
+

1

π

√
3

2
.
∣

∣

∣
≈ 0.409 meters.

Exercises 8.2.

For each velocity function find both the net distance and the total distance traveled during the
indicated time interval (graph v(t) to determine when it’s positive and when it’s negative):

1. v = cos(πt), 0 ≤ t ≤ 2.5 ⇒
2. v = −9.8t+ 49, 0 ≤ t ≤ 10 ⇒
3. v = 3(t− 3)(t− 1), 0 ≤ t ≤ 5 ⇒
4. v = sin(πt/3)− t, 0 ≤ t ≤ 1 ⇒
5. An object is shot upwards from ground level with an initial velocity of 2 meters per second;

it is subject only to the force of gravity (no air resistance). Find its maximum altitude and
the time at which it hits the ground. ⇒

6. An object is shot upwards from ground level with an initial velocity of 3 meters per second;
it is subject only to the force of gravity (no air resistance). Find its maximum altitude and
the time at which it hits the ground. ⇒
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7. An object is shot upwards from ground level with an initial velocity of 100 meters per second;
it is subject only to the force of gravity (no air resistance). Find its maximum altitude and
the time at which it hits the ground. ⇒

8. An object moves along a straight line with acceleration given by a(t) = − cos(t), and s(0) = 1
and v(0) = 0. Find the maximum distance the object travels from zero, and find its maximum
speed. Describe the motion of the object. ⇒

9. An object moves along a straight line with acceleration given by a(t) = sin(πt). Assume that
when t = 0, s(t) = v(t) = 0. Find s(t), v(t), and the maximum speed of the object. Describe
the motion of the object. ⇒

10. An object moves along a straight line with acceleration given by a(t) = 1 + sin(πt). Assume
that when t = 0, s(t) = v(t) = 0. Find s(t) and v(t). ⇒

11. An object moves along a straight line with acceleration given by a(t) = 1− sin(πt). Assume
that when t = 0, s(t) = v(t) = 0. Find s(t) and v(t). ⇒

8.3 Volume

We have seen how to compute certain areas by using integration; some volumes may also

be computed by evaluating an integral. Generally, the volumes that we can compute this

way have cross-sections that are easy to describe.
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Figure 8.3.1 Volume of a pyramid approximated by rectangular prisms. (AP)

EXAMPLE 8.3.1 Find the volume of a pyramid with a square base that is 20 meters

tall and 20 meters on a side at the base. As with most of our applications of integration, we

begin by asking how we might approximate the volume. Since we can easily compute the

volume of a rectangular prism (that is, a “box”), we will use some boxes to approximate
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the volume of the pyramid, as shown in figure 8.3.1: on the left is a cross-sectional view, on

the right is a 3D view of part of the pyramid with some of the boxes used to approximate

the volume.

Each box has volume of the form (2xi)(2xi)∆y. Unfortunately, there are two variables

here; fortunately, we can write x in terms of y: x = 10− y/2 or xi = 10− yi/2. Then the

total volume is approximately
n−1
∑

i=0

4(10− yi/2)
2∆y

and in the limit we get the volume as the value of an integral:

∫ 20

0

4(10− y/2)2 dy =

∫ 20

0

(20− y)2 dy = −(20− y)3

3

∣

∣

∣

∣

20

0

= −03

3
−−203

3
=

8000

3
.

As you may know, the volume of a pyramid is (1/3)(height)(area of base) = (1/3)(20)(400),

which agrees with our answer.

EXAMPLE 8.3.2 The base of a solid is the region between f(x) = x2 − 1 and g(x) =

−x2 + 1, and its cross-sections perpendicular to the x-axis are equilateral triangles, as

indicated in figure 8.3.2. The solid has been truncated to show a triangular cross-section

above x = 1/2. Find the volume of the solid.
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Figure 8.3.2 Solid with equilateral triangles as cross-sections. (AP)

A cross-section at a value xi on the x-axis is a triangle with base 2(1− x2
i ) and height√

3(1− x2
i ), so the area of the cross-section is

1

2
(base)(height) = (1− x2

i )
√
3(1− x2

i ),
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and the volume of a thin “slab” is then

(1− x2
i )
√
3(1− x2

i )∆x.

Thus the total volume is
∫ 1

−1

√
3(1− x2)2 dx =

16

15

√
3.

One easy way to get “nice” cross-sections is by rotating a plane figure around a line.

For example, in figure 8.3.3 we see a plane region under a curve and between two vertical

lines; then the result of rotating this around the x-axis, and a typical circular cross-section.
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.........
..........
..................................................

Figure 8.3.3 A solid of rotation. (AP)

Of course a real “slice” of this figure will not have straight sides, but we can approxi-

mate the volume of the slice by a cylinder or disk with circular top and bottom and straight

sides; the volume of this disk will have the form πr2∆x. As long as we can write r in terms

of x we can compute the volume by an integral.

EXAMPLE 8.3.3 Find the volume of a right circular cone with base radius 10 and

height 20. (A right circular cone is one with a circular base and with the tip of the cone

directly over the center of the base.) We can view this cone as produced by the rotation

of the line y = x/2 rotated about the x-axis, as indicated in figure 8.3.4.

At a particular point on the x-axis, say xi, the radius of the resulting cone is the

y-coordinate of the corresponding point on the line, namely yi = xi/2. Thus the total

volume is approximately
n−1
∑

i=0

π(xi/2)
2 dx

and the exact volume is
∫ 20

0

π
x2

4
dx =

π

4

203

3
=

2000π

3
.
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Figure 8.3.4 A region that generates a cone; approximating the volume by circular disks.
(AP)

Note that we can instead do the calculation with a generic height and radius:

∫ h

0

π
r2

h2
x2 dx =

πr2

h2

h3

3
=

πr2h

3
,

giving us the usual formula for the volume of a cone.

EXAMPLE 8.3.4 Find the volume of the object generated when the area between

y = x2 and y = x is rotated around the x-axis. This solid has a “hole” in the middle; we

can compute the volume by subtracting the volume of the hole from the volume enclosed

by the outer surface of the solid. In figure 8.3.5 we show the region that is rotated, the

resulting solid with the front half cut away, the cone that forms the outer surface, the

horn-shaped hole, and a cross-section perpendicular to the x-axis.

We have already computed the volume of a cone; in this case it is π/3. At a particular

value of x, say xi, the cross-section of the horn is a circle with radius x2
i , so the volume of

the horn is
∫ 1

0

π(x2)2 dx =

∫ 1

0

πx4 dx = π
1

5
,

so the desired volume is π/3− π/5 = 2π/15.

As with the area between curves, there is an alternate approach that computes the

desired volume “all at once” by approximating the volume of the actual solid. We can

approximate the volume of a slice of the solid with a washer-shaped volume, as indicated

in figure 8.3.5.

The volume of such a washer is the area of the face times the thickness. The thickness,

as usual, is ∆x, while the area of the face is the area of the outer circle minus the area of
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Figure 8.3.5 Solid with a hole, showing the outer cone and the shape to be removed to
form the hole. (AP)

the inner circle, say πR2 − πr2. In the present example, at a particular xi, the radius R is

xi and r is x2
i . Hence, the whole volume is

∫ 1

0

πx2 − πx4 dx = π

(

x3

3
− x5

5

)
∣

∣

∣

∣

1

0

= π

(

1

3
− 1

5

)

=
2π

15
.

Of course, what we have done here is exactly the same calculation as before, except we

have in effect recomputed the volume of the outer cone.

Suppose the region between f(x) = x + 1 and g(x) = (x − 1)2 is rotated around the

y-axis; see figure 8.3.6. It is possible, but inconvenient, to compute the volume of the

resulting solid by the method we have used so far. The problem is that there are two

“kinds” of typical rectangles: those that go from the line to the parabola and those that

touch the parabola on both ends. To compute the volume using this approach, we need to
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break the problem into two parts and compute two integrals:

π

∫ 1

0

(1 +
√
y)2 − (1−√

y)2 dy + π

∫ 4

1

(1 +
√
y)2 − (y − 1)2 dy =

8

3
π +

65

6
π =

27

2
π.

If instead we consider a typical vertical rectangle, but still rotate around the y-axis, we

get a thin “shell” instead of a thin “washer”. If we add up the volume of such thin shells

we will get an approximation to the true volume. What is the volume of such a shell?

Consider the shell at xi. Imagine that we cut the shell vertically in one place and “unroll”

it into a thin, flat sheet. This sheet will be almost a rectangular prism that is ∆x thick,

f(xi) − g(xi) tall, and 2πxi wide (namely, the circumference of the shell before it was

unrolled). The volume will then be approximately the volume of a rectangular prism with

these dimensions: 2πxi(f(xi)− g(xi))∆x. If we add these up and take the limit as usual,

we get the integral
∫ 3

0

2πx(f(x)− g(x)) dx =

∫ 3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

Not only does this accomplish the task with only one integral, the integral is somewhat

easier than those in the previous calculation. Things are not always so neat, but it is

often the case that one of the two methods will be simpler than the other, so it is worth

considering both before starting to do calculations.
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Figure 8.3.6 Computing volumes with “shells”. (AP)

EXAMPLE 8.3.5 Suppose the area under y = −x2 + 1 between x = 0 and x = 1 is

rotated around the x-axis. Find the volume by both methods.

Disk method:

∫ 1

0

π(1− x2)2 dx =
8

15
π.

Shell method:

∫ 1

0

2πy
√

1− y dy =
8

15
π.
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Exercises 8.3.

1. Verify that π

∫

1

0

(1 +
√
y)2 − (1−√

y)2 dy + π

∫

4

1

(1 +
√
y)2 − (y − 1)2 =

8

3
π +

65

6
π =

27

2
π.

2. Verify that

∫

3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

3. Verify that

∫

1

0

π(1− x2)2 dx =
8

15
π.

4. Verify that

∫

1

0

2πy
√

1− y dy =
8

15
π.

5. Use integration to find the volume of the solid obtained by revolving the region bounded by
x+ y = 2 and the x and y axes around the x-axis. ⇒

6. Find the volume of the solid obtained by revolving the region bounded by y = x − x2 and
the x-axis around the x-axis. ⇒

7. Find the volume of the solid obtained by revolving the region bounded by y =
√
sinx between

x = 0 and x = π/2, the y-axis, and the line y = 1 around the x-axis. ⇒
8. Let S be the region of the xy-plane bounded above by the curve x3y = 64, below by the line

y = 1, on the left by the line x = 2, and on the right by the line x = 4. Find the volume of
the solid obtained by rotating S around (a) the x-axis, (b) the line y = 1, (c) the y-axis, (d)
the line x = 2. ⇒

9. The equation x2/9 + y2/4 = 1 describes an ellipse. Find the volume of the solid obtained
by rotating the ellipse around the x-axis and also around the y-axis. These solids are called
ellipsoids; one is vaguely rugby-ball shaped, one is sort of flying-saucer shaped, or perhaps
squished-beach-ball-shaped. ⇒

Figure 8.3.7 Ellipsoids.

10. Use integration to compute the volume of a sphere of radius r. You should of course get the
well-known formula 4πr3/3.

11. A hemispheric bowl of radius r contains water to a depth h. Find the volume of water in the
bowl. ⇒

12. The base of a tetrahedron (a triangular pyramid) of height h is an equilateral triangle of side
s. Its cross-sections perpendicular to an altitude are equilateral triangles. Express its volume
V as an integral, and find a formula for V in terms of h and s. Verify that your answer is
(1/3)(area of base)(height).

13. The base of a solid is the region between f(x) = cos x and g(x) = − cos x, −π/2 ≤ x ≤ π/2,
and its cross-sections perpendicular to the x-axis are squares. Find the volume of the solid.
⇒
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8.4 Average value of a fun
tion

The average of some finite set of values is a familiar concept. If, for example, the class

scores on a quiz are 10, 9, 10, 8, 7, 5, 7, 6, 3, 2, 7, 8, then the average score is the sum of

these numbers divided by the size of the class:

average score =
10 + 9 + 10 + 8 + 7 + 5 + 7 + 6 + 3 + 2 + 7 + 8

12
=

82

12
≈ 6.83.

Suppose that between t = 0 and t = 1 the speed of an object is sin(πt). What is the average

speed of the object over that time? We know one way to make sense of this: average speed

is distance traveled divided by elapsed time. The distance traveled is

∫ 1

0

sin(πt) dt =

2/π ≈ 0.64, and elapsed time is 1, so the average speed is 2/π. This appears to have

nothing to do with the simple idea of average, as in the case of the quiz scores. We might

also want to compute an average not tied to speed; for example, what is the average height

of the curve sin(πt) over the interval [0, 1]? Is it the same as the average speed? More

generally, can we make sense of the average of f(x) over an interval [a, b]?

To make sense of “average” in this more general context, we fall back on the idea of

approximation. What is the average of sin(πt) over the interval [0, 1]? We might reasonably

approximate this by choosing some t values in the interval [0, 1], add up the corresponding

values of sin(πt), and then divide by the number of values. If we divide [0, 1] into 10 equal

subintervals, we get

1

10

9
∑

i=0

sin(πi/10) ≈ 1

10
6.3 = 0.63.

If we compute more values of the function at more values of t, the average of these values

should be closer to the “real” average. If we take the average of n values for evenly spaced

values of t, we get:

1

n

n−1
∑

i=0

sin(πi/n).

Here the individual values of t are ti = i/n, so rewriting slightly we have

1

n

n−1
∑

i=0

sin(πti).

This is almost the sort of sum that we know turns into an integral; what’s apparently

missing is ∆t—but in fact, ∆t = 1/n, the length of each subinterval. So rewriting again:

n−1
∑

i=0

sin(πti)
1

n
=

n−1
∑

i=0

sin(πti)∆t.
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Now this has exactly the right form, so that in the limit we get

average =

∫ 1

0

sin(πt) dt = −cos(πt)

π

∣

∣

∣

∣

1

0

= −cos(π)

π
+

cos(0)

π
=

2

π
≈ 0.64.

Of course, this is exactly what we computed before, but we didn’t need to rely on a par-

ticular interpretation of the function. If we interpret sin(πt) as the height of the function,

we interpret the result as the average height of sin(πt) over [0, 1].

It’s not entirely obvious from this one simple example how to compute such an average

in general. Let’s look at a somewhat more complicated case. Suppose that the function is

16t2+5. What is the average between t = 1 and t = 3? Again we set up an approximation

to the average:

1

n

n−1
∑

i=0

16t2i + 5,

where the values ti are evenly spaced between 1 and 3. Once again we are “missing” ∆t,

and this time 1/n is not the correct value. What is ∆t in general? It is the length of a

subinterval; in this case we take the interval [1, 3] and divide it into n subintervals, so each

has length (3− 1)/n = 2/n = ∆t. Now with the usual “multiply and divide by the same

thing” trick we can rewrite the sum:

1

n

n−1
∑

i=0

16t2i + 5 =
1

3− 1

n−1
∑

i=0

(16t2i + 5)
3− 1

n
=

1

2

n−1
∑

i=0

(16t2i + 5)
2

n
=

1

2

n−1
∑

i=0

(16t2i + 5)∆t.

In the limit this becomes

1

2

∫ 3

1

16t2 + 5 dt =
1

2

446

3
=

223

3
.

Does this seem reasonable? Let’s picture it: in figure 8.4.1 is the function 16t2i +5 together

with the horizontal line y = 223/3 ≈ 74.3. Certainly the height of the horizontal line looks

at least plausible for the average height of the curve.

We can interpret this result in a slightly different way. The area under y = 16x2 + 5

above [1, 3] is
∫ 3

1

16t2 + 5 dt =
446

3
.

The area under y = 223/3 over the same interval [1, 3] is simply the area of a rectangle

that is 2 by 223/3 with area 446/3. So the average height of a function is the height of the

horizontal line that produces the same area over the given interval.
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Figure 8.4.1 Average velocity.

Notice that we may interpret average speed in much the same way. If the speed of an

object is 16t2i +5, the average speed over the interval [1, 3] is 223/3, and the object travels a

distance of 446/3 units in two seconds. If instead the object were to travel for two seconds

at a constant speed of 223/3, the distance traveled would also be 223/3 · 2 = 446/3. So

average speed is the constant speed required to go the same distance in the same time.

To summarize, to compute the average value of f(x) over [a, b], compute the integral

of f over the interval and divide by the length of the interval:

average =
1

b− a

∫ b

a

f(x) dx.

Exercises 8.4.

1. Find the average height of cos x over the intervals [0, π/2], [−π/2, π/2], and [0, 2π]. ⇒
2. Find the average height of x2 over the interval [−2, 2]. ⇒
3. Find the average height of 1/x2 over the interval [1, A]. ⇒
4. Find the average height of

√

1− x2 over the interval [−1, 1]. ⇒
5. An object moves with velocity v(t) = −t2 +1 feet per second between t = 0 and t = 2. Find

the average velocity and the average speed of the object between t = 0 and t = 2. ⇒
6. The observation deck on the 102nd floor of the Empire State Building is 1,224 feet above

the ground. If a steel ball is dropped from the observation deck its velocity at time t is
approximately v(t) = −32t feet per second. Find the average speed between the time it is
dropped and the time it hits the ground, and find its speed when it hits the ground. ⇒
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8.5 Work

A fundamental concept in classical physics is work: If an object is moved in a straight

line against a force F for a distance s the work done is W = Fs.

EXAMPLE 8.5.1 How much work is done in lifting a 10 pound weight vertically a

distance of 5 feet? The force due to gravity on a 10 pound weight is 10 pounds at the

surface of the earth, and it does not change appreciably over 5 feet. The work done is

W = 10 · 5 = 50 foot-pounds.

In reality few situations are so simple. The force might not be constant over the range

of motion, as in the next example.

EXAMPLE 8.5.2 How much work is done in lifting a 10 pound weight from the surface

of the earth to an orbit 100 miles above the surface? Over 100 miles the force due to gravity

does change significantly, so we need to take this into account. The force exerted on a 10

pound weight at a distance r from the center of the earth is F = k/r2 and by definition

it is 10 when r is the radius of the earth (we assume the earth is a sphere). How can we

approximate the work done? We divide the path from the surface to orbit into n small

subpaths. On each subpath the force due to gravity is roughly constant, with value k/r2i
at distance ri. The work to raise the object from ri to ri+1 is thus approximately k/r2i∆r

and the total work is approximately

n−1
∑

i=0

k

r2i
∆r,

or in the limit

W =

∫ r1

r0

k

r2
dr,

where r0 is the radius of the earth and r1 is r0 plus 100 miles. The work is

W =

∫ r1

r0

k

r2
dr = − k

r

∣

∣

∣

∣

r1

r0

= − k

r1
+

k

r0
.

Using r0 = 20925525 feet we have r1 = 21453525. The force on the 10 pound weight at

the surface of the earth is 10 pounds, so 10 = k/209255252, giving k = 4378775965256250.

Then

− k

r1
+

k

r0
=

491052320000

95349
≈ 5150052 foot-pounds.

Note that if we assume the force due to gravity is 10 pounds over the whole distance we

would calculate the work as 10(r1− r0) = 10 · 100 · 5280 = 5280000, somewhat higher since

we don’t account for the weakening of the gravitational force.
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EXAMPLE 8.5.3 How much work is done in lifting a 10 kilogram object from the

surface of the earth to a distance D from the center of the earth? This is the same

problem as before in different units, and we are not specifying a value for D. As before

W =

∫ D

r0

k

r2
dr = − k

r

∣

∣

∣

∣

D

r0

= − k

D
+

k

r0
.

While “weight in pounds” is a measure of force, “weight in kilograms” is a measure of mass.

To convert to force we need to use Newton’s law F = ma. At the surface of the earth the

acceleration due to gravity is approximately 9.8 meters per second squared, so the force is

F = 10 · 9.8 = 98. The units here are “kilogram-meters per second squared” or “kg m/s2”,

also known as a Newton (N), so F = 98 N. The radius of the earth is approximately 6378.1

kilometers or 6378100 meters. Now the problem proceeds as before. From F = k/r2 we

compute k: 98 = k/63781002, k = 3.986655642 · 1015. Then the work is:

W = − k

D
+ 6.250538000 · 108 Newton-meters.

As D increases W of course gets larger, since the quantity being subtracted, −k/D, gets

smaller. But note that the work W will never exceed 6.250538000 · 108, and in fact will

approach this value as D gets larger. In short, with a finite amount of work, namely

6.250538000 · 108 N-m, we can lift the 10 kilogram object as far as we wish from earth; we

might also say that this is the work required to lift the object to infinity.

Next is an example in which the force is constant, but there are many objects moving

different distances.

EXAMPLE 8.5.4 Suppose that a water tank is shaped like a right circular cone with

the tip at the bottom, and has height 10 meters and radius 2 meters at the top. If the

tank is full, how much work is required to pump all the water out over the top? Here we

have a large number of atoms of water that must be lifted different distances to get to the

top of the tank. Fortunately, we don’t really have to deal with individual atoms—we can

consider all the atoms at a given depth together.

To approximate the work, we can divide the water in the tank into horizontal sections,

approximate the volume of water in a section by a thin disk, and compute the amount of

work required to lift each disk to the top of the tank. As usual, we take the limit as the

sections get thinner and thinner to get the total work.

At depth h the circular cross-section through the tank has radius r = (10− h)/5, by

similar triangles, and area π(10−h)2/25. A section of the tank at depth h thus has volume

approximately π(10 − h)2/25∆h and so contains σπ(10 − h)2/25∆h kilograms of water,
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Figure 8.5.1 Cross-section of a conical water tank.

where σ is the density of water in kilograms per cubic meter; σ ≈ 1000. The force due to

gravity on this much water is 9.8σπ(10−h)2/25∆h, and finally, this section of water must

be lifted a distance h, which requires h9.8σπ(10− h)2/25∆h Newton-meters of work. The

total work is therefore

W =
9.8σπ

25

∫ 10

0

h(10− h)2 dh =
980000

3
π ≈ 1026254 Newton-meters.

A spring has a “natural length,” its length if nothing is stretching or compressing

it. If the spring is either stretched or compressed the spring provides an opposing force;

according to Hooke’s Law the magnitude of this force is proportional to the distance the

spring has been stretched or compressed: F = kx. The constant of proportionality, k, of

course depends on the spring. Note that x here represents the change in length from the

natural length.

EXAMPLE 8.5.5 Suppose k = 5 for a given spring that has a natural length of 0.1

meters. Suppose a force is applied that compresses the spring to length 0.08. What is

the magnitude of the force? Assuming that the constant k has appropriate dimensions

(namely, kg/s2), the force is 5(0.1− 0.08) = 5(0.02) = 0.1 Newtons.

EXAMPLE 8.5.6 How much work is done in compressing the spring in the previous

example from its natural length to 0.08 meters? From 0.08 meters to 0.05 meters? How

much work is done to stretch the spring from 0.1 meters to 0.15 meters? We can approx-

imate the work by dividing the distance that the spring is compressed (or stretched) into

small subintervals. Then the force exerted by the spring is approximately constant over the

subinterval, so the work required to compress the spring from xi to xi+1 is approximately
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5(xi − 0.1)∆x. The total work is approximately

n−1
∑

i=0

5(xi − 0.1)∆x

and in the limit

W =

∫ 0.08

0.1

5(x−0.1) dx =
5(x− 0.1)2

2

∣

∣

∣

∣

0.08

0.1

=
5(0.08− 0.1)2

2
− 5(0.1− 0.1)2

2
=

1

1000
N-m.

The other values we seek simply use different limits. To compress the spring from 0.08

meters to 0.05 meters takes

W =

∫ 0.05

0.08

5(x−0.1) dx =
5(x− 0.1)2

2

∣

∣

∣

∣

0.05

0.08

=
5(0.05− 0.1)2

2
− 5(0.08− 0.1)2

2
=

21

4000
N-m

and to stretch the spring from 0.1 meters to 0.15 meters requires

W =

∫ 0.15

0.1

5(x− 0.1) dx =
5(x− 0.1)2

2

∣

∣

∣

∣

0.15

0.1

=
5(0.15− 0.1)2

2
− 5(0.1− 0.1)2

2
=

1

160
N-m.

Exercises 8.5.

1. How much work is done in lifting a 100 kilogram weight from the surface of the earth to an
orbit 35,786 kilometers above the surface of the earth? ⇒

2. How much work is done in lifting a 100 kilogram weight from an orbit 1000 kilometers above
the surface of the earth to an orbit 35,786 kilometers above the surface of the earth? ⇒

3. A water tank has the shape of an upright cylinder with radius r = 1 meter and height 10
meters. If the depth of the water is 5 meters, how much work is required to pump all the
water out the top of the tank? ⇒

4. Suppose the tank of the previous problem is lying on its side, so that the circular ends are
vertical, and that it has the same amount of water as before. How much work is required
to pump the water out the top of the tank (which is now 2 meters above the bottom of the
tank)? ⇒

5. A water tank has the shape of the bottom half of a sphere with radius r = 1 meter. If the
tank is full, how much work is required to pump all the water out the top of the tank? ⇒

6. A spring has constant k = 10 kg/s2. How much work is done in compressing it 1/10 meter
from its natural length? ⇒

7. A force of 2 Newtons will compress a spring from 1 meter (its natural length) to 0.8 meters.
How much work is required to stretch the spring from 1.1 meters to 1.5 meters? ⇒

8. A 20 meter long steel cable has density 2 kilograms per meter, and is hanging straight down.
How much work is required to lift the entire cable to the height of its top end? ⇒
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9. The cable in the previous problem has a 100 kilogram bucket of concrete attached to its lower
end. How much work is required to lift the entire cable and bucket to the height of its top
end? ⇒

10. Consider again the cable and bucket of the previous problem. How much work is required
to lift the bucket 10 meters by raising the cable 10 meters? (The top half of the cable ends
up at the height of the top end of the cable, while the bottom half of the cable is lifted 10
meters.) ⇒


