2 Instantaneous Rate of Change: The Derivative

2.1 The Slope of a Function

Suppose that \(y \) is a function of \(x \), say \(y = f(x) \). It is often necessary to know how sensitive the value of \(y \) is to small changes in \(x \).

EXAMPLE 2.1.1
Take, for example, \(y = f(x) = \sqrt{25 - x^2} \) (the upper semicircle of radius 25 centered at the origin). When \(x = 7 \), we find that \(y = \sqrt{25 - 49} = -24 \). Suppose we want to know how much \(y \) changes when \(x \) increases a little, say to 7.1 or 7.01.

In the case of a straight line \(y = mx + b \), the slope \(m = \Delta y/\Delta x \) measures the change in \(y \) per unit change in \(x \). This can be interpreted as a measure of “sensitivity.” For example, if \(y = 10x + 5 \), a small change in \(x \) corresponds to a change one hundred times as large as in \(y \), so \(y \) is quite sensitive to changes in \(x \).

Let us look at the same ratio \(\Delta y/\Delta x \) for our function \(y = f(x) = \sqrt{25 - x^2} \) when \(x \) changes from 7 to 7.1. Here \(\Delta x = 7.1 - 7 = 0.1 \) is the change in \(x \), and
\[
\Delta y = f(7.1) - f(7) = \sqrt{25 - 50.41} - \sqrt{25 - 49} = -0.2941
\]
Thus, \(\Delta y/\Delta x \approx -0.2941/0.1 = -2.941 \). This means that \(y \) changes by less than one third the change in \(x \), so apparently \(y \) is not very sensitive to changes in \(x \) at \(x = 7 \). We say “apparently” here because we don’t really know what happens between 7 and 7.1. Perhaps \(y \) changes dramatically as \(x \) runs through the values from 7 to 7.1, but at 7.1 \(y \) just happens to be close to its value at 7. This is not in fact the case for this particular function, but we don’t yet know why.

Instead of looking at more particular values of \(\Delta x \), let’s see what happens if we do some algebra with the difference quotient using just \(\Delta x \). The slope of a chord from \((7, 24)\) to a nearby point is given by
\[
\frac{\sqrt{25 - (7 + \Delta x)^2} - \sqrt{25 - 7^2}}{\Delta x} = \frac{\sqrt{25 - (7 + \Delta x)^2} - \sqrt{25 - 7^2}}{\Delta x} + \frac{\sqrt{25 - 7^2}(\Delta x)}{\Delta x} = \frac{\sqrt{25 - (7 + \Delta x)^2} - \sqrt{25 - 7^2}}{\Delta x} = \frac{\Delta y}{\Delta x}
\]
Now, can we tell by looking at this last formula what happens when \(\Delta x \) gets very close to zero? The numerator clearly gets very close to \(-14 \) while the denominator gets very close to \(\sqrt{25 - 7^2} = 24 \). Is the fraction therefore very close to \(-14/24 = -0.583\)? It certainly seems reasonable, and in fact it is true: as \(\Delta x \) gets closer and closer to zero, the difference quotient does in fact get closer and closer to \(-7/24 \), and so the slope of the tangent line is exactly \(-7/24 \).

What about the slope of the tangent line at \(x = 127 \)? Well, 12 can’t all be that different from 7, we just have to redo the calculation with 12 instead of 7. This won’t be hard, but it will be a bit tedious. What if we try to do all the algebra without using a specific value for \(x \)? Let’s copy from above, replacing 7 by \(x \). We’ll have to do a bit more than that—for example, the “24” in the calculation came from \(\sqrt{25 - 7^2} = 24 \), so we’ll need to fix that too.

Now, what happens when \(\Delta x \) is very close to zero? Again it seems apparent that the quotient will be very close to
\[
\frac{\Delta y}{\Delta x} = \frac{\sqrt{25 - (x + \Delta x)^2} - \sqrt{25 - x^2}}{\Delta x}
\]
Replacing \(x \) by 7 gives \(-7/24 \), and before, and now we can do the computation for 12 or any other value of \(x \) between \(-25 \) and 25.

So now we have a single, simple formula, \(-x/\sqrt{25 - x^2} \), that tells us the slope of the tangent line for any value of \(x \). This slope, in turn, tells us how sensitive the value of \(f(x) \) is to small changes in \(x \). The slope of the tangent line is the line that just "grazes" the circle at that point, i.e., it doesn’t meet the circle at any second point.) Thus, as \(\Delta x \) gets smaller and smaller, the slope \(\Delta y/\Delta x \) of the chord gets closer and closer to the slope of the tangent line. This is actually quite difficult to see when \(\Delta x \) is small, because of the scale of the graph. The values of \(\Delta x \) used for the figure are 1, 5, 10 and 15, not really very small values. The tangent line is the one that is uppermost at the right hand endpoint.
We should note that in the particular case of a circle, there’s a simple way to find the derivative. Since the tangent to a circle at a point is perpendicular to the radius drawn to the point of contact, its slope is the negative reciprocal of the slope of the radius. The radius joining $(0, 0)$ to $(7, 24)$ has slope $24/7$. Hence, the tangent line has slope $-7/24$. In general, a radius to the point $(x, \sqrt{a^2 - x^2})$ has slope $-x/\sqrt{a^2 - x^2}$, so the tangent line is $y = -x/\sqrt{a^2 - x^2}$, as before. It is NOT always true that a tangent line is perpendicular to the origin—don’t use this shortcut in any other circumstance.

As above, and as you might expect, for different values of x we generally get different values of the derivative $f'(x)$. Could it be that the derivative always has the same value?

This would mean that the slope of f, or the slope of its tangent line, is the same everywhere. One curve that always has the same slope is a line; it seems odd to talk about the tangent line to a line, but if it makes sense at all the tangent line must be the line itself. It is not hard to see that the derivative of $f(x) = mx + b$ is $f'(x) = m$; see exercise 6.

Exercises 2.1.

1. Draw the graph of the function $y = f(x) = \sqrt{9 + x^2}$ between $x = 0$ and $x = 3$. Find the slope $\Delta y/\Delta x$ of the chord between the points of the curve lying over (x, y) and $(x + \Delta x, y + \Delta y)$. Draw a graph of the upper semicircle, and draw the tangent line at each of these four points.

2. Draw the graph of $y = f(x) = x^2 - 2$ between $x = -2$ and $x = 4$. Find the slope of the chord between (x, y) and $(x + \Delta x, y + \Delta y)$. Use algebra to find a simple formula for the slope of the chord between $(1, f(1))$ and $(1 + \Delta x, f(1 + \Delta x))$. Determine what happens when $\Delta x < 0$. In your graph of $y = 1/x$, draw the straight line through the point $(1, 1)$ whose slope is this limiting value of the difference quotient as Δx approaches 0.

3. Find an algebraic expression for the difference quotient $\frac{f(x + \Delta x) - f(x)}{\Delta x}$ when $f(x) = x^2 + 1$. Simplify the expression as much as possible. Then discuss what happens as Δx approaches 0.

4. Draw the graph of $y = f(x) = x^3$ between $x = 0$ and $x = 1$. Find the slope of the chord between (x, y) and $(x + \Delta x, y + \Delta y)$. Use algebra to find a simple formula for the slope of the chord between $(1, f(1))$ and $(1 + \Delta x, f(1 + \Delta x))$. Determine what happens when $\Delta x = 0$. In your graph of $y = x^3$, draw the straight line through the point $(1, 1)$ whose slope is equal to the value you just found.

5. Find an algebraic expression for the difference quotient $\frac{f(x + \Delta x) - f(x)}{\Delta x}$ when $f(x) = x^4 + 1$. Simplify the expression as much as possible. Then discuss what happens as Δx approaches 0. That value is $f'(x)$.

6. A ball is thrown upward into the air so that its position (that is, distance from some fixed point) is given by the equation $y = h(t) = 100 - 4.9t^2$, where y is the height in meters and t is the time in seconds. Evaluate the average velocity of the ball between 0 and 1 second.

7. The speed of the ball is the rate at which the quantity of interest is changing. In the previous two sections we computed some quantities of interest (slope, velocity) by drawing a straight line through the point $(2, 4)$ whose slope is the instantaneous velocity you just computed; it should of course be the tangent line. In simplified form) determine what happens as Δt approaches 0.

9. Use algebra to find a simple formula for the average speed between time $t = 2$ and time $t + \Delta t$. (If you substitute $\Delta t = 0.001$ in this formula you should again get the answers to parts (a) (d)). Next, in your formula for average speed (which should be in simplified form) determine what happens as Δt approaches zero. This is the instantaneous speed. Finally, in your graph of $y = v^2$ draw the straight line through the point $(2, 4)$ whose slope is the instantaneous velocity you just computed; it should of course be the tangent line.

Chapter 2 Instantaneous Rate of Change: The Derivative

Exercises 2.2.

1. An object is traveling in a straight line so that its position (that is, distance from some fixed point) is given by this table:

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Distance (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

Find the average speed of the object during the following time intervals: [0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]. If you had to guess the speed at $t = 2$ just put the basis of these, what would you guess?

2. A ball is traveling in a straight line so that its position is given by the equation $y = h(t) = 100 - 4.9t^2$, where y is the height in meters and t is the time in seconds. Evaluate the average velocity of the ball between 0 and 1 second.

3. If an object is dropped from an 80-meter-high window, its height h above the ground at time t seconds is given by the formula $y = f(t) = 80 - 4.9t^2$ (Here we are neglecting air resistance; the graph of this function was shown in figure 1.6.1). Find the average velocity of the falling object between (a) 1 seconds and 1.1 seconds, (b) 1 seconds and 1.01 seconds, (c) 1 seconds and 1.001 seconds. Now use algebra to find a simple formula for the average velocity of the falling object between 1 second and t seconds. Determine what happens to this average velocity as Δt approaches 0. That is the instantaneous velocity at time $t = 1$ (it will be negative, because the object is falling).

2.2 Limits

In the previous two sections we computed some quantities of interest (slope, velocity) by seeing that some expression “goes to” or “approaches” or “gets really close to” a particular value. In the examples we saw, this idea may have been clear enough, but it is too fuzzy to rely on in more difficult circumstances. In this section we will see how to make the idea more precise.

There is an important feature of the examples we have seen. Consider again the formula $19.6\Delta t^2 - 4.9\Delta t^2$.
as substituting zero for Δx, as that would give
\[-19.6 - 4.9\Delta x = -19.6. \]
which is meaningless. The quantity we are really interested in does not mean “at zero,” and this is why the answer to the original problem (finding a velocity or a slope) was not immediately obvious. In other words, we are generally going to want to figure out what a quantity “approaches” in situations where we can’t merely plug in a value. If you would like to think about a hard example (which we will analyze later) consider what happens to (sin x)/x as x approaches zero. Try evaluating this expression on a calculator for smaller and smaller values of x: do they seem to approach some fixed value?

EXAMPLE 2.3.1 Does $\sqrt{7}$ approach 1.41 as x approaches 2? In this case it is possible to compute the actual value $\sqrt{7}$ to a high precision to answer the question. But since in general we won’t be able to do that, let’s not. We might start by computing $\sqrt[3]{7}$ for values of x close to 2, as we did in the previous sections. Here are some values:

\[\sqrt[3]{0.9} = 0.96717488, \quad \sqrt[3]{1.0} = 1.00000000, \quad \sqrt[3]{1.001} = 1.00331251, \quad \sqrt[3]{1.000001} = 1.00033333. \]

It looks at least possible that indeed these values “approach” 1.41—already $\sqrt[3]{7}$ is quite close. If we continue this process, however, at some point we will appear to “stall.” In fact, $\sqrt[3]{7} \approx 1.912413624$, so we will never even get as far as 1.412, no matter how long we continue the sequence.

So in a funny, everyday sort of sense, it is true that $\sqrt{7}$ “gets close to” 1.41, but it does not “approach” 1.41 in the sense we want. To compute an exact slope or an exact velocity, what we want to know is that a given quantity becomes “arbitrarily close” to a fixed value, meaning that the first quantity can be made “as close as we like” to the fixed value. Consider again the quantities
\[-19.6\Delta x - 4.9\Delta x^2 = -19.6 - 4.9\Delta x. \]
These two quantities are equal as long as Δx is not zero. If Δx is zero, the left hand quantity is meaningless, while the right hand one is -19.6. Can we say more than we did before about why the right hand side “approaches” -19.6, in the desired sense? Can we really make it “as close as we want” to -19.6? Let’s try a test case. Can we make $-19.6 - 4.9\Delta x$ arbitrarily close by making Δx small enough? Again, yes. Let’s do a small number you provide. What I'd like to do is somehow see that I will always succeed, and more, I'd like to have a simple strategy so that I don’t have to do all that algebra every time. A strategy in this case would be a formula that gives me a correct answer no matter what you specify. So suppose the number you give me is ϵ. How close does Δx have to be to zero to guarantee that $-19.6 - 4.9\Delta x$ is in $(-19.6 - \epsilon, -19.6 + \epsilon)$? If Δx is positive, we need:
\[-19.6 - 4.9\Delta x > -19.6 - \epsilon \]
\[-19.6 - 4.9\Delta x < -19.6 + \epsilon \]
\[\Delta x < \epsilon/4.9 \]
So if I pick any number δ that is less than $\epsilon/4.9$, the algebra tells me that whenever $\Delta x < \delta$ then $-19.6 - 4.9\Delta x$ is within ϵ of -19.6. (This is exactly what I did in the example: I picked $\delta = 0.0000002$ or 0.00002041816327.) A similar calculation again works for negative Δx. The important fact is that this is now a completely general result: it shows that if we can always win, no matter what number “move” we have now. I could now codify this by giving a precise definition to replace the fuzzy, “gets closer and closer” language we have used so far. Henceforward, we will say something like “the limit of $(-19.6\Delta x - 4.9\Delta x^2)/\Delta x$ as Δx goes to zero is -19.6,” and abbreviate this mouthful

42 Chapter 2 Instantaneous Rate of Change: The Derivative

guarantees that $0 < |x - 2| < \delta$ implies $|x - 2| < \epsilon$. Of course: no matter what ϵ is, $\delta = \epsilon$ works.

So it turns out to be easy to prove something “obvious,” which is nice. It doesn’t take long before things get trickier, however.

EXAMPLE 2.3.4 It seems clear that $\lim_{x \to 4} x = 4$. Let’s try to prove it. We will want to be able to show that $|x - 4| < \epsilon$ whenever $0 < |x - 2| < \delta$, by choosing δ carefully. Is there any connection between $|x - 2|$ and $|x - 4|$? Yes, and it’s not hard to spot, but it is not so simple as the previous example. We can write $|x - 4| = |(x - 2) - 2|$. Now when $|x - 2|$ is small, part of $|(x - 2) - 2|$ is small, namely $|(x - 2)|$. What about $|(x - 2)|$? If x is close to 2, $|(x - 2)|$ certainly can’t be too big, but we need to somehow be precise about it. Let’s recall the “game” version of what is going on here. You get to pick an ϵ and I have to pick a δ that makes things work out. Presumably it is the really tiny values of ϵ I need to worry about, but I have to be prepared for anything, even an apparently “bad” move like $\epsilon = 1000$. I expect that x is going to be small, and that the corresponding δ will be small, certainly less than 1. If $|x - 2| < \delta$, then x is between 1 and 3. So in that case $|x - 4| < 2$. Then we will δ pick $\delta = 1/3$, whatever is smaller. Now when $|x - 2| < \delta$, I know both that $|x - 2| < 1/3$. Thus $|x - 2| < |x - 4| < 1/3$. This has been a long discussion, but most of it was explanation and scratch work. If this were written down as a proof, it would be quite short, like this:

Proof of that $\lim_{x \to 4} x = 4$. Given any $\epsilon > 0$, pick $\delta = \min \{ \epsilon/3, 1 \}$, whichever is smaller. Then when $|x - 2| < \delta$, $|x - 4| < 2$, and $|x - 4| < \epsilon$. Hence $|x - 4| = |(x - 2) - 2| < (\epsilon/3)^2 = \epsilon$.

It probably seems obvious that $\lim_{x \to 4} x = 4$, and it is worth examining more closely why it seems obvious. If we write $f(x) = x$, and ask what happens when x approaches 2, we might say something like, “Well, the first x approaches 2, and the second x approaches 2, so the product must approach 2.” In fact this is pretty much right on the money, except for that word “must.” Is it really true that if x approaches 2 and y approaches 2 then xy approaches 4? It is true but it is not really obvious, since x and y might be quite complicated. The good news is that we can see that this is true once and for all, and then
we don’t have to worry about it ever again. When we say that \(x \) might be “complicated”, we really mean that in practice it might be a function. Here is then what we want to know:

THEOREM 2.3.5. Suppose \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \). Then

\[
\lim_{x \to a} f(x)g(x) = LM.
\]

Proof. We have to use the official definition of limit to make sense of this. So given any \(\epsilon > 0 \) we need to find a \(\delta > 0 \) so that \(0 < |x - a| < \delta \) implies \(|f(x)g(x) - LM| < \epsilon \). What do we have to work with? We know that we can make \(f(x) \) close to \(L \) and \(g(x) \) close to \(M \), and we have to somehow connect these facts to make \(f(x)g(x) \) close to \(LM \).

We use, as is often the case, a little algebraic trick:

\[
|f(x)g(x) - LM| = |f(x)(g(x) - M) + (f(x) - L)M| \\
\leq |f(x)||g(x) - M| + |(f(x) - L)M| \\
= |f(x)||g(x) - M| + |f(x)||L - M|.
\]

This is all straightforward except perhaps for the “\(|f(x)| < \epsilon/2|M|\)”. That is an example of the **triangle inequality**, which says that if \(a \) and \(b \) are any real numbers then \(|a + b| \leq |a| + |b| \). If you look at a few examples, using positive and negative numbers in various combinations for \(a \) and \(b \), you should quickly understand why this is true; we will not prove it formally.

Since \(\lim_{x \to a} f(x) = L \), there is a value \(\delta_1 \) so that \(0 < |x - a| < \delta_1 \) implies \(|f(x) - L| < \epsilon/2|M| \). This means that \(0 < |x - a| < \delta_1 \) implies \(|f(x) - L| < \epsilon/2 \). You can see where this is going: if we can make \(|f(x)|g(x) < \epsilon/2 \) also, then we’ll be done.

We can make \(|g(x)| < |M| \) smaller than any fixed number by making \(x \) close enough to \(a \); unfortunately, \(\epsilon/2|G(x)| \) is not a fixed number, since \(x \) is a variable. Here we need another little trick: just like the one we used in analyzing \(x \). We can find a \(\delta_2 \) so that \(0 < |x - a| < \delta_2 \) implies \(|f(x) - L| < \epsilon/2 \); meaning that \(L - 1 < f(x) < L + 1 \). This means that \(|f(x)| < N \) where \(N \) is either \(L - 1 \) or \(L + 1 \), depending on whether \(L \) is positive or not. The important point is that \(N \) doesn’t depend on \(x \). Finally, we know that there is a \(\delta_3 \) so that \(0 < |x - a| < \delta_3 \) implies \(|x - a| < \epsilon/2|N| \) when \(x \) is close enough to \(a \).

Since \(|f(x)| < N \), we can connect these together, we need to somehow connect these facts to make \(f(x)g(x) \) close to \(LM \).

This is just what we needed, so by the official definition, \(\lim_{x \to a} f(x)g(x) = LM \).

Example 2.3.8. Compute \(\lim_{x \to 1} x^2 - 2 \).

We can’t simply plug in \(x = 1 \) because that makes the denominator zero. However:

\[
\lim_{x \to 1} \frac{x^2 - 2}{x - 1} = \lim_{x \to 1} \frac{x(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.
\]

While theorem 2.3.6 is very helpful, we need a bit more to work easily with limits. Since the theorem applies when some limits are already known, we need to know the behavior of some functions that cannot themselves be constructed from the simple arithmetic operations of the theorem, such as \(\sqrt{x} \). Also, there is one other extraordinarily useful way to put functions together: composition. If \(f(x) \) and \(g(x) \) are functions, we can form two functions by composition: \(f(g(x)) \) and \(g(f(x)) \). For example, if \(f(x) = \sqrt{x} \) and \(g(x) = x^2 + 5 \), then \(f(g(x)) = \sqrt{x^2 + 5} \) and \(g(f(x)) = (\sqrt{x})^2 + 5 \) is \(x + 5 \). Here is a companion to theorem 2.3.6 for composition:

THEOREM 2.3.9. Suppose \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \). Then

\[
\lim_{x \to a} f(g(x)) = f(L).
\]

Note the special form of the condition on \(f \): it is not enough to know that \(\lim_{x \to a} f(x) = M \); though it is a bit tricky to see why. Many of the most familiar functions do have this property, and this theorem can therefore be applied. For example:

THEOREM 2.3.10. Suppose that \(n \) is a positive integer. Then

\[
\lim_{x \to a} 2^n = 2^n.
\]

provided that \(a \) is positive if \(n \) is even.

Theorem 2.3.6. Suppose that \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \) and \(k \) is some constant. Then

\[
\lim_{x \to a} k[f(x) - kL] = kL.
\]

Example 2.3.7. Compute \(\lim_{x \to 1} \frac{x^2 - 3x + 5}{x - 2} \). If we apply the theorem in all its gory detail, we get

\[
\lim_{x \to 1} \frac{x^2 - 3x + 5}{x - 2} = \lim_{x \to 1} \frac{x^2 - 3x + 5}{x - 2} = \lim_{x \to 1} \frac{(x - 1)(x - 5) + 5}{x - 2} = \lim_{x \to 1} \frac{x - 1}{x - 2} + \frac{5}{x - 2} = \lim_{x \to 1} (x - 1) \frac{1}{x - 2} + \frac{5}{x - 2} = \lim_{x \to 1} \frac{1}{x - 2} + \frac{5}{x - 2} = \frac{1}{1} - \frac{5}{1} = -4.
\]

It is worth commenting on the trivial limit \(\lim_{x \to 1} x \). From one point of view this might seem meaningless, as the number 5 can’t “approach” any value, since it is simply a fixed value. However, there is a meaningful way to talk about this situation, we introduce the concept of a one-sided limit.

Definition 2.3.12. One-sided limit

Suppose that \(f(x) \) is a function. We say that \(\lim_{x \to a} f(x) = L \) if for every \(\epsilon > 0 \) there is a \(\delta > 0 \) so that whenever \(0 < |x - a| < \delta \), \(f(x) - L < \epsilon \). We say that \(\lim_{x \to a} f(x) = L \) if for every \(\epsilon > 0 \) there is a \(\delta > 0 \) so that whenever \(0 < |x - a| < \delta \), \(f(x) - L < \epsilon \).

Usually \(\lim_{x \to a} f(x) \) is read “the limit of \(f(x) \) from the left” and \(\lim_{x \to a} f(x) \) is read “the limit of \(f(x) \) from the right”.

Example 2.3.13. Discuss \(\lim_{x \to 0} \frac{x}{|x|} \), \(\lim_{x \to 0} \frac{x}{|x|} \), and \(\lim_{x \to 0} \frac{x}{|x|} \).

The function \(f(x) = \frac{x}{|x|} \) is undefined at 0; when \(x > 0 \), \(|x| = x \) and so \(f(x) = 1 \); when \(x < 0 \), \(|x| = -x \) and \(f(x) = -1 \). Thus \(\lim_{x \to 0} \frac{x}{|x|} = \lim_{x \to 0} -1 = -1 \) while \(\lim_{x \to 0} \frac{x}{|x|} = 1 \).
lim \(x \to 1 \) \(f(x) \) must be equal to both the left and right limits; since they are different, the limit \(\lim_{x \to 0} [f(x)] \) does not exist.

Exercises 2.3.

Computate the limits. If a limit does not exist, explain why.

1. \(\lim_{x \to 3} (x^2 + x - 12) \) (a) \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3} \)
2. \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3} \) (b) \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 2} \)
3. \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3} \) (c) \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 1} \)
4. \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 2} \) (d) \(\lim_{x \to 3} \frac{x^2 + x - 12}{x - 1} \)
5. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 3}{x} \) (e) \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 1}{x} \)
6. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 3}{x} \) (f) \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 2}{x} \)
7. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 3}{x} \) (g) \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 1}{x} \)
8. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 3}{x} \) (h) \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 2}{x} \)
9. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 3}{x} \) (i) \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 1}{x} \)
10. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 3}{x} \) (j) \(\lim_{x \to 0} \frac{\sqrt{x + 3} - 2}{x} \)

2.4 The Derivative Function

We have seen how to create, or derive, a new function \(f'(x) \) from a function \(f(x) \), summarized in the paragraph containing equation 2.1.1. Now that we have the concept of limits, we can make this more precise.

Definition 2.4.1 The derivative of a function \(f \), denoted \(f' \), is

\[
f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

We know that \(f' \) carries important information about the original function \(f \). In one example we saw that \(f'(x) \) tells us how steep the graph of \(f(x) \) is; in another we saw that \(f'(x) \) tells us the velocity of an object if \(f(x) \) tells us the position of the object at time \(x \).

As we said earlier, this same mathematical idea is useful whenever \(f(x) \) represents some changing quantity and we want to know something about how it changes, or roughly, the “rate” at which it changes. Most functions encountered in practice are built up from a small collection of “primitive” functions in a few simple ways, for example, by adding or multiplying functions together to get new, more complicated functions. To make good use of the information provided by \(f(x) \) we need to be able to compute it for a variety of such functions.

We will begin to use different notations for the derivative of a function. While initially confusing, each is often useful so it is worth maintaining multiple versions of the same thing.

Consider again the function \(f(t) = \sqrt{25 - t^2} \). We have computed the derivative \(f'(t) = -t/\sqrt{25 - t^2} \), and have already noted that if we use the alternate notation \(y = \sqrt{25 - x^2} \) then we might write \(y' = -x/\sqrt{25 - x^2} \). Another notation is quite different, and in time it will become clear why it is often a useful one. Recall that to compute the derivative we computed

\[
\lim_{\Delta x \to 0} \frac{\sqrt{25 - (t + \Delta x)^2} - \sqrt{25 - t^2}}{\Delta x}
\]

The denominator here measures a distance in the \(x \) direction, sometimes called the “run”, and the numerator measures a distance in the \(y \) direction, sometimes called the “rise,” and “rise over run” is the slope of a line. Recall that sometimes such a numerator is abbreviated \(\Delta y \), exchanging brevity for a more detailed expression. So in general, a derivative is given by

\[
y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}
\]

To recall the form of the limit, we sometimes say instead that

\[
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}
\]

In other words, \(dy/dx \) is another notation for the derivative, and it reminds us that it is related to an actual slope between two points. This notation is called Leibniz notation, after Gottfried Leibniz, who developed the fundamentals of calculus independently, at about the same time that Isaac Newton did. Again, since we often use \(f \) and \(f(x) \) to mean the original function, we sometimes use \(df/dx \) and \(d(f(x))/dx \) to refer to the derivative. If

Note. If you happen to know some “derivative formulas” from an earlier course, for the time being you should pretend that you do not know them. In examples like the ones above and the exercises below, you are required to know how to find the derivative
formula starting from basic principles. We will later develop some formulas so that we do not always need to do such computations, but we will continue to need to know how to do the more involved computations.

Sometimes one encounters a point in the domain of a function \(y = f(x) \) where there is no derivative, because there is no tangent line. In order for the notion of the tangent line at a point to make sense, the curve must be "smooth" at that point. This means that if you imagine a particle traveling at some steady speed along the curve, then the particle does not experience an abrupt change of direction. There are two types of situations you should be aware of—corners and cusps—where there's a sudden change of direction and hence no derivative.

EXAMPLE 2.4.4 Discuss the derivative of the absolute value function \(y = f(x) = |x| \).

If \(x \) is positive, then this is the function \(y = x \), whose derivative is the constant 1. (Recall that when \(y = f(x) = mx + b \), the derivative is the slope \(m \).) If \(x \) is negative, then we're dealing with the function \(y = -x \), whose derivative is the constant -1. If \(x = 0 \), then the function has a corner, i.e., there is no tangent line. A tangent line would have to point in the direction of the curve—but there are two directions of the curve that come together at the origin. We can summarize this as

\[
y' = \begin{cases}
1 & \text{if } x > 0; \\
-1 & \text{if } x < 0; \\
\text{undefined} & \text{if } x = 0.
\end{cases}
\]

EXAMPLE 2.4.5 Discuss the derivative of the function \(y = x^{1/3} \), shown in figure 2.4.1.

We will later see how to compute this derivative; for now we use the fact that \(y' = (2/3)x^{-1/3} \). Visually this looks much like the absolute value function, but it technically has a cusp, not a corner. The absolute value function has no tangent line at 0 because there are (at least) two obvious contenders—the tangent line of the left side of the curve and the tangent line of the right side. The function \(y = x^{1/3} \) does not have a tangent line at 0, but unlike the absolute value function it can be said to have a single direction: as we approach 0 from either side the tangent line becomes closer and closer to a vertical line; the curve is vertical at 0. But as before, if you imagine traveling along the curve, an abrupt change in direction is required at 0: a full 180 degree turn.

In practice we won't worry much about the distinction between these examples; in both cases the function has a "sharp point" where there is no tangent line and no derivative.

2.5 Properties of Functions

As we have defined it in Section 1.3, a function is a very general object. At this point, it is useful to introduce a collection of properties of functions: knowing that a function has one of these properties can be very useful. Consider the graphs of the functions in Figure 2.5.1. It would clearly be useful to have words to help us describe the distinct features of each of them. We will point out and define a few properties (there are many more) of the functions pictured here. For the sake of the discussion, we will assume that the graphs do not exhibit any unusual behavior off-stage (i.e., outside the view of the graphs).

Functions. Each graph in Figure 2.5.1 certainly represents a function—since each passes the vertical line test. In other words, as you sweep a vertical line across the graph of each function, the line never intersects the graph more than once. If it did, then the graph would not represent a function.

Bounded. The graph in (c) appears to approach zero as \(x \) goes to both positive and negative infinity. It also never exceeds the value 1 or drops below the value 0. Because the graph never increases or decreases without bound, we say that the function represented by the graph in (c) is a bounded function.

DEFINITION 2.5.1 Bounded A function \(f \) is bounded if there is a number \(M \) such that \(|f(x)| < M \) for every \(x \) in the domain of \(f \).

For the function in (c), one such choice for \(M \) would be 10. However, the smallest (optimal) choice would be \(M = 1 \). In either case, simply finding an \(M \) is enough to establish boundedness. No such \(M \) exists for the hyperbola in (d) and hence we say that it is unbounded.

Continuity. The graphs shown in (b) and (c) both represent continuous functions. Geometrically, this is because there are no jumps in the graphs. That is, if you pick a point on the graph and approach it from the left and right, the values of the function approach the value of the function at that point. For example, we can see that this is not true for function values near \(x = -1 \) on the graph in (a) which is not continuous at that location.
DEFINITION 2.5.2 Continuous at a Point A function f is continuous at a point a if $\lim_{x \to a} f(x) = f(a)$.

DEFINITION 2.5.3 Continuous A function f is continuous if it is continuous at every point in its domain.

Strangely, we also say that (d) is continuous even though there is a vertical asymptote. A careful reading of the definition of continuous reveals the phrase “at every point in its domain.” Because the location of the asymptote, $x = 0$, is not in the domain of the function, and because the rest of the function is continuous, we say that (d) is continuous.

Differentiability. If a function has a derivative at every point, we say the function is differentiable. We can see that the tangent line is well-defined at every point on the graph in (c). Therefore, we say that (c) is a differentiable function.

DEFINITION 2.5.4 Differentiable at a Point A function f is differentiable at point a if $f'(a)$ exists.

DEFINITION 2.5.5 Differentiable A function f is differentiable if it is differentiable at every point (excluding endpoints and isolated points in the domain of f) in the domain of f.

Take note that, for technical reasons not discussed here, both of these definitions exclude endpoints and isolated points in the domain from consideration.

We close with a useful theorem about continuous functions:

THEOREM 2.5.6 Intermediate Value Theorem If f is continuous on the interval $[a, b]$ and d is between $f(a)$ and $f(b)$, then there is a number c in $[a, b]$ such that $f(c) = d$.

This is most frequently used when $d = 0$.

EXAMPLE 2.5.7 Explain why the function $f = x^3 + 3x^2 + x - 2$ has a root between 0 and 3.

By theorem 2.3.6, f is continuous. Since $f(0) = -2$ and $f(1) = 3$, and 0 is between -2 and 3, there is a $c \in [0, 1]$ such that $f(c) = 0$.

This example also points the way to a simple method for approximating roots.

EXAMPLE 2.5.8 Approximate the root of the previous example to one decimal place.

If we compute $f(0.1), f(0.2)$, and so on, we find that $f(0.6) < 0$ and $f(0.7) > 0$, so by the Intermediate Value Theorem, f has a root between 0.6 and 0.7. Repeating the process with $f(0.61), f(0.62)$, and so on, we find that $f(0.61) < 0$ and $f(0.62) > 0$, so f has a root between 0.61 and 0.62, and the root is 0.6 rounded to one decimal place.

Exercises 2.5.

1. Along the lines of Figure 2.5.1, for each part below sketch the graph of a function that is:
 a. bounded, but not continuous.
 b. differentiable and unbounded.
 c. continuous at $x = 0$, not continuous at $x = 1$, and bounded.
 d. differentiable everywhere except at $x = -1$, continuous, and unbounded.

2. Is $f(x) = \sin(x)$ a bounded function? If so, find the smallest M.

3. Is $s(t) = \frac{1}{1 + t^2}$ a bounded function? If so, find the smallest M.

4. Is $v(u) = 2 \ln |u|$ a bounded function? If so, find the smallest M.

5. Consider the function
 \[h(x) = \begin{cases} 2x - 3, & \text{if } x < 1 \\ 0, & \text{if } x \geq 1 \end{cases} \]
 Show that it is continuous at the point $x = 0$. Is h a continuous function?

6. Approximate a root of $f = x^3 - 4x^2 + 2x + 2$ to one decimal place.

7. Approximate a root of $f = x^3 + x^2 - 5x + 1$ to one decimal place.