Single and Multivariable Calculus
Late Transcendentals

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. If you distribute this work or a derivative, include the history of the document.

This text was initially written by David Guichard. The single variable material in chapters 1–9 is a modification and expansion of notes written by Neal Koblitz at the University of Washington, who generously gave permission to use, modify, and distribute his work. New material has been added, and old material has been modified, so some portions now bear little resemblance to the original.

The book includes some exercises and examples from Elements of Calculus: An Approach Using Infinitesimals, by H. Jerome Keisler, available at http://www.math.wisc.edu/~keisler/calc.html under a Creative Commons license. In addition, the chapter on differential equations (in the multivariable version) and the section on numerical integration are largely derived from the corresponding portions of Keisler’s book. Albert Schueller, Barry Balof, and Mike Wills have contributed additional material.

This copy of the text was compiled from source at 8:54 on 3/5/2020.
I will be glad to receive corrections and suggestions for improvement at guichard@whitman.edu.

For Kathleen,
without whose encouragement
this book would not have been written.
Contents

1

Analytic Geometry 15

1.1 Lines .. 16
1.2 Distance Between Two Points, Circles 21
1.3 Functions 22
1.4 Shifts and Dilations 27

2

Instantaneous Rate of Change: The Derivative 31

2.1 The slope of a function 31
2.2 An example 36
2.3 Limits .. 38
2.4 The Derivative Function 48
2.5 Adjectives For Functions 53

3

Rules for Finding Derivatives 57

3.1 The Power Rule 57
3.2 Linearity of the Derivative 60
3.3 The Product Rule 62
3.4 The Quotient Rule 64
3.5 The Chain Rule 67

4

Trigonometric Functions 73

4.1 Trigonometric Functions 73
4.2 The Derivative of sin x 76
4.3 A hard limit 77
4.4 The Derivative of sin x, continued 80
4.5 Derivatives of the Trigonometric Functions 81
4.6 Implicit Differentiation 82
4.7 Limits revisited 86

5

Curve Sketching 91

5.1 Maxima and Minima 91
5.2 The first derivative test 95
5.3 The second derivative test 96
5.4 Concavity and inflection points 97
5.5 Asymptotes and Other Things to Look For 99

6

Applications of the Derivative 103

6.1 Optimization 103
6.2 Related Rates 115
6.3 Newton's Method 123
6.4 Linear Approximations 127
6.5 The Mean Value Theorem 129

7

Integration 133

7.1 Two examples 133
7.2 The Fundamental Theorem of Calculus 137
7.3 Some Properties of Integrals 144
7.4 Substitution 148

8

Applications of Integration 155

8.1 Area between curves 155
8.2 Distance, Velocity, Acceleration 160
8.3 Volume .. 163
8.4 Average value of a function 170
8.5 Work .. 173

9

Transcendental Functions 179

9.1 Inverse functions 179
9.2 The natural logarithm 185
9.3 The exponential function 189
9.4 Other bases 192
9.5 Inverse Trigonometric Functions 196
9.6 Hyperbolic Functions 199

10

Techniques of Integration 205

10.1 Powers of sine and cosine 205
10.2 Trigonometric Substitutions 207
10.3 Integration by Parts 210
10.4 Rational Functions 214
10.5 Numerical Integration 218
10.6 Additional exercises 223

11

More Applications of Integration 225

11.1 Center of Mass 225
11.2 Kinetic energy, improper integrals 231
11.3 Probability 235
11.4 Arc Length 244
11.5 Surface Area 246

12

Polar Coordinates, Parametric Equations 253

12.1 Polar Coordinates 253
12.2 Slopes in polar coordinates 257
12.3 Areas in polar coordinates 259
12.4 Parametric Equations 262
12.5 Calculus with Parametric Equations 265

13

Sequences and Series 269

13.1 Sequences 270
13.2 Series ... 276
13.3 The Integral Test 280
13.4 Alternating Series 285
13.5 Comparison Tests 287
13.6 Absolute Convergence 290
13.7 The Ratio and Root Tests 291
13.8 Power Series 294
13.9 Calculus with Power Series 297
13.10 Taylor Series 299
13.11 Taylor's theorem 302
13.12 Additional exercises 308
Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem solving one needs a tremendous amount of practice doing problems. The more problems you do the better you will be at doing them, as patterns will start to emerge in both the problems and in successful approaches to them. You will learn fastest and best if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.
2. Assign letters to quantities that are described only in words; draw a diagram if appropriate.
3. Decide which letters are constants and which are variables. A letter stands for a constant if its value remains the same throughout the problem.
4. Using mathematical notation, write down what you know and then write down what you want to find.
5. Decide what category of problem it is (this might be obvious if the problem comes at the end of a particular chapter, but will not necessarily be so obvious if it comes on an exam covering several chapters).
6. Double check each step as you go along; don’t wait until the end to check your work.
7. Use common sense; if an answer is out of the range of practical possibilities, then check your work to see where you went wrong.

Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask someone for help if you can’t follow the solution to a worked example).
2. Later use the worked examples to study by covering the solutions, and seeing if you can solve the problems on your own.
3. Most exercises have answers in Appendix A; the availability of an answer is marked by “⇒” at the end of the exercise. In the pdf version of the full text, clicking on the arrow will take you to the answer. The answers should be used only as a final check on your work, not as a crutch. Keep in mind that sometimes an answer could be expressed in various ways that are algebraically equivalent, so don’t assume that your answer is wrong just because it doesn’t have exactly the same form as the answer in the back.
4. A few figures in the pdf and print versions of the book are marked with “(AP)” at the end of the caption. Clicking on this should open a related interactive applet or Sage worksheet in your web browser. Occasionally another link will do the same thing, like this example. (Note to users of a printed text: the words “this example” in the pdf file are blue, and are a link to a Sage worksheet.)