For Kathleen,
without whose encouragement
this book would not have
been written.
Contents

1 Analytic Geometry
 - 1.1 Lines .. 16
 - 1.2 Distance Between Two Points; Circles 21
 - 1.3 Functions .. 22
 - 1.4 Shifts and Dilations 27

2 Instantaneous Rate of Change: The Derivative
 - 2.1 The slope of a function 31
 - 2.2 An example .. 36
 - 2.3 Limits ... 38
 - 2.4 The Derivative Function 48
 - 2.5 Adjectives For Functions 53

3 Rules for Finding Derivatives
 - 3.1 The Power Rule 57
 - 3.2 Linearity of the Derivative 60
 - 3.3 The Product Rule 62
 - 3.4 The Quotient Rule 64
 - 3.5 The Chain Rule 67

4 Trigonometric Functions
 - 4.1 Trigonometric Functions 73
 - 4.2 The Derivative of sin x 76
 - 4.3 A hard limit 77
 - 4.4 The Derivative of sin x, continued 80
 - 4.5 Derivatives of the Trigonometric Functions 81
 - 4.6 Implicit Differentiation 82
 - 4.7 Limits revisited 86

5 Curve Sketching
 - 5.1 Maxima and Minima 91
 - 5.2 The first derivative test 95
 - 5.3 The second derivative test 96
 - 5.4 Concavity and inflection points 97
 - 5.5 Asymptotes and Other Things to Look For 99

6 Applications of the Derivative
 - 6.1 Optimization 103
 - 6.2 Related Rates 115
 - 6.3 Newton's Method 123
 - 6.4 Linear Approximations 127
 - 6.5 The Mean Value Theorem 129
7 Integration

- 7.1 Two examples .. 133
- 7.2 The Fundamental Theorem of Calculus 137
- 7.3 Some Properties of Integrals 144
- 7.4 Substitution .. 148

8 Applications of Integration

- 8.1 Area between curves ... 155
- 8.2 Distance, Velocity, Acceleration 160
- 8.3 Volume .. 163
- 8.4 Average value of a function 170
- 8.5 Work ... 173

9 Transcendental Functions

- 9.1 Inverse functions ... 179
- 9.2 The natural logarithm ... 185
- 9.3 The exponential function 189
- 9.4 Other bases .. 192
- 9.5 Inverse Trigonometric Functions 196
- 9.6 Hyperbolic Functions 199

10 Techniques of Integration

- 10.1 Powers of sine and cosine 205
- 10.2 Trigonometric Substitutions 207
- 10.3 Integration by Parts 210
- 10.4 Rational Functions ... 214
- 10.5 Numerical Integration 218
- 10.6 Additional exercises 223

11 More Applications of Integration

- 11.1 Center of Mass .. 225
- 11.2 Kinetic energy; improper integrals 231
- 11.3 Probability .. 235
- 11.4 Arc Length ... 244
- 11.5 Surface Area .. 246

12 Polar Coordinates, Parametric Equations

- 12.1 Polar Coordinates ... 253
- 12.2 Slopes in polar coordinates 257
- 12.3 Areas in polar coordinates 259
- 12.4 Parametric Equations 262
- 12.5 Calculus with Parametric Equations 265

13 Sequences and Series

- 13.1 Sequences ... 269
- 13.2 Series ... 270
- 13.3 The Integral Test .. 276
- 13.4 Alternating Series ... 280
- 13.5 Comparison Tests .. 285
- 13.6 Absolute Convergence 287
- 13.7 The Ratio and Root Tests 290
- 13.8 Power Series .. 291
- 13.9 Calculus with Power Series 294
- 13.10 Taylor Series ... 297
- 13.11 Taylor’s Theorem ... 299
- 13.12 Additional exercises 302
Three Dimensions

14.1 The Coordinate System 311
14.2 Vectors .. 314
14.3 The Dot Product .. 319
14.4 The Cross Product .. 325
14.5 Lines and Planes ... 329
14.6 Other Coordinate Systems 335

Vector Functions

15.1 Space Curves ... 341
15.2 Calculus with vector functions 343
15.3 Arc length and curvature 351
15.4 Motion along a curve 357

Partial Differentiation

16.1 Functions of Several Variables 361
16.2 Limits and Continuity 365
16.3 Partial Differentiation 369
16.4 The Chain Rule .. 376
16.5 Directional Derivatives 378
16.6 Higher order derivatives 383
16.7 Maxima and minima 385
16.8 Lagrange Multipliers 390

Multiple Integration

17.1 Volume and Average Height 397
17.2 Double Integrals in Cylindrical Coordinates 407
17.3 Moment and Center of Mass 411
17.4 Surface Area .. 414
17.5 Triple Integrals ... 416
17.6 Cylindrical and Spherical Coordinates 419
17.7 Change of Variables 423

Vector Calculus

18.1 Vector Fields ... 431
18.2 Line Integrals .. 433
18.3 The Fundamental Theorem of Line Integrals 437
18.4 Green’s Theorem ... 440
18.5 Divergence and Curl 445
18.6 Vector Functions for Surfaces 448
18.7 Surface Integrals ... 454
18.8 Stokes’s Theorem ... 458
18.9 The Divergence Theorem 462

Differential Equations

19.1 First Order Differential Equations 468
19.2 First Order Homogeneous Linear Equations 472
19.3 First Order Linear Equations 475
19.4 Approximation ... 478
19.5 Second Order Homogeneous Equations 481
19.6 Second Order Linear Equations 485
19.7 Second Order Linear Equations, take two 489
Contents 11

A
Selected Answers 493

B
Useful Formulas 519

Index 523
Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem solving one needs a tremendous amount of practice doing problems. The more problems you do the better you will be at doing them, as patterns will start to emerge in both the problems and in successful approaches to them. You will learn fastest and best if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.
2. Assign letters to quantities that are described only in words; draw a diagram if appropriate.
3. Decide which letters are constants and which are variables. A letter stands for a constant if its value remains the same throughout the problem.
4. Using mathematical notation, write down what you know and then write down what you want to find.
5. Decide what category of problem it is (this might be obvious if the problem comes at the end of a particular chapter, but will not necessarily be so obvious if it comes on an exam covering several chapters).
6. Double check each step as you go along; don’t wait until the end to check your work.
7. Use common sense; if an answer is out of the range of practical possibilities, then check your work to see where you went wrong.

Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask someone for help if you can’t follow the solution to a worked example).
2. Later use the worked examples to study by covering the solutions, and seeing if you can solve the problems on your own.
3. Most exercises have answers in Appendix A; the availability of an answer is marked by “⇒” at the end of the exercise. In the pdf version of the full text, clicking on the arrow will take you to the answer. The answers should be used only as a final check on your work, not as a crutch. Keep in mind that sometimes an answer could be expressed in various ways that are algebraically equivalent, so don’t assume that your answer is wrong just because it doesn’t have exactly the same form as the answer in the back.
4. A few figures in the pdf and print versions of the book are marked with “(AP)” at the end of the caption. Clicking on this should open a related interactive applet or Sage worksheet in your web browser. Occasionally another link will do the same thing, like this example. (Note to users of a printed text: the words “this example” in the pdf file are blue, and are a link to a Sage worksheet.)