Single and Multivariable Calculus

Late Transcendentals
For Kathleen,
without whose encouragement
this book would not have
been written.
# Contents

## 1
**Analytic Geometry**

1.1 Lines ............................................................... 16
1.2 Distance Between Two Points; Circles .......................... 21
1.3 Functions ........................................................... 22
1.4 Shifts and Dilations ................................................. 27

## 2
**Instantaneous Rate of Change: The Derivative**

2.1 The slope of a function .............................................. 31
2.2 An example .......................................................... 36
2.3 Limits ................................................................. 38
2.4 The Derivative Function ............................................. 48
2.5 Adjectives For Functions ............................................. 53
# Contents

## 3 Rules for Finding Derivatives

3.1 The Power Rule .............................................. 57  
3.2 Linearity of the Derivative .................................. 60  
3.3 The Product Rule ............................................. 62  
3.4 The Quotient Rule ............................................ 64  
3.5 The Chain Rule ............................................... 67  

## 4 Trigonometric Functions

4.1 Trigonometric Functions ...................................... 73  
4.2 The Derivative of sin $x$ ...................................... 76  
4.3 A hard limit ................................................... 77  
4.4 The Derivative of sin $x$, continued ......................... 80  
4.5 Derivatives of the Trigonometric Functions .................. 81  
4.6 Implicit Differentiation ...................................... 82  
4.7 Limits revisited ................................................ 86  

## 5 Curve Sketching

5.1 Maxima and Minima ............................................ 91  
5.2 The first derivative test ...................................... 95  
5.3 The second derivative test ................................... 96  
5.4 Concavity and inflection points .............................. 97  
5.5 Asymptotes and Other Things to Look For .................. 99  

## 6 Applications of the Derivative

6.1 Optimization .................................................. 103  
6.2 Related Rates .................................................. 115  
6.3 Newton’s Method .............................................. 123  
6.4 Linear Approximations ...................................... 127  
6.5 The Mean Value Theorem ...................................... 129
7
Integration  
7.1 Two examples  
7.2 The Fundamental Theorem of Calculus  
7.3 Some Properties of Integrals  
7.4 Substitution

8
Applications of Integration  
8.1 Area between curves  
8.2 Distance, Velocity, Acceleration  
8.3 Volume  
8.4 Average value of a function  
8.5 Work

9
Transcendental Functions  
9.1 Inverse functions  
9.2 The natural logarithm  
9.3 The exponential function  
9.4 Other bases  
9.5 Inverse Trigonometric Functions  
9.6 Hyperbolic Functions

10
Techniques of Integration  
10.1 Powers of sine and cosine  
10.2 Trigonometric Substitutions  
10.3 Integration by Parts  
10.4 Rational Functions  
10.5 Numerical Integration  
10.6 Additional exercises
### 11  More Applications of Integration 225

#### 11.1 Center of Mass 225

#### 11.2 Kinetic energy; improper integrals 231

#### 11.3 Probability 235

#### 11.4 Arc Length 244

#### 11.5 Surface Area 246

### 12  Polar Coordinates, Parametric Equations 253

#### 12.1 Polar Coordinates 253

#### 12.2 Slopes in polar coordinates 257

#### 12.3 Areas in polar coordinates 259

#### 12.4 Parametric Equations 262

#### 12.5 Calculus with Parametric Equations 265

### 13  Sequences and Series 269

#### 13.1 Sequences 270

#### 13.2 Series 276

#### 13.3 The Integral Test 280

#### 13.4 Alternating Series 285

#### 13.5 Comparison Tests 287

#### 13.6 Absolute Convergence 290

#### 13.7 The Ratio and Root Tests 291

#### 13.8 Power Series 294

#### 13.9 Calculus with Power Series 297

#### 13.10 Taylor Series 299

#### 13.11 Taylor’s Theorem 302

#### 13.12 Additional exercises 308
Three Dimensions

14.1 The Coordinate System 311
14.2 Vectors 314
14.3 The Dot Product 319
14.4 The Cross Product 325
14.5 Lines and Planes 329
14.6 Other Coordinate Systems 335

Vector Functions

15.1 Space Curves 341
15.2 Calculus with vector functions 343
15.3 Arc length and curvature 351
15.4 Motion along a curve 357

Partial Differentiation

16.1 Functions of Several Variables 361
16.2 Limits and Continuity 365
16.3 Partial Differentiation 369
16.4 The Chain Rule 376
16.5 Directional Derivatives 378
16.6 Higher order derivatives 383
16.7 Maxima and minima 385
16.8 Lagrange Multipliers 390
## 17
### Multiple Integration

- **17.1** Volume and Average Height ........................................... 397
- **17.2** Double Integrals in Cylindrical Coordinates .................. 407
- **17.3** Moment and Center of Mass ........................................... 411
- **17.4** Surface Area ................................................................. 414
- **17.5** Triple Integrals ................................................................. 416
- **17.6** Cylindrical and Spherical Coordinates .......................... 419
- **17.7** Change of Variables .......................................................... 423

## 18
### Vector Calculus

- **18.1** Vector Fields ................................................................. 431
- **18.2** Line Integrals ................................................................. 433
- **18.3** The Fundamental Theorem of Line Integrals .................... 437
- **18.4** Green’s Theorem ................................................................. 440
- **18.5** Divergence and Curl .......................................................... 445
- **18.6** Vector Functions for Surfaces ........................................ 448
- **18.7** Surface Integrals ................................................................. 454
- **18.8** Stokes’s Theorem ................................................................. 458
- **18.9** The Divergence Theorem .................................................... 462

## 19
### Differential Equations

- **19.1** First Order Differential Equations ................................. 468
- **19.2** First Order Homogeneous Linear Equations ..................... 472
- **19.3** First Order Linear Equations ............................................ 475
- **19.4** Approximation ................................................................. 478
- **19.5** Second Order Homogeneous Equations ............................ 481
- **19.6** Second Order Linear Equations ....................................... 485
- **19.7** Second Order Linear Equations, take two ....................... 489
A

Selected Answers 493

B

Useful Formulas 519

Index 523
Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem solving one needs a tremendous amount of practice doing problems. The more problems you do the better you will be at doing them, as patterns will start to emerge in both the problems and in successful approaches to them. You will learn fastest and best if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.
2. Assign letters to quantities that are described only in words; draw a diagram if appropriate.
3. Decide which letters are constants and which are variables. A letter stands for a constant if its value remains the same throughout the problem.
4. Using mathematical notation, write down what you know and then write down what you want to find.
5. Decide what category of problem it is (this might be obvious if the problem comes at the end of a particular chapter, but will not necessarily be so obvious if it comes on an exam covering several chapters).
6. Double check each step as you go along; don’t wait until the end to check your work.
7. Use common sense; if an answer is out of the range of practical possibilities, then check your work to see where you went wrong.
Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask someone for help if you can’t follow the solution to a worked example).

2. Later use the worked examples to study by covering the solutions, and seeing if you can solve the problems on your own.

3. Most exercises have answers in Appendix A; the availability of an answer is marked by “⇒” at the end of the exercise. In the pdf version of the full text, clicking on the arrow will take you to the answer. The answers should be used only as a final check on your work, not as a crutch. Keep in mind that sometimes an answer could be expressed in various ways that are algebraically equivalent, so don’t assume that your answer is wrong just because it doesn’t have exactly the same form as the answer in the back.

4. A few figures in the pdf and print versions of the book are marked with “(AP)” at the end of the caption. Clicking on this should open a related interactive applet or Sage worksheet in your web browser. Occasionally another link will do the same thing, like this example. (Note to users of a printed text: the words “this example” in the pdf file are blue, and are a link to a Sage worksheet.)