For Kathleen,
without whose encouragement
this book would not have
been written.
Contents

1 Analytic Geometry 15
1.1 Lines . 16
1.2 Distance Between Two Points; Circles 21
1.3 Functions . 22
1.4 Shifts and Dilations . 27

2 Instantaneous Rate of Change: The Derivative 31
2.1 The slope of a function . 31
2.2 An example . 36
2.3 Limits . 38
2.4 The Derivative Function 48
2.5 Adjectives For Functions 53

3 Rules for Finding Derivatives 57
3.1 The Power Rule . 57
3.2 Linearity of the Derivative 60
3.3 The Product Rule . 62
3.4 The Quotient Rule . 64
3.5 The Chain Rule . 67

4 Transcendental Functions 73
4.1 Trigonometric Functions 73
4.2 The Derivative of \(\sin x\) 76
4.3 A hard limit . 77
4.4 The Derivative of \(\sin x\), continued 80
4.5 Derivatives of the Trigonometric Functions 81
4.6 Exponential and Logarithmic functions 82
4.7 Derivatives of the exponential and logarithmic functions . . . 84
4.8 Implicit Differentiation . 89
4.9 Inverse Trigonometric Functions 94
4.10 Limits revisited . 97
4.11 Hyperbolic Functions . 101

5 Curve Sketching 107
5.1 Maxima and Minima . 107
5.2 The first derivative test 111
5.3 The second derivative test 112
5.4 Concavity and inflection points 113
5.5 Asymptotes and Other Things to Look For 115

5
Sequences and Series

11.1 Sequences ... 258
11.2 Series ... 264
11.3 The Integral Test 268
11.4 Alternating Series 273
11.5 Comparison Tests 275
11.6 Absolute Convergence 278
11.7 The Ratio and Root Tests 279
11.8 Power Series ... 282
11.9 Calculus with Power Series 285
11.10 Taylor Series 286
11.11 Taylor’s Theorem 290
11.12 Additional exercises 296

Three Dimensions

12.1 The Coordinate System 299
12.2 Vectors .. 302
12.3 The Dot Product 307
12.4 The Cross Product 313
12.5 Lines and Planes 317
12.6 Other Coordinate Systems 323

Vector Functions

13.1 Space Curves 329
13.2 Calculus with vector functions 331
13.3 Arc length and curvature 339
13.4 Motion along a curve 345

Partial Differentiation

14.1 Functions of Several Variables 349
14.2 Limits and Continuity 353
14.3 Partial Differentiation 357
14.4 The Chain Rule 363
14.5 Directional Derivatives 366
14.6 Higher order derivatives 371
14.7 Maxima and minima 372
14.8 Lagrange Multipliers 377

Multiple Integration

15.1 Volume and Average Height 383
15.2 Double Integrals in Cylindrical Coordinates .. 393
15.3 Moment and Center of Mass 397
15.4 Surface Area 400
15.5 Triple Integrals 402
15.6 Cylindrical and Spherical Coordinates 405
15.7 Change of Variables 409

Vector Calculus

16.1 Vector Fields 417
16.2 Line Integrals 419
16.3 The Fundamental Theorem of Line Integrals .. 423
16.4 Green’s Theorem 426
16.5 Divergence and Curl 431
16.6 Vector Functions for Surfaces 434
16.7 Surface Integrals 440
16.8 Stokes’s Theorem 444
16.9 The Divergence Theorem 448
Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem solving one needs a tremendous amount of practice doing problems. The more problems you do the better you will be at doing them, as patterns will start to emerge in both the problems and in successful approaches to them. You will learn fastest and best if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.
2. Assign letters to quantities that are described only in words; draw a diagram if appropriate.
3. Decide which letters are constants and which are variables. A letter stands for a constant if its value remains the same throughout the problem.
4. Using mathematical notation, write down what you know and then write down what you want to find.
5. Decide what category of problem it is (this might be obvious if the problem comes at the end of a particular chapter, but will not necessarily be so obvious if it comes on an exam covering several chapters).
6. Double check each step as you go along; don’t wait until the end to check your work.
7. Use common sense; if an answer is out of the range of practical possibilities, then check your work to see where you went wrong.

Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask someone for help if you can’t follow the solution to a worked example).
2. Later use the worked examples to study by covering the solutions, and seeing if you can solve the problems on your own.
3. Most exercises have answers in Appendix A; the availability of an answer is marked by “⇒” at the end of the exercise. In the pdf version of the full text, clicking on the arrow will take you to the answer. The answers should be used only as a final check on your work, not as a crutch. Keep in mind that sometimes an answer could be expressed in various ways that are algebraically equivalent, so don’t assume that your answer is wrong just because it doesn’t have exactly the same form as the answer in the back.
4. A few figures in the pdf and print versions of the book are marked with “(AP)” at the end of the caption. Clicking on this should open a related interactive applet or Sage worksheet in your web browser. Occasionally another link will do the same thing, like this example. (Note to users of a printed text: the words “this example” in the pdf file are blue, and are a link to a Sage worksheet.)