9

Applications of Integration

9.1 Area between Curves

We have seen how integration can be used to find an area between a curve and the x-axis. With very little change we can find some areas between curves; indeed, the area between a curve and the x-axis may be interpreted as the area between the curve and a second “curve” with equation \(y = 0 \). In the simplest of cases, the idea is quite easy to understand.

Example 9.1 Find the area below \(f(x) = -x^2 + 4x + 3 \) and above \(y(x) = -x^3 + 7x^2 - 10x + 5 \) over the interval \(1 \leq x \leq 2 \). In figure 9.1 we show the two curves together, with the desired area shaded, then \(f \) alone with the area under \(f \) shaded, and then \(g \) alone with the area under \(g \) shaded.

![Figure 9.1 Area between curves as a difference of areas.](image)

The intersection point we want is \(x = \frac{10 \pm \sqrt{100 - 80}}{4} = 5 \pm \sqrt{15}/2 \). Then the total area is

\[
\int_3^2 (-x^2 + 4x + 1) - (-x^3 + 7x^2 - 10x + 3) \, dx = \int_3^2 x^3 - 8x^2 + 14x - 2 \, dx.
\]

This is of course the same integral as before, because the region between the curves is identical to the former region—it has just been moved down by 2.

![Figure 9.2 Approximating area between curves with rectangles.](image)

Example 9.2 Find the area below \(f(x) = -x^2 + 4x + 1 \) and above \(y(x) = -x^2 + 7x^2 - 10x + 3 \) over the interval \(1 \leq x \leq 2 \); these are the same curves as before but lowered by 2. In figure 9.3 we show the two curves together. Note that the lower curve now dips below the x-axis. This makes it somewhat tricky to view the desired area as a big area minus a smaller area, but it is just as easy as before to think of approximating the area by rectangles. The height of a typical rectangle will still be \(f(x) - y(x) \), even if \(y(x) \) is negative. Thus the area is

\[
\int_3^2 (-x^2 + 4x + 1) - (-x^3 + 7x^2 - 10x + 3) \, dx = \int_3^2 x^3 - 8x^2 + 14x - 2 \, dx.
\]

This is of course the same integral as before, because the region between the curves is identical to the former region—it has just been moved down by 2.

![Figure 9.3 Area between curves.](image)

Example 9.3 Find the area between \(f(x) = -x^2 + 4x \) and \(y(x) = -x^2 - 6x + 5 \) over the interval \(0 \leq x \leq 1 \); the curves are shown in figure 9.4. Generally we should interpret “area” in the usual sense, as a necessarily positive quantity. Since the two curves cross, it is clear from the figure that the area we want is the area under \(f \) minus the area under \(g \), which is to say

\[
\int_0^1 f(x) \, dx - \int_0^1 g(x) \, dx = \int_0^1 f(x) - g(x) \, dx.
\]

It doesn’t matter whether we compute the two integrals on the left and then subtract or compute the single integral on the right. In this case, the latter is perhaps a bit easier:

\[
\int_0^1 (f(x) - g(x)) \, dx = \int_0^1 (-x^2 + 4x - 3) \, dx - \int_0^1 (-x^2 + 7x^2 - 10x + 5) \, dx
\]

\[
= \int_0^1 x^2 - 8x^2 + 14x - 2 \, dx
\]

\[
= \left[\frac{x^3}{3} - \frac{8x^3}{3} + 14\frac{x^2}{2} - 2x \right]_0^1
\]

\[
= \frac{16}{3} - 64 + \frac{28}{4} - \frac{8}{3} + 21
\]

\[
= \frac{216}{3} - 8 + 2 = \frac{129}{3}.
\]

It is worth examining this problem a bit more. We have seen one way to look at it, by viewing the desired area as a big area minus a small area, which leads naturally to the difference between two integrals. But it is instructive to consider how we might find the desired area directly. We can approximate the area by dividing the area into thin sections and approximating the area of each section by a rectangle, as indicated in figure 9.2. The area of a typical rectangle is \(\Delta x (f(x) - g(x)) \), so the total area is approximately

\[
\sum_{i=0}^{n-1} (f(x_i) - g(x_i)) \Delta x.
\]

This is exactly the sort of sum that turns into an integral in the limit, namely the integral

\[
\int_0^1 (f(x) - g(x)) \, dx.
\]

Of course, this is the integral we actually computed above, but we have now arrived at it directly rather than as a modification of the difference between two other integrals. In that example it really doesn’t matter which approach we take, but in some cases this second approach is better.

![Figure 9.4 Area between curves that cross.](image)

Example 9.4 Find the area between \(f(x) = -x^2 + 4x \) and \(y(x) = -x^2 - 6x + 5 \); the curves are shown in figure 9.5. Here we are not given a specific interval, so it must be the case that there is a “natural” region involved. Since the curves are both parabolas, the...
only reasonable interpretation is the region between the two intersection points, which we found in the previous example:

\[
\frac{5 + \sqrt{33}}{2}
\]

If we let \(a = (5 + \sqrt{33})/2\) and \(b = (5 - \sqrt{33})/2\), the total area is

\[
\int_{a}^{b} x^2 + 4x - \left(x^2 - 6x + 5 \right) \, dx = \int_{a}^{b} -2x^2 + 10x - 5 \, dx
\]

\[
= \left[\frac{-2x^3}{3} + 5x^2 - 5x \right]_{a}^{b}
\]

\[
= 5\sqrt{33}.
\]

after a bit of simplification.

\[\text{Figure 9.5 Area bounded by two curves.}\]

Exercises 9.1.

Find the area bounded by the curves.

1. \(y = x^2 - x^2\) and \(y = x^2\) (the parabola to the right of the \(y\)-axis) ⇒
2. \(x = y^2\) and \(x = y^3\) ⇒
3. \(x = 1 - y^2\) and \(y = -x - 1\) ⇒
4. \(x = \sqrt{y} - y\) and \(x + y = 3\) ⇒
5. \(y = \cos(\pi x/2)\) and \(y = 1 - x^2\) (in the first quadrant) ⇒
6. \(y = \sin(\pi x/3)\) and \(y = x\) (in the first quadrant) ⇒
7. \(y = \sqrt{x}\) and \(y = x^2\) ⇒
8. \(y = \sqrt{x} + 1\) and \(y = \sqrt{x + 1}\), \(0 \leq x \leq 4\) ⇒
9. \(x = 0\) and \(x = 25 - y^2\) ⇒
10. \(y = \sin x\) and \(y = \sin x\), \(0 \leq x \leq \pi\) ⇒
11. \(y = e^{-x}\) and \(y = e^{x}\) ⇒

9.2 Distance, Velocity, Acceleration

object. Then we first have

\[v(t) = v(t_0) + \int_{t_0}^{t} (\frac{F}{m}) \, dt = v(t_0) + \int_{t_0}^{t} (f(t) - f(t_0)) \, dt\]

using the usual convention \(v(t_0) \equiv v(t_0)\). Then

\[s(t) = s(t_0) + \int_{t_0}^{t} \left(v(t_0) + \int_{t_0}^{t} (\frac{F}{m}) \, dt \right) \, dt = s_0 + \left[v(t_0) + \frac{F(t_0)}{2m} \right] t_0 \]

For instance, when \(F/m = -g\) is the constant of gravitational acceleration, then this is the falling body formula (if we neglect air resistance) familiar from elementary physics:

\[s(t) = s_0 + \frac{1}{2} (v(t_0) + v(t_0)) t_0^2\]

or in the common case that \(t_0 = 0\),

\[s_0 + \frac{1}{2} v(t_0) t_0^2\].

Recall that the integral of the velocity function gives the net distance traveled. If you want to know the total distance traveled, you must find out where the velocity function crosses the \(x\)-axis, integrate separately over the time intervals when \(v(t)\) is positive and when \(v(t)\) is negative, and add up the absolute values of the different integrals. For example, if an object is thrown straight upward at \(19.6 \text{ m/sec}\), its velocity function is \(v(t) = 19.6t - 9.8t\), using \(g = 9.8 \text{ m/sec}^2\) for the force of gravity. This is a straight line which is positive for \(t < 2\) and negative for \(t > 2\). The net distance traveled in the first 4 seconds is thus

\[\int_{0}^{2} (19.6 \text{ m/sec}) \, dt = 78.4 \text{ m}
\]

while the total distance traveled in the first 4 seconds is

\[\int_{0}^{2} (19.6 \text{ m/sec}) \, dt + \int_{2}^{4} (19.6 \text{ m/sec}) \, dt = 196 + 39.2 = 235.2 \text{ m}
\]

meters. 19.6 meters up and 19.6 meters down.

EXAMPLE 9.6 The acceleration of an object is given by \(a(t) = \cos(\pi t)\), and its velocity at time \(t = 0\) is \(1/2t\). Find both the net and the total distance traveled in the first 1.5 seconds.

Chapter 9 Applications of Integration

12. \(y = x^2 - 2x\) and \(y = x - 2\) ⇒

The following three exercises expand on the geometric interpretation of the hyperbolic functions. Refer to section 4.11 and particularly to figures 4.9 and exercises 6 in section 4.11.

13. Compute \(\int \sqrt{x^2 - 9} \, dx\) using the substitution \(u = \cot \theta\), \(x = \cot \theta\), use exercise 6 in section 4.11.

14. Fix \(t > 0\). Sketch the region \(R\) in the right half plane bounded by the curves \(y = x \tan \theta\) and \(x^2 - y^2 = 1\). Note well: \(t\) is fixed, the plane is the \(x-y\) plane.

15. Prove that the area of \(R\) is \(t\).

9.2 Distance, Velocity, Acceleration

We next recall a general principle that will later be applied to distance-velocity-acceleration problems, among other things. If \(F(u)\) is an anti-derivative of \(f(u)\), then \(\int_{a}^{b} f(u) \, du = F(b) - F(a)\). Suppose that we want to let the upper limit of integration vary, i.e., we replace \(b\) by some variable \(x\). We think of \(a\) as a fixed starting value \(x_0\). In this new notation the last equation (after adding \(F(a)\) to both sides) becomes:

\[F(x) = F(x_0) + \int_{x_0}^{x} f(u) \, du\]

(Here \(u\) is the variable of integration, called a “dummy variable,” since it is not the variable in the function \(F(x)\). In general, it is not a good idea to use the same letter as a variable of integration and as a limit of integration. That is \(\int_{a}^{b} f(x)\, dx\) is bad notation, and can lead to errors and confusion.)

An important application of this principle occurs when we are interested in the position of an object at time \(t\) (say, on the \(x\)-axis) and we know its position at time \(t_0\). Let \(s(t)\) denote the position of the object at time \(t\) (its distance from a reference point, such as the origin on the \(x\)-axis). Then the net change in position between \(t_0\) and \(t\) is \(s(t) - s(t_0)\). Since \(s(t)\) is an anti-derivative of the velocity function \(v(t)\), we can write

\[s(t) = s(t_0) + \int_{t_0}^{t} v(u) \, du\]

Similarly, since the velocity is an anti-derivative of the acceleration function \(a(t)\), we have

\[v(t) = v(t_0) + \int_{t_0}^{t} a(u) \, du\]

EXAMPLE 9.5 Suppose an object is acted upon by a constant force \(F\). Find \(v(t)\) and \(s(t)\). By Newton’s law \(F = ma\), so the acceleration is \(F/m\), where \(m\) is the mass of the
8. An object moves along a straight line with acceleration given by \(a(t) = -\cos(t) \), and \(a(0) = 1 \) and \(v(0) = 0 \). Find the maximum distance the object travels from zero, and find its maximum speed. Describe the motion of the object.

9. An object moves along a straight line with acceleration given by \(a(t) = \sin(\pi t) \). Assume that when \(t = 0 \), \(v(0) = 0 \). Find \(a(1) \) and \(v(1) \), and the maximum speed of the object. Describe the motion of the object. ⇓

10. An object moves along a straight line with acceleration given by \(a(t) = 1 + \sin(\pi t) \). Assume that when \(t = 0 \), \(v(0) = 0 \). Find \(a(1) \) and \(v(1) \).

11. An object moves along a straight line with acceleration given by \(a(t) = 1 - \sin(\pi t) \). Assume that when \(t = 0 \), \(v(0) = 0 \). Find \(a(1) \) and \(v(1) \).

9.3 Volume

We have seen how to compute certain areas by using integration; some volumes may also be computed by evaluating an integral. Generally, the volumes that we can compute this way have cross-sections that are easy to describe.

![Figure 9.6 Volume of a pyramid approximated by rectangular prisms (AP)](image)

EXAMPLE 9.7 Find the volume of a pyramid with a square base that is 20 meters tall and 20 meters on a side at the base. As with most of our applications of integration, we begin by asking how we might approximate the volume. Since we can easily compute the volume of a rectangular prism (that is, a “box”), we will use some boxes to approximate the volume of the pyramid, as shown in figure 9.6. On the left is a cross-sectional view, on the right is a 3D view of part of the pyramid with some of the boxes used to approximate the volume.

![Figure 9.8 A solid of rotation.](image)

Thus the total volume is

\[
\int_{-1}^{1} \sqrt{3}(1 - x^2)^{3/2} \, dx = \frac{16\sqrt{2}}{5}.
\]

One easy way to get “nice” cross-sections is by rotating a plane figure around a line. For example, in figure 9.8 we see a plane region under a curve and between two vertical lines; then the result of rotating this around the \(x \)-axis: then a typical circular cross-section.

![Figure 9.9 A region that generates a cone; approximating the volume by circular disks. (AP)](image)

Of course a real “slice” of this figure will not have straight sides, but we can approximate the volume of the slice by a cylinder or disk with circular top and bottom and straight sides; the volume of this disk will have the form \(\pi r^2 \Delta x \). As long as we can write \(r \) in terms of \(x \) we can compute the volume by an integral.

EXAMPLE 9.8 Find the volume of a right circular cone with base radius 10 and height 20. (A right circular cone is one with a circular base and with the tip of the cone directly above the center of the base.)

At a particular point on the \(x \)-axis, say \(x_i \), the radius of the resulting cone is the \(y \)-coordinate of the corresponding point on the line, namely \(y_i = x_i/2 \). Thus the total volume is approximately

\[
\sum_{i=0}^{n-1} \pi (x_i/2)^2 \Delta x
\]

and the exact volume is

\[
\int_{0}^{20} \frac{x^2}{4} \, dx = \frac{20^3}{4} - \frac{20000\pi}{3}.
\]

Note that we can instead do the calculation with a generic height and radius:

\[
\int_{0}^{20} \frac{x^2}{4} \, dx = \frac{20^3}{4} - \frac{20000\pi}{3}.
\]

9.3 Volume

We have already computed the volume of a cone; in this case it is \(\pi/3 \). At a particular value of \(x \), say \(x_i \), the cross-section of the cone is a circle with radius \(x_i^2 \), so the volume of the cone is

\[
\frac{1}{2} \text{(base)(height)} = \left(1 - x_i^2\right)\sqrt{3}(1 - x_i^2).
\]

and the volume of a thin “slab” is then

\[
\left(1 - x_i^2\right)\sqrt{3}(1 - x_i^2) \Delta x.
\]

As you may know, the volume of a pyramid is \((1/3)(\text{height})(\text{area of base}) \), so the area of the cross-section is

\[
\frac{1}{2} (\text{base})(\text{height}) = \left(1 - x_i^2\right)\sqrt{3}(1 - x_i^2),
\]

and the volume of a thin “slab” is then

\[
\left(1 - x_i^2\right)\sqrt{3}(1 - x_i^2) \Delta x.
\]

We can approximate the volume of the hole by subtracting the volume of the hole from the volume enclosed by the outer surface of the solid. In figure 9.10 we show the region that is rotated, the resulting solid with the front half cut away, the cone that forms the outer surface, the horn-shaped hole, and a cross-section perpendicular to the \(z \)-axis. We have already computed the volume of a cone; in this case it is \(\pi/3 \). At a particular value of \(z \), say \(z_i \), the cross-section of the cone is a circle with radius \(x_i^2 \), so the volume of the cone is

\[
\frac{1}{2} \text{(base)(height)} = \left(1 - x_i^2\right)\sqrt{3}(1 - x_i^2),
\]

and the volume of a thin “slab” is then

\[
\left(1 - x_i^2\right)\sqrt{3}(1 - x_i^2) \Delta x.
\]

As with the area between curves, there is an alternate approach that computes the desired volume “all at once” by approximating the volume of the actual solid. We can approximate the volume of a slice of the solid with a washer-shaped volume, as indicated in figure 9.10.

The volume of such a washer is the area of the face times the thickness. The thickness, as usual, is \(\Delta x \), while the area of the face is the area of the outer circle minus the area of the inner circle, say \(\pi R^2 - \pi r^2 \). In the present example, at a particular \(x_i \), the radius \(R \) is \(x_i \) and \(r \) is \(x_i^2 \). Hence, the whole volume is

\[
\int_{0}^{20} \pi x^2 - \pi x^4 \, dx = \pi \left[\frac{x^3}{3} - \frac{x^5}{5} \right]_{0}^{20} = \frac{820000}{3}.
\]
Suppose the region between \(f(x) = x + 1 \) and \(g(x) = (x - 1)^2 \) is rotated around the \(y \)-axis, see Figure 9.11. It is possible, but inconvenient, to compute the volume of the resulting solid by the method we have used so far. The problem is that there are two “kinds” of typical rectangles: those that go from the line to the parabola and those that touch the parabola on both ends. To compute the volume using this approach, we need to break the problem into two parts and compute two integrals:

\[
\pi \int (g(x))^2 - (f(x))^2 \, dx + \pi \int (1 + \sqrt{x})^2 - (1 - \sqrt{x})^2 \, dx = \frac{8}{3} \pi + \frac{27}{2} \pi.
\]

If instead we consider a typical vertical rectangle, but still rotate around the \(y \)-axis, we get a thin “shell” instead of a thin “wafer”. If we add up the volume of such thin shells we will get an approximation to the true volume. What is the volume of such a shell?

EXAMPLE 9.11 Suppose the area under \(y = -x^2 + 1 \) between \(x = 0 \) and \(x = 1 \) is rotated around the \(x \)-axis. Find the volume by both methods.

Disk method:

\[
\int_0^1 \pi (x - 1)^2 \, dx = \frac{8}{3} \pi,
\]

Shell method:

\[
\int_0^1 2\pi x (x - 1)^2 \, dx = \frac{27}{2} \pi.
\]

Exercises 9.3.

1. Verify that

\[
\int_1^2 (1 + \sqrt{y}) - (1 - \sqrt{y}) \, dy = \frac{8}{3} \pi + \frac{27}{2} \pi.
\]

2. Verify that

\[
\int_1^2 2\pi x (x - 1)^2 \, dx = \frac{27}{2} \pi.
\]

9.4 Average value of a function

The average of some finite set of values is a familiar concept. If, for example, the class scores on a quiz are 10, 9, 10, 8, 7, 5, 7, 6, 3, 2, 7, 8, then the average score is the sum of these numbers divided by the size of the class:

\[
\text{average score} = \frac{\sum_{i=1}^n x_i}{n} = \frac{10 + 9 + 10 + 8 + 7 + 5 + 7 + 6 + 3 + 2 + 7 + 8}{12} = \frac{93}{12} = 6.83.
\]

Suppose that between \(t = 0 \) and \(t = 1 \) the speed of an object is \(\sin(\pi t) \). What is the average speed of the object over that time? The question sounds as if it must make sense, yet we can’t merely add up some number of speeds and divide, since the speed is changing continuously over the time interval.

To make sense of “average” in this context, we fall back on the idea of approximation. Consider the speed of the object at tenth of a second intervals: \(\sin(0.1\pi), \sin(0.2\pi), \sin(0.3\pi), \ldots, \sin(0.9\pi) \). The average speed “should” be fairly close to the average of these ten speeds:

\[
\frac{1}{10} \sum_{i=0}^{9} \sin(i\pi/10) \approx \frac{1}{10} \frac{\pi}{3} = 0.63.
\]

Of course, if we compute more speeds at more times, the average of these speeds should be closer to the “real” average. If we take the average of \(n \) speeds at evenly spaced times, we get:

\[
\frac{1}{n} \sum_{i=0}^{n-1} \sin(i\pi/n).
\]

Here the individual times are \(t_i = i/n \), so rewriting slightly we have

\[
\frac{1}{n} \sum_{i=0}^{n-1} \sin(i\pi).
\]

This is almost the sort of sum that we know turns into an integral, what’s apparently missing is \(\Delta t \) — but in fact \(\Delta t = 1/n \), the length of each subinterval. So rewriting again:

\[
\frac{1}{n} \sum_{i=0}^{n-1} \sin(i\pi) \Delta t = \int_0^1 \sin(\pi t) \, dt = \frac{\cos(\pi t) \bigg|_0^1}{\pi} = \frac{\cos(\pi) - \cos(0)}{\pi} = \frac{-2}{\pi} \approx 0.6366 = 0.64.
\]

It’s not entirely obvious from this one simple example how to compute such an average in general. Let’s look at a somewhat more complicated case. Suppose that the velocity
of an object is $10^2 + 5$ feet per second. What is the average velocity between $t = 1$ and $t = 3$? Again we set up an approximation to the average:
\[
\frac{1}{3-1} \sum_{i=0}^{n-1} 16(t_i^2) + 5,
\]
where the values t_i are evenly spaced times between 1 and 3. Once again we are “missing” Δt, and this time $1/2$ is not the correct value. What is Δt in general? It is the length of a subinterval; in this case we take the interval [1, 3] and divide it into n subintervals, so each has length $(3 - 1)/n = 2/n = \Delta t$. Now with the usual “multiply and divide by the same thing” trick we can rewrite the sum:
\[
\frac{1}{n} \sum_{i=0}^{n-1} (16(t_i^2) + 5) = \frac{1}{n} \sum_{i=0}^{n-1} (16t_i^2 + 5) = \frac{1}{2} \sum_{i=0}^{n-1} (16t_i^2 + 5) \Delta t.
\]
In the limit this becomes
\[
\frac{1}{2} \int_{0}^{3} 16x^2 + 5 \, dx = \frac{1}{2} \int_{0}^{3} 16x^2 + 5 \, dx = 223 \frac{3}{7}.
\]
Does this seem reasonable? Let’s picture it: in figure 9.13 is the velocity function together with the horizontal line $y = 223/3 \approx 74.3$. Certainly the height of the horizontal line looks at least plausible for the average height of the curve.

Here’s another way to interpret “average” that may make our computation appear even more reasonable. The object of our example goes a certain distance between $t = 1$ and $t = 3$. If instead the object were to travel at the average speed over the same time, it should go the same distance. At an average speed of 223 feet per second for two seconds the object would go 446 feet. How far does it actually go? We know how to compute this:
\[
\int_{0}^{3} (v(x)) \, dx = \int_{0}^{3} 16x^2 + 5 \, dx = 446 \frac{3}{7}.
\]
So now we see that another interpretation of the calculation is: total distance traveled divided by the time in transit, namely, the usual interpretation of average speed.

In the case of speed, or more properly velocity, we can always interpret “average” as total (net) distance divided by time. But in the case of a different sort of quantity this interpretation does not obviously apply, while the approximation approach always does. We might interpret the same problem geometrically: what is the average height of $16x^2 + 5$ on the interval [1, 3]? We approximate this in exactly the same way, by adding up many sample heights and dividing by the number of samples. In the limit we get the same result:
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} (16(t_i^2) + 5) = \frac{1}{2} \int_{0}^{3} 16x^2 + 5 \, dx = 446 \frac{3}{7}.
\]
We can interpret this result in a slightly different way. The area under $y = 16x^2 + 5$ above

The area under $y = 223/3$ over the same interval [1, 3] is simply that the area of a triangle that is 2 by 223/3 with area 446/3. So the average height of a function is the height of the horizontal line that produces the same area over the given interval.

Exercises 9.4.
1. Find the average height of $\cos x$ over the intervals [0, $\pi/2$], [$\pi/2$, π], and [π, 2π] ⇒
2. Find the average height of x^2 over the interval [-2, 2] ⇒
3. Find the average height of $1/x^2$ over the interval [1, A] ⇒
4. Find the average height of $\sqrt[3]{1-x^3}$ over the interval [0, -1] ⇒
5. An object moves with velocity $v(t) = -t^2 + 4$ feet per second between $t = 0$ and $t = 2$. Find the average velocity and the average speed of the object between $t = 0$ and $t = 2$. ⇒

9.5 Work
A fundamental concept in classical physics is work. If an object is moved in a straight line against a force F for a distance s the work done is $W = Fs$.

EXAMPLE 9.12 How much work is done in lifting a 10 pound weight vertically a distance of 5 feet? The force due to gravity on a 10 pound weight is 10 pounds at the surface of the earth, and it does not change appreciably over 5 feet. The work done is $W = 10 \cdot 5 = 50$ foot-pounds.

In reality few situations are so simple. The force might not be constant over the range of motion, as in the next example.

EXAMPLE 9.13 How much work is done in lifting a 10 pound weight from the surface of the earth to an orbit 100 miles above the surface? Over 100 miles the force due to gravity does change significantly, so we need to take this into account. The force exerted on a 10 pound weight at a distance r from the center of the earth is $F = k/r^2$ and by definition it is 10 when r is the radius of the earth (we assume the earth is a sphere). How can we approximate the work done? We divide the path from the surface to orbit into n small subpaths. On each subpath the force due to gravity is roughly constant, with value k/r^2 at distance r_1. The work to raise the object from r_1 to r_{i+1} is thus approximately $k/r^2 \Delta r$, and the total work is approximately
\[
\sum_{i=1}^{n} \int_{r_{i-1}}^{r_i} k \, dr,
\]
or in the limit
\[
W = \int_{r_0}^{r_0 + 100} \frac{k}{r} \, dr,
\]
where r_0 is the radius of the earth and r_1 is r_0 plus 100 miles. The work is
\[
W = \int_{r_0}^{r_0 + 100} \frac{k}{r} \, dr = \int_{r_0}^{r_0 + 100} \frac{k}{r_0} \, dr = \frac{k}{r_0} \ln \left(\frac{r_0 + 100}{r_0} \right).
\]
Using $r_0 = 20925525$ feet we have $r_1 = 21453525$. The force on the 10 pound weight at the surface of the earth is 10 pounds, so $k = 10 \times 437877558652559$.
work required to lift each disk to the top of the tank. As usual, we take the limit as the sections get thinner and thinner to get the total work.

At depth h the circular cross-section through the tank has radius $r = (10 - h)/5$, by similar triangles, and area $\pi(10-h)^2/25$. A section of the tank at depth h thus has volume approximately $\pi(10-h)^2/25 \Delta h$ and so contains $\pi(10-h)^2/25 \Delta h$ kilograms of water, where σ is the density of water in kilograms per cubic meter, ≈ 1000. The force due to gravity on this much water is $9.8 \pi(10-h)^2/25 \Delta h$, and, finally, this section of water must be lifted a distance h, which gives $9.8 \pi(10-h)^2/25 \Delta h$ Newton-meters of work. The total work is therefore

$$W = \int_{0.08}^{0.05} 9.8 \pi(10-h)^2/25 \, dh \approx 103254 \text{ Newton-meters}.$$

A spring has a “natural length,” its length if nothing is stretching or compressing it. Suppose a force is applied that compresses the spring to length 0 from its natural length, $x = 0$. How much work is done in compressing the spring in the previous example from its natural length to 0.08 meters? From 0.08 meters to 0.05 meters? How much work is done to stretch the spring from 0.1 meters to 0.15 meters? We can approximate the work by dividing the distance that the spring is compressed (or stretched) into small subintervals. Then the force exerted by the spring is approximately constant over the subinterval, so the work required to compress the spring from x_i to x_{i+1} is approximately $5(x_i - x_{i+1}) \Delta x$. The total work is approximately

$$W = \sum_{i=0}^{n} 5(x_i - x_{i+1}) \Delta x$$

and in the limit

$$W = \int_{0.08}^{0.05} 5(x - 0.01) \, dx = \frac{5(0.08 - 0.01)^2}{2} \frac{5(0.05 - 0.01)^2}{2} \pi \approx 1 \text{ N-m}.$$

The other values we seek simply use different limits. To compress the spring from 0.08 meters to 0.05 meters takes

$$W = \int_{0.08}^{0.05} 5(x - 0.01) \, dx = \frac{5(0.08 - 0.01) - 5(0.05 - 0.01)}{2} \pi\approx 21 \text{ N-m}.$$

and to stretch the spring from 0.1 meters to 0.15 meters requires

$$W = \int_{0.15}^{0.1} 5(x - 0.01) \, dx = \frac{5(0.15 - 0.01)}{2} \pi \approx 1 \text{ N-m}.$$

Exercises 9.5.

1. How much work is done in lifting a 100 kilogram weight from the surface of the earth to an orbit 35,796 kilometers above the surface of the earth? ⇒

2. How much work is done in lifting a 100 kilogram weight from an orbit 1000 kilometers above the surface of the earth to an orbit 35,796 kilometers above the surface of the earth? ⇒

3. A water tank has the shape of an upright cylinder with radius $r = 1$ meter and height 10 meters. If the depth of the water is 5 meters, how much work is required to pump the water out the top of the tank (which is now 2 meters above the bottom of the tank)? ⇒

4. Suppose the tank of the previous problem is lying on its side, so that the circular ends are vertical, and that it has the same amount of water as before. How much work is required to pump the water out the top of the tank (which now is 2 meters above the bottom of the tank)? ⇒

5. A water tank has the shape of the bottom half of a sphere with radius $r = 1$ meter. If the tank is full, how much work is required to pump all the water out the top of the tank? ⇒

Chapter 9 Applications of Integration

92 – 293 = 0 or $\bar{x} = 92/10 \approx 4.84$, that is, the fulcrum should be placed at $x = 92/10$ to balance the beam.

Now suppose that we have a beam with varying density—some portions of the beam contain more mass than other portions of the same size. We want to figure out where to put the fulcrum so that the beam balances.

EXAMPLE 9.18 Suppose the beam is 10 meters long and that the density is $1 + x$ kilograms per meter at location x on the beam. To approximate the solution, we can think of the beam as a sequence of weights “on” a beam. For example, we can think of the portion of the beam between $x = 0$ and $x = 1$ as a weight sitting at $x = 0$, the portion between $x = 1$ and $x = 2$ as a weight sitting at $x = 1$, and so on, as indicated in figure 9.16. We then approximate the mass of the beam by assuming that each portion of the beam has constant density. So the mass of the first weight is approximately $m_1 = (1 + 0) = 1$ kilograms, namely, $(1 + 0)$ kilograms per meter times 1 meter. The second weight is $m_2 = (1 + 1) = 2$ kilograms, and so on to the tenth weight with $m_{10} = (1 + 9) = 10$ kilograms. In this case the total torque is

$$(0 - 0)m_0 + (1 - 0)m_1 + \cdots + (9 - 0)m_9 = (0 - 0)(1 + 1)(2 + \cdots + (9 - 0))10.$$

If we set this to zero and solve for x, we get $x \approx 6$. In general, if we divide the beam into n portions, the mass of weight number i will be $m_i = (1 + i)x_i + x_{i-1} = (1 + x_i)\Delta x$ and the torque induced by weight number i will be $(x_i + 0)m_i = (x_i + x_{i-1})(1 + x_i)\Delta x$. The total torque is then

$$(x_0 - 0)(1 + x_0)\Delta x + (x_1 - 0)(1 + x_1)\Delta x + \cdots + (x_n - 0)(1 + x_{n-1})\Delta x.$$

The torque induced by weight number i will be $(x_i + 0)m_i = (x_i + x_{i-1})(1 + x_i)\Delta x$. The total torque is then

$$(x_0 - 0)(1 + x_0)\Delta x + (x_1 - 0)(1 + x_1)\Delta x + \cdots + (x_n - 0)(1 + x_{n-1})\Delta x.$$
If we set this equal to zero and solve for \(x \) we get an approximation to the balance point of the beam:

\[
0 = \sum_{i=0}^{n-1} x_i (1 + x_i) \Delta x - \sum_{i=0}^{n-1} (1 + x_i) \Delta x
\]

\[
\frac{\sum_{i=0}^{n-1} x_i (1 + x_i) \Delta x}{n} = \frac{\sum_{i=0}^{n-1} (1 + x_i) \Delta x}{n}
\]

The denominator of this fraction has a very familiar form. Consider one term of the sum in the denominator: \((1 + x_i) \Delta x\). This is the density \(\sigma \) times a short length, \(\Delta x \), which in other words is approximately the mass of the beam between \(x_i \) and \(x_{i+1} \). When we add these up we get approximately the mass of the entire beam.

Now each of the sums in the fraction has the right form to turn into an integral, which in turn gives us the exact value of \(\bar{x} \):

\[
\bar{x} = \frac{\int_0^1 x (1 + x) \, dx}{\int_0^1 (1 + x) \, dx}.
\]

The numerator of this fraction is called the moment of the system around zero:

\[
\int_0^1 x (1 + x) \, dx = \left[\frac{1}{2} x^2 + \frac{1}{2} x^3 \right]_0^1 = \frac{1}{2} + \frac{1}{2} \cdot 1 = 1.
\]

and the denominator is the mass of the beam:

\[
\int_0^1 (1 + x) \, dx = \left[x + \frac{1}{2} x^2 \right]_0^1 = 1 + \frac{1}{2} \cdot 1 = \frac{3}{2}.
\]

and the balance point, officially called the center of mass, is

\[
\bar{x} = \frac{1}{\frac{3}{2}} = \frac{2}{3}.
\]

The mass of the plate between \(x_i \) and \(x_{i+1} \) is approximately \(M_i = \sigma (1 + x^2_i) \Delta x = (1 + x^2_i) \Delta x \).

The mass of the plate between \(x_i \) and \(x_{i+1} \) is approximately \(M_i = \sigma (1 + x^2_i) \Delta x = (1 + x^2_i) \Delta x \).

Now we can compute the moment around the y-axis:

\[
M_y = \int_0^1 x (1 - x^2) \, dx = \frac{1}{4}
\]

and the total mass

\[
M = \int_0^1 (1 - x^2) \, dx = \frac{2}{3}
\]

and finally

\[
\bar{y} = \frac{3}{4} - \frac{3}{8} = \frac{3}{8}.
\]

Next we do the same thing to find \(\bar{y} \). The mass of the plate between \(y_i \) and \(y_{i+1} \) is approximately \(M_i = \sigma \sqrt{2} \Delta y \), so

\[
M_y = \int_{\sqrt{2}}^{\sqrt{2}} y \sqrt{2} \, dy = \frac{2}{5}
\]

and

\[
\bar{y} = \frac{2}{5} \frac{\sqrt{2}}{2} = \frac{2}{5} \sqrt{2}.
\]

since the total mass \(M \) is the same. The center of mass is shown in figure 9.17.

Example 9.21 Find the center of mass of a thin, uniform plate whose shape is the region between \(y = \cos x \) and the x-axis between \(x = -\pi/2 \) and \(x = \pi/2 \). It is clear...
9.7 Kinetic energy; improper integrals

Recall example 9.14 in which we computed the work required to lift an object from the surface of the earth to some large distance \(D \) away. Since \(F = \frac{k}{r^2} \) we computed

\[
\int_0^D k \cdot \frac{1}{r^2} \, dr = \frac{k}{D^2} - \frac{k}{r^2}.
\]

We noticed that as \(D \) increases, \(k/D^2 \) decreases to zero so that the amount of work increases to \(k/r_0 \). More precisely,

\[
\lim_{D \to \infty} \int_0^D k \cdot \frac{1}{r^2} \, dr = \lim_{D \to \infty} \frac{k}{D^2} - \frac{k}{r^2} = \frac{k}{r_0^2}.
\]

We might reasonably describe this calculation as computing the amount of work required to lift the object "to infinity," and abbreviate the limit as

\[
\lim_{D \to \infty} \int_0^D k \cdot \frac{1}{r^2} \, dr = \int_0^{\infty} \frac{k}{r^2} \, dr.
\]

Such an integral, with a limit of infinity, is called an improper integral. This is a bit unfortunate, since it's not really "improper" to do this, nor is it really "impossible"—it is an abbreviation for the limit of a particular sort of integral. Nevertheless, we're stuck with the term, and the operation itself is perfectly legitimate. It may at first seem odd that a thing converges or diverges or is improper to compute, and this is such a case. If the value of an improper integral is a finite number, as in this example, we say that the integral converges, and if not we say that the integral diverges.

Here's another way, perhaps even more surprising, to interpret this calculation. We know that one interpretation of

\[
\int_0^D \frac{1}{r^2} \, dr
\]

is the area under \(y = 1/x^2 \) from \(x = 1 \) to \(x = D \). Of course, as \(D \) increases this area increases. But since

\[
\int_0^D \frac{1}{r^2} \, dr = \frac{1}{D} + \frac{1}{r^2}
\]

while the area increases, it never exceeds 1, that is

\[
\int_1^{\infty} \frac{1}{r^2} \, dr = 1.
\]

The area of the infinite region under \(y = 1/x^2 \) from \(x = 1 \) to infinity is finite.

downward." This makes the work \(W \) negative when it should be positive, so typically the work in this case is defined as

\[
W = -\int_0^t F \, dx.
\]

Also, by Newton's Law, \(F = ma(t) \). This means that

\[
W = \int_0^t ma(t) \, dx.
\]

Unfortunately this integral is a bit problematic: \(a(t) \) is in terms of \(t \), while the limits and the "\(dx \)" are in terms of \(x \). But \(x \) and \(t \) are certainly related here: \(x = x(t) \) is the function that gives the position of the object at time \(t \), so \(v = v(t) = dx/dt = x'(t) \) is its velocity and \(a(t) = v'(t) = x''(t) \). We can use \(x = x(t) \) as a substitution to convert the integral from "\(dx \)" to "\(dt \)" in the usual way, with a bit of cleverness along the way:

\[
\frac{dx}{dt} = x'(t) \, dt = a(t) \, dt = a(t) \frac{dx}{dt} \, dx
\]

Substituting in the integral:

\[
W = \int_0^t ma(t) \, dx = \int_0^t mv \, dv = \frac{mv^2}{2} \Big|_0^v = \frac{mv_0^2}{2} - \frac{mv_f^2}{2}
\]

You may recall seeing the expression \(mv^2/2 \) in a physics course—it is called the kinetic energy of the object. We have shown here that the work done in moving the object from one place to another is the same as the change in kinetic energy.

We know that the work required to move an object from the surface of the earth to infinity is

\[
W = \int_0^{r_0} \frac{k}{r^2} \, dr = \frac{k}{r_0}
\]

At the surface of the earth the acceleration due to gravity is approximately 9.8 meters per second squared, so the force on an object of mass \(m \) is \(F = 9.8m \). The radius of the earth is approximately 6378.1 kilometers or 6378100 meters. Since the force due to gravity obeys an inverse square law, \(F = k/r^2 \) and \(9.8m = k/6378100^2 \), \(k = 398605564178000 \) and \(W = 6205380 \).

218 Chapter 9 Applications of Integration

Consider a slightly different sort of improper integral:

\[
\int_0^\infty x^{-3/2} \, dx.
\]

There are two ways we might try to compute this. First, we could break it up into two more familiar integrals:

\[
\int_0^\infty x^{-3/2} \, dx = \int_0^a x^{-3/2} \, dx + \int_a^\infty x^{-3/2} \, dx.
\]

Now we do these as before:

\[
\int_0^a x^{-3/2} \, dx = \lim_{b \to a} \int_0^b x^{-3/2} \, dx = \lim_{b \to a} \frac{-2}{1} = \frac{-2}{1} = \frac{1}{2}
\]

and

\[
\int_a^\infty x^{-3/2} \, dx = \lim_{b \to \infty} \int_a^b x^{-3/2} \, dx = \lim_{b \to \infty} \frac{-2}{1} = \frac{-2}{1} = \frac{1}{2}.
\]

so

\[
\int_0^\infty x^{-3/2} \, dx = \frac{1}{2} + \frac{1}{2} = 1.
\]

Alternately, we might try

\[
\int_0^\infty x^{-3/2} \, dx = \lim_{b \to \infty} \int_0^1 x^{-3/2} \, dx = \frac{-2}{1} = \frac{1}{2}.
\]

So we get the same answer either way. This does not always happen; sometimes the second approach gives a finite number, while the first approach does not; the exercises provide examples. In general, we interpret the integral \(\int_0^\infty f(x) \, dx \) according to the first method: both integrals \(\int_0^\infty f(x) \, dx \) and \(\int_a^\infty f(x) \, dx \) must converge for the original integral to converge. The second approach does turn out to be useful; when \(\lim_{b \to \infty} \int_0^b f(x) \, dx = L \) and \(L \) is finite, then \(L \) is called the Cauchy Principal Value of \(\int_0^\infty f(x) \, dx \).

Here's a more concrete application of these ideas. We know that in general

\[
W = \int_0^\infty F \, dx
\]

is the work done against the force \(F \) in moving from \(x_0 \) to \(x_1 \). In the case that \(F \) is the force of gravity exerted by the earth, it is customary to make \(F < 0 \) since the force is
12. Does \(\int_{-\infty}^{\infty} e^{-x^2} \, dx \) converge or diverge? If it converges, find the value. Also find the Cauchy Principal Value, if it exists.

13. Suppose the curve \(y = 1/e \) is rotated around the \(x \)-axis generating a sort of funnished or horn shape, called Gabriel’s horn or Toricelli’s trumpet. Is the volume of this funnished from \(x = 1 \) to infinity finite or infinite? If finite, compute the volume.

14. An officially sanctioned baseball must be between 142 and 149 grams. How much work, in Newton-meters, does it take to throw a ball at 90 miles per hour? At 90 mph? At 180 mph? (According to the Guinness Book of World Records, at http://www.baseball-almanac.com/rebooks/br_gsm.shtml, “The greatest reliably recorded speed at which a baseball has been pitched is 105.9 mph by Lynn Nolan Ryan (California Angels) at Anaheim Stadium in California on August 20, 1974.”)

9.8 Probability

You perhaps have at least a rudimentary understanding of discrete probability, which measures the likelihood of an “event” when there are a finite number of possibilities. For example, when an ordinary six-sided die is rolled, the probability of getting any particular number is 1/6. In general, the probability of an event is the number of ways the event can happen divided by the number of ways that “anything” can happen.

For a slightly more complicated example, consider the case of two six-sided dice. The dice are physically distinct, which means that rolling a 2-5 is different than rolling a 5-2; each is an equally likely event out of a total of 36 ways the dice can land, so each has a probability of 1/36.

Most interesting events are not so simple. More interesting is the probability of rolling a certain sum out of the possibilities 2 through 12. It is clearly not true that all sums are equally likely: the only way to roll a 2 is to roll 1–1, while there are many ways to roll a 7. The probability of 7, we should suspect that the dice are not fair.

When the number of possible values for a random variable is finite, any set of numbers can be a probability density function. As with all probability density functions, the integral of the function over the range of possible values must be 1. This implies that the area under the curve must be 1.

DEFINITION 9.22 Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be a function. If \(f(x) \geq 0 \) for every \(x \) and \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \) then \(f \) is a probability density function.

We associate a probability density function with a random variable \(X \) by stipulating that the probability that \(X \) is between \(a \) and \(b \) is \(\int f(x) \, dx \). Because of the requirement that the integral from \(-\infty\) to \(\infty \) be 1, all probabilities are less than or equal to 1, and the probability that \(X \) takes on some value between \(-\infty \) and \(\infty \) is 1, as it should be.

EXAMPLE 9.23 Consider again the two dice example; we can view it in a way that more resembles the probability density function approach. Consider a random variable \(X \) that takes on any real value with probabilities given by the probability density function in figure 9.18. The function \(f \) consists of just the top edges of the rectangles, with vertical sides drawn for clarity; the function is zero below 1.5 and above 12.5. The area of each rectangle is the probability of rolling the sum in the middle of the bottom of the rectangle, or

\[
P(n) = \frac{12}{36} \cdot \frac{1}{36} = \frac{1}{36}.
\]

The probability of rolling a 4, 5, or 6 is

\[
P(n) = \frac{12}{36} \cdot \frac{1}{36} = \frac{1}{36}.
\]

Of course, we could also compute probabilities that don’t make sense in the context of the dice, such as the probability that \(X \) is between 4 and 5.8.

9.8 Probability 223

224 Chapter 9 Applications of Integration

The study of probability is concerned with more difficult questions as well; for example, suppose the two dice are rolled many times. On the average, what sum will come up? In the language of probability, this average is called the expected value of the sum. This is at first a little misleading, as it does not tell us what to “expect” when the two dice are rolled, but what we expect the long term average will be.

Suppose that two dice are rolled 36 million times. Based on the probabilities, we would expect about 1 million rolls to be 2, about 2 million to be 3, and so on, with a roll of 7 topping the list at about 6 million. The sum of all rolls would be 1 million times 2 plus 2 million times 3, and so on, and dividing by 36 million we would get the average:

\[
x = \frac{2(10^6) + 3(210^6) + \cdots + 6(10^6) + \cdots + 12(10^6)}{36\text{ million}}.
\]

There is nothing special about the 36 million in this calculation. No matter what the number of rolls, once we simplify the average, we get the same \(\sum_{i=2}^{12} i \). When the actual average value of a large number of rolls will not be exactly 7, the average should be close to 7 when the number of rolls is large. Turning this around, if the average is not close to 7, we should suspect that the dice are not fair.

A variable, say \(X \), that can take certain values, each with a corresponding probability, is called a random variable. In the example above, the random variable was the sum of the two dice. If the possible values for \(X \) are \(x_1, x_2, \ldots, x_n \), then the expected value of the random variable is \(\sum_{i=1}^{n} X(i) \). The expected value is also called the mean.

When the number of possible values for \(X \) is finite, we say that \(X \) is a discrete random variable. In many applications of probability, the number of possible values of a random variable is very large, perhaps even infinite. To deal with the infinite case we need a different approach, and since there is a sum involved, it should not be wholly surprising that integration turns out to be a useful tool. It then turns out that when the number of possibilities is large but finite, it is frequently easier to pretend that the number is infinite. Suppose, for example, that a dart is thrown at a dart board. Since the dart board consists of a finite number of atoms, there are in some sense only a finite number of places for the dart to land, but it is easier to explore the probabilities involved by pretending that the dart can land on any point in the usual \(\mathbb{R}^2 \) plane.
DEFINITION 9.27 The mean of a random variable X with probability density function \(f(x) \) is \(\mu = E(X) = \int_{-\infty}^{\infty} x f(x) \, dx \), provided the integral converges.

When the mean exists, it is unique, since it is the result of an explicit calculation. The mean does not always exist.

The mean might look familiar; it is essentially identical to the center of mass of a one-dimensional beam, as discussed in section 9.6. The probability density function f plays the role of the physical density function, but now the “beam” has infinite length. If we consider only a finite portion of the beam, say between a and b, then the center of mass is

\[
\mu = \frac{\int_{a}^{b} x f(x) \, dx}{\int_{a}^{b} f(x) \, dx}
\]

is \((X - \mu)^2 \); we square the difference so as to measure all distances as positive. To get the typical such squared distance, we compute the mean. For two dice, for example, we get

\[
2 \sum_{i=2}^{12} \left(\frac{1}{12} \left(\binom{2}{i} - \binom{2}{7} \right) \right) = \frac{1}{12} \left(\frac{2}{12} + \frac{6}{12} + \cdots + \frac{1}{12} \right) = \frac{2}{12} + \frac{6}{12} + \cdots + \frac{1}{12} = 10.
\]

Because we squared the differences this does not directly measure the typical distance we seek; if we take the square root of this we do get such a measure, \(\sqrt{\frac{2}{12} + \frac{6}{12} + \cdots + \frac{1}{12}} \approx 2.42 \). Doing the computation for the strange 11-sided die we get

\[
(2 - 7)^2 \left(\frac{1}{11} \right) + (3 - 7)^2 \left(\frac{1}{11} \right) + \cdots + (11 - 7)^2 \left(\frac{1}{11} \right) = 10.
\]

with square root approximately 3.16. Comparing 2.42 to 3.16 tells us that the two-dice rolls clump somewhat more closely near 7 than the rolls of the weird die, which of course we already knew because these examples are quite simple.

To perform the same computation for a probability density function the sum is replaced by an integral, just as in the computation of the mean. The expected value of the squared distances is

\[
V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx,
\]

called the variance. The square root of the variance is the standard deviation, denoted \(\sigma \).

EXAMPLE 9.29 We compute the standard deviation of the standard normal distribution. The variance is

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-x^2/2} \, dx.
\]

To compute the antiderivative, use integration by parts, with \(u = x \) and \(dv = xe^{-x^2/2} \, dx \). This gives

\[
\int x e^{-x^2/2} \, dx = -xe^{-x^2/2} + \int e^{-x^2/2} \, dx.
\]

We cannot do the new integral, but we know its value when the limits are \(-\infty \) to \(\infty \), from our discussion of the standard normal distribution. Thus

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-x^2/2} \, dx = -\frac{-\infty e^{-\infty^2/2} + \int e^{-x^2/2} \, dx}{\sqrt{2\pi}} = 0 + \frac{1}{\sqrt{2\pi}} = 1.
\]

The standard deviation is then \(\sqrt{1} = 1 \).

Here is a simple example showing how these ideas can be useful. Suppose it is known that, in the long run, 1 out of every 100 computer memory chips produced by a certain manufacturing plant is defective when the manufacturing process is running correctly. Suppose 1000 chips are selected at random and 15 of them are defective. This is more than the ‘expected’ number (15), but is it so many that we should suspect that something has gone wrong in the manufacturing process? We are interested in the probability that various numbers of defective chips arise; the probability distribution is discrete: there can only be a whole number of defective chips. But (under reasonable assumptions) the distribution is very close to a normal distribution, namely this one:

\[
f(x) = \frac{1}{\sqrt{2\pi} \times 1000 \times 0.99} \exp \left(\frac{-x - 10)^2}{2 \times 1000 \times 0.99} \right),
\]

which is pictured in figure 9.20 (recall that \(\exp(x) = e^x \)).

Figure 9.20 Normal density function for the defective chips example.

Now how do we measure how unlikely it is that under normal circumstances we would see 15 defective chips? We can’t compute the probability of exactly 15 defective chips, as this would be \(\int_{15}^{15} f(x) \, dx = 0 \). We could compute \(\int_{14}^{16} f(x) \, dx \approx 0.036 \); this means there is only a 3.6% chance that the number of defective chips is 15. (We cannot compute these integrals exactly; computer software has been used to approximate the integral values in this discussion.) But this is misleading: \(\int_{14}^{16} f(x) \, dx \approx 0.126 \), which is larger, certainly, but still small, even for the “most likely” outcome. The most useful question, in most circumstances, is this: how likely is it that the number of defective chips is “far from” the mean? For example, how likely, or unlikely, is it that the number of defective chips is different by 5 or more from the expected value of 15? This is the probability that the number of defective chips is less than 5 or larger than 15, namely

\[
\int_{-\infty}^{5} f(x) \, dx + \int_{15}^{\infty} f(x) \, dx \approx 0.11.
\]

So there is an 11% chance that this happens—not large, but not tiny. Hence the 15 defective chips does not appear to be cause for alarm: about one time in nine we would expect to see the number of defective chips 5 more or 5 less from the expected 15. How...
about 20%? Here we compute
\[\int_{-\infty}^{\infty} f(x) \, dx + \int_{-\infty}^{0} f(x) \, dx \approx 0.005. \]

So there is only a 0.15% chance that the number of defective chips is more than 10 away from the mean; this would typically be interpreted as too suspicious to ignore—it shouldn’t happen if the process is running normally.

The big question, of course, is what level of improbability should trigger concern? It depends to some degree on the application, and in particular on the consequences of getting it wrong in one direction or the other. If we’re wrong, do we lose a little money? A lot of money? Do people die? In general, the standard choices are 5% and 1%. So what we should do is find the number of defective chips that has only, let us say, a 1% chance of occurring under normal circumstances, and use that as the relevant number. In other words, we want to know when
\[\int_{-\infty}^{b} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx < 0.01. \]

A bit of trial and error shows that with \(r = 8 \) the value is about 0.011, and with \(r = 9 \) it is about 0.004, so if the number of defective chips is 19 or more, or 1 or fewer, we should look for problems. If the number is high, we worry that the manufacturing process has a problem, or conceivably that the process that tests for defective chips is not working correctly and is flagging good chips as defective. If the number is too low, we suspect that the testing procedure is broken, and is not detecting defective chips.

Exercises 9.8.

1. Verify that \(\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}. \)
2. Show that the function in example 9.26 is a probability density function. Compute the mean and standard deviation.
3. Compute the mean and standard deviation of the uniform distribution on \([a, b]\). (See example 9.24.) ⇒
4. What is the expected value of one roll of a fair six-sided die? ⇒
5. What is the expected sum of one roll of three six-sided dice? ⇒
6. Let \(\mu \) and \(\sigma \) be real numbers with \(\sigma > 0 \). Show that
\[N(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
is a probability density function. You will not be able to compute this integral directly; use a substitution to convert the integral into the one from example 9.25. The function \(N \) is the probability density function of the normal distribution with mean \(\mu \) and standard deviation \(\sigma \).

9.9 Arc Length

![Figure 9.22: Approximating arc length with line segments.](image)

Now we need to write a formula for the sum of the lengths of the line segments, in a form that we know becomes an integral in the limit. So we suppose we have divided the interval \([a, b]\) into \(n \) subintervals as usual, each with length \(\Delta x = (b-a)/n \), and endpoints \(x_0, x_1, x_2, \ldots, x_n = b \). The length of a typical line segment, joining \((x_i, f(x_i))\) to \((x_{i+1}, f(x_{i+1}))\), is \(\sqrt{(\Delta x)^2 + (f(x_{i+1}) - f(x_i))^2} \). By the Mean Value Theorem (8.26), there is a number \(t \) in \([x_i, x_{i+1}]\) such that \(f'(t) \Delta x = f(x_{i+1}) - f(x_i) \), so the length of the line segment can be written as
\[\sqrt{\Delta x^2 + (f'(t))^2 \Delta x^2} = \sqrt{1 + (f'(t))^2} \Delta x. \]

The arc length is then
\[\lim_{n \to \infty} \sum_{i=0}^{n-1} \sqrt{1 + (f'(x_i))^2} \Delta x = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx. \]

Note that the sum looks a bit different than others we have encountered, because the approximation contains a \(t \) instead of an \(x \). In the past we have always used left endpoints (namely, \(x_i \)) to get a representative value of \(f \) on \([x_i, x_{i+1}]\); now we are using a different point, but the principle is the same.

To summarize, to compute the length of a curve on the interval \([a, b]\), we compute the integral
\[\int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx. \]

Unfortunately, integrals of this form are typically difficult or impossible to compute exactly, because usually none of our methods for finding antiderivatives will work. In practice this means that the integral will usually have to be approximated.

230 Chapter 9 Applications of Integration

EXAMPLE 9.30 Let \(f(x) = \sqrt{x^2 - x} \), the upper half circle of radius \(x \). The length of this curve is half the circumference, namely \(\pi x \). Let’s compute this with the arc length formula. The derivative \(f' = (x^2 - x)^{-1/2} \), so the integral is
\[\int_{0}^{\pi} \sqrt{1 + (f'(x))^2} \, dx = \int_{0}^{\pi} \sqrt{1 + (f'(x))^2} \, dx. \]

Using a trigonometric substitution, we find the antiderivative, namely \(\arcsin(x)/x \). Notice that the integral is improper at both endpoints, as the function \(\sqrt{1 - x^2} \) is undefined when \(x = \pm 1 \). So we need to compute
\[\lim_{\epsilon \to 0} \int_{0}^{\pi} \sqrt{1 + (f'(x))^2} \, dx \quad \text{and} \quad \lim_{\epsilon \to 0} \int_{0}^{\pi} \sqrt{1 + (f'(x))^2} \, dx. \]

This is not difficult, and has value \(\pi/2 \), so the original integral, with the extra \(\pi/2 \) in front, has value \(\pi x \) as expected.

Exercises 9.9.

1. Find the arc length of \(f(x) = x^{3/2} \) on \([0, 2]\). ⇒
2. Find the arc length of \(f(x) = \sqrt{x} - \ln x \) on \([1, 2]\). ⇒
3. Find the arc length of \(f(x) = (1/3)(x^3 + 1)^{1/2} \) on the interval \([0, a]\). ⇒
4. Find the arc length of \(f(x) = \ln(x) \) on the interval \([a, b]\). ⇒
5. Let \(a > 0 \). Show that the length of \(y = \cos x \) on \([0, a]\) is equal to \(\int_{0}^{a} \cos x \, dx \).
6. Find the arc length of \(f(x) = \cosh x \) on \([0, 2]\). ⇒
7. Set up the integral to find the arc length of \(y = \cos x \) on the interval \([0, \pi/2]\); do not evaluate the integral. If you have access to appropriate software, approximate the value of the integral.
8. Set up the integral to find the arc length of \(y = x^{-1} \) on the interval \([1, 2]\); do not evaluate the integral. If you have access to appropriate software, approximate the value of the integral.
9. Find the arc length of \(y = x^{3/2} \) on the interval \([0, 1]\). (This can be done exactly; it is a bit tricky and a bit long.) ⇒

9.10 Surface Area

Another geometric question that arises naturally is: “What is the surface area of a volume?” For example, what is the surface area of a sphere? More advanced techniques are required to approach this question in general, but we can compute the areas of some volumes generated by revolution.
As usual, the question is: how might we approximate the surface area? For a surface obtained by rotating a curve around an axis, we can take a polygonal approximation to the curve, as in the last section, and rotate it around the same axis. This gives a surface composed of many “truncated cones,” a truncated cone is called a frustum of a cone. Figure 9.23 illustrates this approximation.

Figure 9.23 Approximating a surface (left) by portions of cones (right).

So we need to be able to compute the area of a frustum of a cone. Since the frustum can be formed by removing a small cone from the top of a larger one, we can compute the desired area if we know the surface area of a cone. Suppose a right circular cone has base radius \(r \) and slant height \(h \). If we cut the cone from the vertex to the base circle and flatten it out, we obtain a sector of a circle with radius \(h \) and arc length \(2\pi r \), as in figure 9.24. The angle at the center, in radians, is \(\frac{2\pi r}{h} \). Let \(A \) be the area of the sector; since the area of the entire circle is \(\pi h^2 \), we have

\[
A = \frac{2\pi r}{h} \pi h = 2\pi rh.
\]

Now suppose we have a frustum of a cone with slant height \(h \) and radii \(r_0 \) and \(r_1 \), as in figure 9.25. The area of the entire cone is \(\pi r_1 h \), and the area of the small cone is \(\pi r_0 h_0 \); thus, the area of the frustum is \(\pi r_1 h - \pi r_0 h = \frac{\pi}{2}(r_1 - r_0)h_0 + r_1 h_0 \). By similar triangles,

\[
\frac{h_0}{r_0} = \frac{h_1}{r_1} = \frac{h}{r},
\]

so the surface area becomes

\[
\pi h_0 (r_0 + h_0) = \pi h_1 (r_1 + h_1) = \pi h (r_1 + r_0) = 2\pi \frac{r_0 + r_1}{2} h = 2\pi h.
\]

With a bit of algebra this becomes \((r_1 - r_0)h_0 = r_0 h_0 \); substitution into the area gives

\[
\pi (r_1 - r_0)h_0 + r_1 h_0 = \pi h (r_1 + r_0) = 2\pi \frac{r_0 + r_1}{2} h = 2\pi h.
\]

The final form is particularly easy to remember, with \(r \) equal to the average of \(r_0 \) and \(r_1 \), as it is also the formula for the area of a cylinder. (Think of a cylinder of radius \(r \) and height \(h \) as the frustum of a cone of infinite height.)

Figure 9.24 The area of a cone.

Figure 9.25 The area of a frustum.

Now we are ready to approximate the area of a surface of revolution. On one subinterval, the situation is as shown in figure 9.26. When the line joining two points on the curve is rotated around the \(x \)-axis, it forms a frustum of a cone. The area is

\[
2\pi rh = 2\pi \int_0^h \sqrt{1 + [f'(x)]^2} \Delta x.
\]

Here \(\sqrt{1 + [f'(x)]^2} \Delta x \) is the length of the line segment, as we found in the previous section. Assuming \(f \) is a continuous function, there must be some \(x_i \) in \([x_i, x_{i+1}] \) such that \(f(x_i) + f(x_{i+1}) \Delta x = f(x_i') \), so the approximation for the surface area is

\[
\sum_{i=0}^{n-1} 2\pi f(x_i) \sqrt{1 + [f'(x_i')]^2} \Delta x.
\]

This is not quite the sort of sum we have seen before, as it contains two different values in the interval \([x_i, x_{i+1}] \), namely \(x_i' \) and \(t_i \). Nevertheless, using more advanced techniques than we have available here, it turns out that

\[
\lim_{\Delta x \to 0} \sum_{i=0}^{n-1} 2\pi f(x_i') \sqrt{1 + [f'(x_i')]^2} \Delta x = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx
\]

is the surface area we seek. (Roughly speaking, this is because while \(x_i' \) and \(t_i \) are distinct values in \([x_i, x_{i+1}] \), they get closer and closer to each other as the length of the interval shrinks.)

Figure 9.26 One subinterval.

EXAMPLE 9.31 We compute the surface area of a sphere of radius \(r \). The sphere can be obtained by rotating the graph of \(f(x) = \sqrt{r^2 - x^2} \) about the \(x \)-axis. The derivative

\[
f'(x) = \frac{\sqrt{r^2 - x^2}}{x}
\]

is

\[
\sqrt{1 + [f'(x)]^2} = \sqrt{\frac{r^2}{x^2}} = \frac{r}{x}.
\]

EXAMPLE 9.32 Compute the area of the surface formed when \(f(x) = x^3 \) between 0 and 2 is rotated around the \(y \)-axis. We compute \(f'(x) = 2x \), and then

\[
2\pi \int_0^2 x \sqrt{1 + [f'(x)]^2} dx = \pi \left(\frac{1}{2} x \right) = \frac{\pi}{4}(x^2 - 1),
\]

by a simple substitution.

Exercises 9.10.

1. Compute the area of the surface formed when \(f(x) = \sqrt{x} \) between 0 and 1 is rotated around the \(x \)-axis. ⇒

2. Compute the surface area of example 9.32 by rotating \(f(x) = \sqrt{x} \) around the \(y \)-axis. ⇒

3. Compute the area of the surface formed when \(f(x) = x^2 \) between 1 and 3 is rotated around the \(x \)-axis. ⇒

4. Compute the area of the surface formed when \(f(x) = 2 + \cosh x \) between 0 and 1 is rotated around the \(x \)-axis. ⇒

5. Consider the surface obtained by rotating the graph of \(f(x) = x/3 \) between 1 and \(6 \), around the \(x \)-axis. This surface is called Gabriel’s horn or Torricelli’s trumpet. In exercise 13 in section 9.7 we saw that Gabriel’s horn has infinite surface area.

6. Consider the circle \((x - 2)^2 + y^2 = 1\). Sketch the surface obtained by rotating this circle about the \(y \)-axis. (The surface is called a torus.) What is the surface area? ⇒

\[
A = 2\pi \int_0^h \sqrt{1 + [f'(x)]^2} \Delta x.
\]
7. Consider the ellipse with equation $x^{2}/4 + y^{2} = 1$. If the ellipse is rotated around the x-axis it forms an ellipsoid. Compute the surface area. ⇒

8. Generalize the preceding result: rotate the ellipse given by $x^{2}/a^{2} + y^{2}/b^{2} = 1$ about the x-axis and find the surface area of the resulting ellipsoid. You should consider two cases, when $a > b$ and when $a < b$. Compare to the area of a sphere. ⇒