
13

Vector Functions

13.1 Spa
e Curves

We have already seen that a convenient way to describe a line in three dimensions is to

provide a vector that “points to” every point on the line as a parameter t varies, like

〈1, 2, 3〉+ t〈1,−2, 2〉 = 〈1 + t, 2− 2t, 3 + 2t〉.

Except that this gives a particularly simple geometric object, there is nothing special about

the individual functions of t that make up the coordinates of this vector—any vector with

a parameter, like 〈f(t), g(t), h(t)〉, will describe some curve in three dimensions as t varies

through all possible values.

EXAMPLE 13.1.1 Describe the curves 〈cos t, sin t, 0〉, 〈cos t, sin t, t〉, and 〈cos t, sin t, 2t〉.
As t varies, the first two coordinates in all three functions trace out the points on the

unit circle, starting with (1, 0) when t = 0 and proceeding counter-clockwise around the

circle as t increases. In the first case, the z coordinate is always 0, so this describes precisely

the unit circle in the x-y plane. In the second case, the x and y coordinates still describe

a circle, but now the z coordinate varies, so that the height of the curve matches the value

of t. When t = π, for example, the resulting vector is 〈−1, 0, π〉. A bit of thought should

convince you that the result is a helix. In the third vector, the z coordinate varies twice as

fast as the parameter t, so we get a stretched out helix. Both are shown in figure 13.1.1.

On the left is the first helix, shown for t between 0 and 4π; on the right is the second helix,

shown for t between 0 and 2π. Both start and end at the same point, but the first helix

takes two full “turns” to get there, because its z coordinate grows more slowly.
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Figure 13.1.1 Two helixes. (AP)

A vector expression of the form 〈f(t), g(t), h(t)〉 is called a vector function; it is

a function from the real numbers R to the set of all three-dimensional vectors. We can

alternately think of it as three separate functions, x = f(t), y = g(t), and z = h(t), that

describe points in space. In this case we usually refer to the set of equations as parametric

equations for the curve, just as for a line. While the parameter t in a vector function

might represent any one of a number of physical quantities, or be simply a “pure number”,

it is often convenient and useful to think of t as representing time. The vector function

then tells you where in space a particular object is at any time.

Vector functions can be difficult to understand, that is, difficult to picture. When

available, computer software can be very helpful. When working by hand, one useful

approach is to consider the “projections” of the curve onto the three standard coordinate

planes. We have already done this in part: in example 13.1.1 we noted that all three curves

project to a circle in the x-y plane, since 〈cos t, sin t〉 is a two dimensional vector function

for the unit circle.

EXAMPLE 13.1.2 Graph the projections of 〈cos t, sin t, 2t〉 onto the x-z plane and the

y-z plane. The two dimensional vector function for the projection onto the x-z plane is

〈cos t, 2t〉, or in parametric form, x = cos t, z = 2t. By eliminating t we get the equation

x = cos(z/2), the familiar curve shown on the left in figure 13.1.2. For the projection onto

the y-z plane, we start with the vector function 〈sin t, 2t〉, which is the same as y = sin t,

z = 2t. Eliminating t gives y = sin(z/2), as shown on the right in figure 13.1.2.

Exercises 13.1.

1. Describe the curve r = 〈sin t, cos t, cos 8t〉.
2. Describe the curve r = 〈t cos t, t sin t, t〉.
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Figure 13.1.2 The projections of 〈cos t, sin t, 2t〉 onto the x-z and y-z planes.

3. Describe the curve r = 〈t, t2, cos t〉.
4. Describe the curve r = 〈cos(20t)

√
1− t2, sin(20t)

√
1− t2, t〉

5. Find a vector function for the curve of intersection of x2 + y2 = 9 and y + z = 2. ⇒
6. A bug is crawling outward along the spoke of a wheel that lies along a radius of the wheel.

The bug is crawling at 1 unit per second and the wheel is rotating at 1 radian per second.
Suppose the wheel lies in the y-z plane with center at the origin, and at time t = 0 the spoke
lies along the positive y axis and the bug is at the origin. Find a vector function r(t) for the
position of the bug at time t. ⇒

7. What is the difference between the parametric curves f(t) = 〈t, t, t2〉, g(t) = 〈t2, t2, t4〉, and
h(t) = 〈sin(t), sin(t), sin2(t)〉as t runs over all real numbers?

8. Plot each of the curves below in 2 dimensions, projected onto each of the three standard
planes (the x-y, x-z, and y-z planes).

a. f(t) = 〈t, t3, t2〉, t ranges over all real numbers

b. f(t) = 〈t2, t− 1, t2 + 5〉 for 0 ≤ t ≤ 3

9. Given points A = (a1, a2, a3) and B = (b1, b2, b3), give parametric equations for the line
segment connecting A and B. Be sure to give appropriate t values.

10. With a parametric plot and a set of t values, we can associate a ‘direction’. For example,
the curve 〈cos t, sin t〉 is the unit circle traced counterclockwise. How can we amend a set of
given parametric equations and t values to get the same curve, only traced backwards?

13.2 Cal
ulus with ve
tor fun
tions

A vector function r(t) = 〈f(t), g(t), h(t)〉 is a function of one variable—that is, there is

only one “input” value. What makes vector functions more complicated than the functions

y = f(x) that we studied in the first part of this book is of course that the “output” values

are now three-dimensional vectors instead of simply numbers. It is natural to wonder if

there is a corresponding notion of derivative for vector functions. In the simpler case of
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a function y = s(t), in which t represents time and s(t) is position on a line, we have

seen that the derivative s′(t) represents velocity; we might hope that in a similar way the

derivative of a vector function would tell us something about the velocity of an object

moving in three dimensions.

One way to approach the question of the derivative for vector functions is to write

down an expression that is analogous to the derivative we already understand, and see if

we can make sense of it. This gives us

r′(t) = lim
∆t→0

r(t+∆t)− r(t)

∆t

= lim
∆t→0

〈f(t+∆t)− f(t), g(t+∆t)− g(t), h(t+∆t)− h(t)〉
∆t

= lim
∆t→0

〈f(t+∆t)− f(t)

∆t
,
g(t+∆t)− g(t)

∆t
,
h(t+∆t)− h(t)

∆t
〉

= 〈f ′(t), g′(t), h′(t)〉,

if we say that what we mean by the limit of a vector is the vector of the individual

coordinate limits. So starting with a familiar expression for what appears to be a derivative,

we find that we can make good computational sense out of it—but what does it actually

mean?

We know how to interpret r(t+∆t) and r(t)—they are vectors that point to locations

in space; if t is time, we can think of these points as positions of a moving object at times

that are ∆t apart. We also know what ∆r = r(t +∆t) − r(t) means—it is a vector that

points from the head of r(t) to the head of r(t + ∆t), assuming both have their tails at

the origin. So when ∆t is small, ∆r is a tiny vector pointing from one point on the path

of the object to a nearby point. As ∆t gets close to 0, this vector points in a direction

that is closer and closer to the direction in which the object is moving; geometrically, it

approaches a vector tangent to the path of the object at a particular point.
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Figure 13.2.1 Approximating the derivative.

Unfortunately, the vector ∆r approaches 0 in length; the vector 〈0, 0, 0〉 is not very

informative. By dividing by ∆t, when it is small, we effectively keep magnifying the length
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of ∆r so that in the limit it doesn’t disappear. Thus the limiting vector 〈f ′(t), g′(t), h′(t)〉
will (usually) be a good, non-zero vector that is tangent to the curve.

What about the length of this vector? It’s nice that we’ve kept it away from zero,

but what does it measure, if anything? Consider the length of one of the vectors that

approaches the tangent vector:
∣

∣

∣

∣

r(t+∆t)− r(t)

∆t

∣

∣

∣

∣

=
|r(t+∆t)− r(t)|

|∆t|

The numerator is the length of the vector that points from one position of the object to a

“nearby” position; this length is approximately the distance traveled by the object between

times t and t + ∆t. Dividing this distance by the length of time it takes to travel that

distance gives the average speed. As ∆t approaches zero, this average speed approaches

the actual, instantaneous speed of the object at time t.

So by performing an “obvious” calculation to get something that looks like the deriva-

tive of r(t), we get precisely what we would want from such a derivative: the vector r′(t)

points in the direction of travel of the object and its length tells us the speed of travel. In

the case that t is time, then, we call v(t) = r′(t) the velocity vector. Even if t is not time,

r′(t) is useful—it is a vector tangent to the curve.

EXAMPLE 13.2.1 We have seen that r = 〈cos t, sin t, t〉 is a helix. We compute

r′ = 〈− sin t, cos t, 1〉, and |r′| =
√

sin2 t+ cos2 t+ 1 =
√
2. So thinking of this as a

description of a moving object, its speed is always
√
2; see figure 13.2.2.

Figure 13.2.2 A tangent vector on the helix. (AP)

EXAMPLE 13.2.2 The velocity vector for 〈cos t, sin t, cos t〉 is 〈− sin t, cos t,− sin t〉. As

before, the first two coordinates mean that from above this curve looks like a circle. The
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z coordinate is now also periodic, so that as the object moves around the curve its height

oscillates up and down. In fact it turns out that the curve is a tilted ellipse, as shown in

figure 13.2.3.

Figure 13.2.3 The ellipse r = 〈cos t, sin t, cos t〉. (AP)

EXAMPLE 13.2.3 The velocity vector for 〈cos t, sin t, cos 2t〉 is 〈− sin t, cos t,−2 sin 2t〉.
The z coordinate is now oscillating twice as fast as in the previous example, so the graph

is not surprising; see figure 13.2.4.

Figure 13.2.4 〈cos t, sin t, cos 2t〉. (AP)

EXAMPLE 13.2.4 Find the angle between the curves 〈t, 1−t, 3+t2〉 and 〈3−t, t−2, t2〉
where they meet.
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The angle between two curves at a point is the angle between their tangent vectors—

any tangent vectors will do, so we can use the derivatives. We need to find the point of

intersection, evaluate the two derivatives there, and finally find the angle between them.

To find the point of intersection, we need to solve the equations

t = 3− u

1− t = u− 2

3 + t2 = u2

Solving either of the first two equations for u and substituting in the third gives 3 + t2 =

(3− t)2, which means t = 1. This together with u = 2 satisfies all three equations. Thus

the two curves meet at (1, 0, 4), the first when t = 1 and the second when t = 2.

The derivatives are 〈1,−1, 2t〉 and 〈−1, 1, 2t〉; at the intersection point these are

〈1,−1, 2〉 and 〈−1, 1, 4〉. The cosine of the angle between them is then

cos θ =
−1− 1 + 8√

6
√
18

=
1√
3
,

so θ = arccos(1/
√
3) ≈ 0.96.

The derivatives of vector functions obey some familiar looking rules, which we will

occasionally need.

THEOREM 13.2.5 Suppose r(t) and s(t) are differentiable functions, f(t) is a differ-

entiable function, and a is a real number.

a.
d

dt
ar(t) = ar′(t)

b.
d

dt
(r(t) + s(t)) = r′(t) + s′(t)

c.
d

dt
f(t)r(t) = f(t)r′(t) + f ′(t)r(t)

d.
d

dt
(r(t) · s(t)) = r′(t) · s(t) + r(t) · s′(t)

e.
d

dt
(r(t)× s(t)) = r′(t)× s(t) + r(t)× s′(t)

f.
d

dt
r(f(t)) = r′(f(t))f ′(t)

Note that because the cross product is not commutative you must remember to do the

three cross products in formula (e) in the correct order.



336 Chapter 13 Vector Functions

When the derivative of a function f(t) is zero, we know that the function has a hori-

zontal tangent line, and may have a local maximum or minimum point. If r′(t) = 0, the

geometric interpretation is quite different, though the interpretation in terms of motion

is similar. Certainly we know that the object has speed zero at such a point, and it may

thus be abruptly changing direction. In three dimensions there are many ways to change

direction; geometrically this often means the curve has a cusp or a point, as in the path

of a ball that bounces off the floor or a wall.

EXAMPLE 13.2.6 Suppose that r(t) = 〈1 + t3, t2, 1〉, so r′(t) = 〈3t2, 2t, 0〉. This is 0
at t = 0, and there is indeed a cusp at the point (1, 0, 1), as shown in figure 13.2.5.
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Figure 13.2.5 〈1 + t3, t2, 1〉 has a cusp at 〈1, 0, 1〉. (AP)

Sometimes we will be interested in the direction of r′ but not its length. In some

cases, we can still work with r′, as when we find the angle between two curves. On other

occasions it will be useful to work with a unit vector in the same direction as r′; of course,

we can compute such a vector by dividing r′ by its own length. This standard unit tangent

vector is usually denoted by T:

T =
r′

|r′| .

In a sense, when we computed the angle between two tangent vectors we have already

made use of the unit tangent, since

cos θ =
r′ · s′
|r′||s′| =

r′

|r′| ·
s′

|s′|
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Now that we know how to make sense of r′, we immediately know what an antideriva-

tive must be, namely

∫

r(t) dt = 〈
∫

f(t) dt,

∫

g(t) dt,

∫

h(t) dt〉,

if r = 〈f(t), g(t), h(t)〉. What about definite integrals? Suppose that v(t) gives the velocity

of an object at time t. Then v(t)∆t is a vector that approximates the displacement of the

object over the time ∆t: v(t)∆t points in the direction of travel, and |v(t)∆t| = |v(t)||∆t|
is the speed of the object times ∆t, which is approximately the distance traveled. Thus, if

we sum many such tiny vectors:
n−1
∑

i=0

v(ti)∆t

we get an approximation to the displacement vector over the time interval [t0, tn]. If we

take the limit we get the exact value of the displacement vector:

lim

n−1
∑

i=0

v(ti)∆t =

∫ tn

t0

v(t) dt = r(tn)− r(t0).

Denote r(t0) by r0. Then given the velocity vector we can compute the vector function r

giving the location of the object:

r(t) = r0 +

∫ t

t0

v(u) du.

EXAMPLE 13.2.7 An object moves with velocity vector 〈cos t, sin t, cos t〉, starting at

(1, 1, 1) at time 0. Find the function r giving its location.

r(t) = 〈1, 1, 1〉+
∫ t

0

〈cosu, sinu, cosu〉 du

= 〈1, 1, 1〉+ 〈sinu,− cosu, sinu〉|t
0

= 〈1, 1, 1〉+ 〈sin t,− cos t, sin t〉 − 〈0,−1, 0〉
= 〈1 + sin t, 2− cos t, 1 + sin t〉

See figure 13.2.6.
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Figure 13.2.6 Path of the object with its initial velocity vector. (AP)

Exercises 13.2.

1. Find r′ and T for r = 〈t2, 1, t〉. ⇒
2. Find r′ and T for r = 〈cos t, sin 2t, t2〉. ⇒
3. Find r′ and T for r = 〈cos(et), sin(et), sin t〉. ⇒
4. Find a vector function for the line tangent to the helix 〈cos t, sin t, t〉 when t = π/4. ⇒
5. Find a vector function for the line tangent to 〈cos t, sin t, cos 4t〉 when t = π/3. ⇒
6. Find the cosine of the angle between the curves 〈0, t2, t〉 and 〈cos(πt/2), sin(πt/2), t〉 where

they intersect. ⇒
7. Find the cosine of the angle between the curves 〈cos t,− sin(t)/4, sin t〉 and 〈cos t, sin t, sin(2t)〉

where they intersect. ⇒
8. Suppose that |r(t)| = k, for some constant k. This means that r describes some path on

the sphere of radius k with center at the origin. Show that r is perpendicular to r′ at every
point. Hint: Use Theorem 13.2.5, part (d).

9. A bug is crawling along the spoke of a wheel that lies along a radius of the wheel. The bug is
crawling at 1 unit per second and the wheel is rotating at 1 radian per second. Suppose the
wheel lies in the y-z plane with center at the origin, and at time t = 0 the spoke lies along
the positive y axis and the bug is at the origin. Find a vector function r(t) for the position
of the bug at time t, the velocity vector r′(t), the unit tangent T(t), and the speed of the
bug |r′(t)|. ⇒

10. An object moves with velocity vector 〈cos t, sin t, t〉, starting at 〈0, 0, 0〉 when t = 0. Find the
function r giving its location. ⇒

11. An object moves with velocity vector 〈t, t2,−t〉, starting at 〈1, 2, 3〉 when t = 0. Find the
function r giving its location. ⇒

12. An object moves with velocity vector 〈t2, sin t, cos t〉, starting at 〈−1, 1, 2〉 when t = 1. Find
the function r giving its location. ⇒

13. The position function of a particle is given by r(t) = 〈t2, 5t, t2 − 16t〉, t ≥ 0. When is the
speed of the particle a minimum? ⇒
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14. A particle moves so that its position is given by 〈cos t, sin t, cos(6t)〉. Find the maximum and
minimum speeds of the particle. ⇒

15. An object moves with velocity vector 〈t, t2, cos t〉, starting at 〈0, 0, 0〉 when t = 0. Find the
function r giving its location. ⇒

16. What is the physical interpretation of the dot product of two vector valued functions? What
is the physical interpretation of the cross product of two vector valued functions?

17. Show, using the rules of cross products and differentiation, that

d

dt
(r(t)× r

′(t)) = r(t)× r
′′(t).

18. Determine the point at which f(t) = 〈t, t2, t3〉 and g(t) = 〈cos(t), cos(2t), t+1〉 intersect, and
find the angle between the curves at that point. (Hint: You’ll need to set this one up like
a line intersection problem, writing one in s and one in t.) If these two functions were the
trajectories of two airplanes on the same scale of time, would the planes collide at their point
of intersection? Explain. ⇒

19. Find the equation of the plane perpendicular to the curve r(t) = 〈2 sin(3t), t, 2 cos(3t)〉 at the
point (0, π,−2). ⇒

20. Find the equation of the plane perpendicular to 〈cos t, sin t, cos(6t)〉 when t = π/4. ⇒
21. At what point on the curve r(t) = 〈t3, 3t, t4〉 is the plane perpendicular to the curve also

parallel to the plane 6x+ 6y − 8z = 1? ⇒
22. Find the equation of the line tangent to 〈cos t, sin t, cos(6t)〉 when t = π/4. ⇒

13.3 Ar
 length and 
urvature

Sometimes it is useful to compute the length of a curve in space; for example, if the curve

represents the path of a moving object, the length of the curve between two points may

be the distance traveled by the object between two times.

Recall that if the curve is given by the vector function r then the vector ∆r = r(t +

∆t)− r(t) points from one position on the curve to another, as depicted in figure 13.2.1. If

the points are close together, the length of ∆r is close to the length of the curve between

the two points. If we add up the lengths of many such tiny vectors, placed head to tail

along a segment of the curve, we get an approximation to the length of the curve over that

segment. In the limit, as usual, this sum turns into an integral that computes precisely

the length of the curve. First, note that

|∆r| = |∆r|
∆t

∆t ≈ |r′(t)|∆t,

when ∆t is small. Then the length of the curve between r(a) and r(b) is

lim
n→∞

n−1
∑

i=0

|∆r| = lim
n→∞

n−1
∑

i=0

|∆r|
∆t

∆t = lim
n→∞

n−1
∑

i=0

|r′(t)|∆t =

∫ b

a

|r′(t)| dt.
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(Well, sometimes. This works if between a and b the segment of curve is traced out exactly

once.)

EXAMPLE 13.3.1 Let’s find the length of one turn of the helix r = 〈cos t, sin t, t〉 (see
figure 13.1.1). We compute r′ = 〈− sin t, cos t, 1〉 and |r′| =

√

sin2 t+ cos2 t+ 1 =
√
2, so

the length is
∫ 2π

0

√
2 dt = 2

√
2π.

EXAMPLE 13.3.2 Suppose y = lnx; what is the length of this curve between x = 1

and x =
√
3?

Although this problem does not appear to involve vectors or three dimensions, we can

interpret it in those terms: let r(t) = 〈t, ln t, 0〉. This vector function traces out precisely

y = lnx in the x-y plane. Then r′(t) = 〈1, 1/t, 0〉 and |r′(t)| =
√

1 + 1/t2 and the desired

length is
∫

√
3

1

√

1 +
1

t2
dt = 2−

√
2 + ln(

√
2 + 1)− 1

2
ln 3.

(This integral is a bit tricky, but requires only methods we have learned.)

Notice that there is nothing special about y = lnx, except that the resulting integral

can be computed. In general, given any y = f(x), we can think of this as the vector

function r(t) = 〈t, f(t), 0〉. Then r′(t) = 〈1, f ′(t), 0〉 and |r′(t)| =
√

1 + (f ′)2. The length

of the curve y = f(x) between a and b is thus

∫ b

a

√

1 + (f ′(x))2 dx.

Unfortunately, such integrals are often impossible to do exactly and must be approximated.

One useful application of arc length is the arc length parameterization. A vector

function r(t) gives the position of a point in terms of the parameter t, which is often time,

but need not be. Suppose s is the distance along the curve from some fixed starting point;

if we use s for the variable, we get r(s), the position in space in terms of distance along the

curve. We might still imagine that the curve represents the position of a moving object;

now we get the position of the object as a function of how far the object has traveled.

EXAMPLE 13.3.3 Suppose r(t) = 〈cos t, sin t, 0〉. We know that this curve is a circle

of radius 1. While t might represent time, it can also in this case represent the usual

angle between the positive x-axis and r(t). The distance along the circle from (1, 0, 0) to
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(cos t, sin t, 0) is also t—this is the definition of radian measure. Thus, in this case s = t

and r(s) = 〈cos s, sin s, 0〉.

EXAMPLE 13.3.4 Suppose r(t) = 〈cos t, sin t, t〉. We know that this curve is a helix.

The distance along the helix from (1, 0, 0) to (cos t, sin t, t) is

s =

∫ t

0

|r′(u)| du =

∫ t

0

√

cos2 u+ sin2 u+ 1 du =

∫ t

0

√
2 du =

√
2t.

Thus, the value of t that gets us distance s along the helix is t = s/
√
2, and so the same

curve is given by r̂(s) = 〈cos(s/
√
2), sin(s/

√
2), s/

√
2〉.

In general, if we have a vector function r(t), to convert it to a vector function in terms

of arc length we compute

s =

∫ t

a

|r′(u)| du = f(t),

solve s = f(t) for t, getting t = g(s), and substitute this back into r(t) to get r̂(s) = r(g(s)).

Suppose that t is time. By the Fundamental Theorem of Calculus, if we start with arc

length

s(t) =

∫ t

a

|r′(u)| du

and take the derivative, we get

s′(t) = |r′(t)|.

Here s′(t) is the rate at which the arc length is changing, and we have seen that |r′(t)| is
the speed of a moving object; these are of course the same.

Suppose that r(s) is given in terms of arc length; what is |r′(s)|? It is the rate at which

arc length is changing relative to arc length; it must be 1! In the case of the helix, for

example, the arc length parameterization is 〈cos(s/
√
2), sin(s/

√
2), s/

√
2〉, the derivative

is 〈− sin(s/
√
2)/

√
2, cos(s/

√
2)/

√
2, 1/

√
2〉, and the length of this is

√

sin2(s/
√
2)

2
+

cos2(s/
√
2)

2
+

1

2
=

√

1

2
+

1

2
= 1.

So in general, r′ is a unit tangent vector.

Given a curve r(t), we would like to be able to measure, at various points, how sharply

curved it is. Clearly this is related to how “fast” a tangent vector is changing direction, so

a first guess might be that we can measure curvature with |r′′(t)|. A little thought shows

that this is flawed; if we think of t as time, for example, we could be tracing out the curve



342 Chapter 13 Vector Functions

more or less quickly as time passes. The second derivative |r′′(t)| incorporates this notion
of time, so it depends not simply on the geometric properties of the curve but on how

quickly we move along the curve.

EXAMPLE 13.3.5 Consider r(t) = 〈cos t, sin t, 0〉 and s(t) = 〈cos 2t, sin 2t, 0〉. Both

of these vector functions represent the unit circle in the x-y plane, but if t is interpreted

as time, the second describes an object moving twice as fast as the first. Computing the

second derivatives, we find |r′′(t)| = 1, |s′′(t)| = 4.

To remove the dependence on time, we use the arc length parameterization. If a curve

is given by r(s), then the first derivative r′(s) is a unit vector, that is, r′(s) = T(s). We

now compute the second derivative r′′(s) = T′(s) and use |T′(s)| as the “official” measure

of curvature, usually denoted κ.

EXAMPLE 13.3.6 We have seen that the arc length parameterization of a particu-

lar helix is r(s) = 〈cos(s/
√
2), sin(s/

√
2), s/

√
2〉. Computing the second derivative gives

r′′(s) = 〈− cos(s/
√
2)/2,− sin(s/

√
2)/2, 0〉 with length 1/2.

What if we are given a curve as a vector function r(t), where t is not arc length?

We have seen that arc length can be difficult to compute; fortunately, we do not need to

convert to the arc length parameterization to compute curvature. Instead, let us imagine

that we have done this, so we have found t = g(s) and then formed r̂(s) = r(g(s)). The

first derivative r̂′(s) is a unit tangent vector, so it is the same as the unit tangent vector

T(t) = T(g(s)). Taking the derivative of this we get

d

ds
T(g(s)) = T′(g(s))g′(s) = T′(t)

dt

ds
.

The curvature is the length of this vector:

κ = |T′(t)|| dt
ds

| = |T′(t)|
|ds/dt| =

|T′(t)|
|r′(t)| .

(Recall that we have seen that ds/dt = |r′(t)|.) Thus we can compute the curvature by

computing only derivatives with respect to t; we do not need to do the conversion to arc

length.

EXAMPLE 13.3.7 Returning to the helix, suppose we start with the parameteri-

zation r(t) = 〈cos t, sin t, t〉. Then r′(t) = 〈− sin t, cos t, 1〉, |r′(t)| =
√
2, and T(t) =

〈− sin t, cos t, 1〉/
√
2. Then T′(t) = 〈− cos t,− sin t, 0〉/

√
2 and |T′(t)| = 1/

√
2. Finally,

κ = 1/
√
2/

√
2 = 1/2, as before.
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EXAMPLE 13.3.8 Consider this circle of radius a: r(t) = 〈a cos t, a sin t, 1〉. Then

r′(t) = 〈−a sin t, a cos t, 0〉, |r′(t)| = a, and T(t) = 〈−a sin t, a cos t, 0〉/a. Now T′(t) =

〈−a cos t,−a sin t, 0〉/a and |T′(t)| = 1. Finally, κ = 1/a: the curvature of a circle is

everywhere the reciprocal of the radius. It is sometimes useful to think of curvature as

describing what circle a curve most resembles at a point. The curvature of the helix in the

previous example is 1/2; this means that a small piece of the helix looks very much like a

circle of radius 2, as shown in figure 13.3.1.

Figure 13.3.1 A circle with the same curvature as the helix. (AP)

EXAMPLE 13.3.9 Consider r(t) = 〈cos t, sin t, cos 2t〉, as shown in figure 13.2.4. r′(t) =

〈− sin t, cos t,−2 sin(2t)〉 and |r′(t)| =
√

1 + 4 sin2(2t), so

T(t) =

〈

− sin t
√

1 + 4 sin2(2t)
,

cos t
√

1 + 4 sin2(2t)
,

−2 sin 2t
√

1 + 4 sin2(2t)

〉

.

Computing the derivative of this and then the length of the resulting vector is possible but

unpleasant.

Fortunately, there is an alternate formula for the curvature that is often simpler than

the one we have:

κ =
|r′(t)× r′′(t)|

|r′(t)|3 .

EXAMPLE 13.3.10 Returning to the previous example, we compute the second deriva-

tive r′′(t) = 〈− cos t,− sin t,−4 cos(2t)〉. Then the cross product r′(t)× r′′(t) is

〈−4 cos t cos 2t− 2 sin t sin 2t, 2 cos t sin 2t− 4 sin t cos 2t, 1〉.
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Computing the length of this vector and dividing by |r′(t)|3 is still a bit tedious. With the

aid of a computer we get

κ =

√
48 cos4 t− 48 cos2 t+ 17

(−16 cos4 t+ 16 cos2 t+ 1)3/2
.

Graphing this we get
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Compare this to figure 13.2.4—you may want to load the Java applet there so that you

can see it from different angles. The highest curvature occurs where the curve has its

highest and lowest points, and indeed in the picture these appear to be the most sharply

curved portions of the curve, while the curve is almost a straight line midway between

those points.

Let’s see why this alternate formula is correct. Starting with the definition of T,

r′ = |r′|T so by the product rule r′′ = |r′|′T + |r′|T′. Then by Theorem 12.4.2 the cross

product is

r′ × r′′ = |r′|T× (|r′|′T+ |r′|T′)

= |r′|T× |r′|′T+ |r′|T× |r′|T′

= |r′||r′|′(T×T) + |r′|2(T×T′)

= |r′|2(T×T′)

because T×T = 0, since T is parallel to itself. Then

|r′ × r′′| = |r′|2|T×T′|
= |r′|2|T||T′| sin θ
= |r′|2|T′|

using exercise 8 in section 13.2 to see that θ = π/2. Dividing both sides by |r′|3 then gives

the desired formula.

We used the fact here that T′ is perpendicular to T; the vector N = T′/|T′| is thus a
unit vector perpendicular to T, called the unit normal to the curve. Occasionally of use

is the unit binormal B = T×N, a unit vector perpendicular to both T and N.
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Exercises 13.3.

1. Find the length of 〈3 cos t, 2t, 3 sin t〉, t ∈ [0, 2π]. ⇒
2. Find the length of 〈t2, 2, t3〉, t ∈ [0, 1]. ⇒
3. Find the length of 〈t2, sin t, cos t〉, t ∈ [0, 1]. ⇒
4. Find the length of the curve y = x3/2, x ∈ [1, 9]. ⇒
5. Set up an integral to compute the length of 〈cos t, sin t, et〉, t ∈ [0, 5]. (It is tedious but not

too difficult to compute this integral.) ⇒
6. Find the curvature of 〈t, t2, t〉. ⇒
7. Find the curvature of 〈t, t2, t2〉. ⇒
8. Find the curvature of 〈t, t2, t3〉. ⇒
9. Find the curvature of y = x4 at (1, 1). ⇒

13.4 Motion along a 
urve

We have already seen that if t is time and an object’s location is given by r(t), then the

derivative r′(t) is the velocity vector v(t). Just as v(t) is a vector describing how r(t)

changes, so is v′(t) a vector describing how v(t) changes, namely, a(t) = v′(t) = r′′(t) is

the acceleration vector.

EXAMPLE 13.4.1 Suppose r(t) = 〈cos t, sin t, 1〉. Then v(t) = 〈− sin t, cos t, 0〉 and

a(t) = 〈− cos t,− sin t, 0〉. This describes the motion of an object traveling on a circle of

radius 1, with constant z coordinate 1. The velocity vector is of course tangent to the

curve; note that a · v = 0, so v and a are perpendicular. In fact, it is not hard to see that

a points from the location of the object to the center of the circular path at (0, 0, 1).

Recall that the unit tangent vector is given by T(t) = v(t)/|v(t)|, so v = |v|T. If we

take the derivative of both sides of this equation we get

a = |v|′T+ |v|T′. (13.4.1)

Also recall the definition of the curvature, κ = |T′|/|v|, or |T′| = κ|v|. Finally, recall that
we defined the unit normal vector as N = T′/|T′|, so T′ = |T′|N = κ|v|N. Substituting

into equation 13.4.1 we get

a = |v|′T+ κ|v|2N. (13.4.2)

The quantity |v(t)| is the speed of the object, often written as v(t); |v(t)|′ is the rate

at which the speed is changing, or the scalar acceleration of the object, a(t). Rewriting

equation 13.4.2 with these gives us

a = aT+ κv2N = aTT+ aNN;

aT is the tangential component of acceleration and aN is the normal component

of acceleration. We have already seen that aT measures how the speed is changing; if
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you are riding in a vehicle with large aT you will feel a force pulling you into your seat.

The other component, aN , measures how sharply your direction is changing with respect

to time. So it naturally is related to how sharply the path is curved, measured by κ, and

also to how fast you are going. Because aN includes v2, note that the effect of speed is

magnified; doubling your speed around a curve quadruples the value of aN . You feel the

effect of this as a force pushing you toward the outside of the curve, the “centrifugal force.”

In practice, if want aN we would use the formula for κ:

aN = κ|v|2 =
|r′ × r′′|
|r′|3 |r′|2 =

|r′ × r′′|
|r′| .

To compute aT we can project a onto v:

aT =
v · a
|v| =

r′ · r′′
|r′| .

EXAMPLE 13.4.2 Suppose r = 〈t, t2, t3〉. Compute v, a, aT , and aN .

Taking derivatives we get v = 〈1, 2t, 3t2〉 and a = 〈0, 2, 6t〉. Then

aT =
4t+ 18t3√
1 + 4t2 + 9t4

and aN =

√
4 + 36t2 + 36t4√
1 + 4t2 + 9t4

.

Exercises 13.4.

1. Let r = 〈cos t, sin t, t〉. Compute v, a, aT , and aN . ⇒
2. Let r = 〈cos t, sin t, t2〉. Compute v, a, aT , and aN . ⇒
3. Let r = 〈cos t, sin t, et〉. Compute v, a, aT , and aN . ⇒
4. Let r = 〈t2, 2t− 3, 3t2 − 3t〉. Compute v, a, aT , and aN . ⇒
5. Let r = 〈et, sin t, et〉. Compute v, a, aT , and aN . ⇒
6. Suppose an object moves so that its acceleration is given by a = 〈−3 cos t,−2 sin t, 0〉. At

time t = 0 the object is at (3, 0, 0) and its velocity vector is 〈0, 2, 0〉. Find v(t) and r(t) for
the object. ⇒

7. Suppose an object moves so that its acceleration is given by a = 〈−3 cos t,−2 sin t, 0〉. At
time t = 0 the object is at (3, 0, 0) and its velocity vector is 〈0, 2.1, 0〉. Find v(t) and r(t) for
the object. ⇒

8. Suppose an object moves so that its acceleration is given by a = 〈−3 cos t,−2 sin t, 0〉. At
time t = 0 the object is at (3, 0, 0) and its velocity vector is 〈0, 2, 1〉. Find v(t) and r(t) for
the object. ⇒

9. Suppose an object moves so that its acceleration is given by a = 〈−3 cos t,−2 sin t, 0〉. At
time t = 0 the object is at (3, 0, 0) and its velocity vector is 〈0, 2.1, 1〉. Find v(t) and r(t) for
the object. ⇒
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10. Describe a situation in which the normal component of acceleration is 0 and the tangential
component of acceleration is non-zero. Is it possible for the tangential component of accel-
eration to be 0 while the normal component of acceleration is non-zero? Explain. Finally, is
it possible for an object to move (not be stationary) so that both the tangential and normal
components of acceleration are 0? Explain.




