10

Polar Coordinates,
Parametric Equations

10.1 PoLAR COORDINATES

Coordinate systems are tools that let us use algebraic methods to understand geometry.
While the rectangular (also called Cartesian) coordinates that we have been using are
the most common, some problems are easier to analyze in alternate coordinate systems.

A coordinate system is a scheme that allows us to identify any point in the plane or
in three-dimensional space by a set of numbers. In rectangular coordinates these numbers
are interpreted, roughly speaking, as the lengths of the sides of a rectangle. In polar
coordinates a point in the plane is identified by a pair of numbers (r, ). The number 6
measures the angle between the positive z-axis and a ray that goes through the point, as
shown in figure 10.1.1; the number r measures the distance from the origin to the point.
Figure 10.1.1 shows the point with rectangular coordinates (1, \/5) and polar coordinates
(2,7/3), 2 units from the origin and 7/3 radians from the positive z-axis.

V3 (2,7/3)

1

Figure 10.1.1  Polar coordinates of the point (1, \/5)
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Just as we describe curves in the plane using equations involving x and y, so can we

describe curves using equations involving r and 6. Most common are equations of the form

r=f(0).

EXAMPLE 10.1.1 Graph the curve given by r = 2. All points with » = 2 are at
distance 2 from the origin, so » = 2 describes the circle of radius 2 with center at the

origin. O

EXAMPLE 10.1.2 Graph the curve given by » = 1 4+ cosf. We first consider y =
1+ cosz, as in figure 10.1.2. As 6 goes through the values in [0, 27], the value of r tracks
the value of y, forming the “cardioid” shape of figure 10.1.2. For example, when § = /2,
r = 1+ cos(n/2) = 1, so we graph the point at distance 1 from the origin along the
positive y-axis, which is at an angle of m/2 from the positive z-axis. When 6 = 71 /4,
r =1+ cos(7Tm/4) = 1+ v/2/2 =~ 1.71, and the corresponding point appears in the fourth
quadrant. This illustrates one of the potential benefits of using polar coordinates: the
equation for this curve in rectangular coordinates would be quite complicated. O

/2 ™ 3m/2 2
Figure 10.1.2 A cardioid: y =1+ cosx on the left, r = 1 4 cos 6 on the right.

Each point in the plane is associated with exactly one pair of numbers in the rect-
angular coordinate system; each point is associated with an infinite number of pairs in
polar coordinates. In the cardioid example, we considered only the range 0 < 6 < 27,
and already there was a duplicate: (2,0) and (2,27) are the same point. Indeed, every
value of # outside the interval [0,27) duplicates a point on the curve r = 1 + cos @ when
0 < 6 < 2. We can even make sense of polar coordinates like (—2,7/4): go to the direc-
tion 7/4 and then move a distance 2 in the opposite direction; see figure 10.1.3. As usual,
a negative angle § means an angle measured clockwise from the positive z-axis. The point
in figure 10.1.3 also has coordinates (2, 57/4) and (2, —37/4).

The relationship between rectangular and polar coordinates is quite easy to under-
stand. The point with polar coordinates (r,60) has rectangular coordinates = rcos6
and y = rsinf; this follows immediately from the definition of the sine and cosine func-
tions. Using figure 10.1.3 as an example, the point shown has rectangular coordinates
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Figure 10.1.3 The point (—2,7/4) = (2,57/4) = (2, —37/4) in polar coordinates.

x = (—2)cos(m/4) = —V2 ~ 1.4142 and y = (—2)sin(r/4) = —v/2. This makes it very
easy to convert equations from rectangular to polar coordinates.

EXAMPLE 10.1.3 Find the equation of the line y = 3z + 2 in polar coordinates. We
2

merely substitute: rsinf = 3rcosf +2, or r = ——————.
sinf — 3 cos 0

m]
EXAMPLE 10.1.4 Find the equation of the circle (z — 1/2)% 4+ y*> = 1/4 in polar
coordinates. Again substituting: (rcos —1/2)% +r2sin?@ = 1/4. A bit of algebra turns
this into r = cos(t). You should try plotting a few (r,0) values to convince yourself that
this makes sense. O

EXAMPLE 10.1.5 Graph the polar equation » = 6. Here the distance from the origin
exactly matches the angle, so a bit of thought makes it clear that when 6 > 0 we get the
spiral of Archimedes in figure 10.1.4. When 6 < 0, r is also negative, and so the full graph
is the right hand picture in the figure. O

(m/2,7/2) (=7/2,—7/2)

(m,7) : ,(17 b (27, 2m) (—2m,

Figure 10.1.4 The spiral of Archimedes and the full graph of r» = 6.

Converting polar equations to rectangular equations can be somewhat trickier, and
graphing polar equations directly is also not always easy.
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EXAMPLE 10.1.6 Graph r = 2sinf. Because the sine is periodic, we know that we
will get the entire curve for values of # in [0,27). As 6 runs from 0 to m/2, r increases
from 0 to 2. Then as 6 continues to m, r decreases again to 0. When 6 runs from 7 to
27, r is negative, and it is not hard to see that the first part of the curve is simply traced
out again, so in fact we get the whole curve for values of 6 in [0, 7). Thus, the curve looks
something like figure 10.1.5. Now, this suggests that the curve could possibly be a circle,
and if it is, it would have to be the circle 2 + (y — 1)2 = 1. Having made this guess, we
can easily check it. First we substitute for = and y to get (rcos)? + (rsinf — 1)? = 1;
expanding and simplifying does indeed turn this into r = 2sin6. O

-1 0 1

Figure 10.1.5 Graph of r = 2sin6.

Ezxercises 10.1.
1. Plot these polar coordinate points on one graph: (2,7/3), (—3,7/2), (—2,—7/4), (1/2,7),
(1,47/3), (0,37/2).

Find an equation in polar coordinates that has the same graph as the given equation in
rectangular coordinates.

2. y=3z = 3. y=—-4=

4. my2:1:> 5. m2+y2:5:>
6. y:z3¢ 7. y=sinzx =

8. y=5cr+2= 9. z=2=

10. y=a2>41=> 11, y=32" -2z =
12. y:ac2+y2 =

Sketch the curve.

13. 7 =cosf 14. r =sin(0 + 7/4)
15. r = —secf 16. r=6/2,0>0
17. r=1+6/r° 18. r =cotfcsch
19. r= 1 20. r? = —2seclcscl

sin @ + cos @
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In the exercises below, find an equation in rectangular coordinates that has the same graph as
the given equation in polar coordinates.

21. r =sin(36) = 22. r=sin’f =
23. r=secfcscl = 24. r=tanf =

10.2 SLOPES IN POLAR COORDINATES

When we describe a curve using polar coordinates, it is still a curve in the z-y plane. We
would like to be able to compute slopes and areas for these curves using polar coordinates.

We have seen that x = rcosf and y = rsin describe the relationship between polar
and rectangular coordinates. If in turn we are interested in a curve given by r = f(6),
then we can write z = f(6) cosf and y = f(6)siné, describing z and y in terms of 6 alone.
The first of these equations describes 6 implicitly in terms of z, so using the chain rule we
may compute

dy  dydo

de ~ df dz”
Since df/dx = 1/(dx/df), we can instead compute

dy dy/d0  f(0)cosO+ f'(0)sind

dr  dx/d)  —f(0)sin6d + f'(0)cosf’

EXAMPLE 10.2.1 Find the points at which the curve given by » = 1 4 cosf has a
vertical or horizontal tangent line. Since this function has period 27, we may restrict our
attention to the interval [0, 27) or (—m, 7], as convenience dictates. First, we compute the
slope:

dy (14 cosf)cosf — sinfsinf cos 0 + cos? ) — sin® 0

dz —(1 + cosf)sinf — sin 6 cos 6 = “sin6— 2sinfcosh

This fraction is zero when the numerator is zero (and the denominator is not zero). The
numerator is 2 cos? @ + cos  — 1 so by the quadratic formula

—-1£V1+4-2 1 o 1
_— = — T —.
4 2

This means 6 is m or /3. However, when § = m, the denominator is also 0, so we cannot

cosf =

conclude that the tangent line is horizontal.
Setting the denominator to zero we get

—sinf — 2sinfcosf =0
sinf(1+ 2cosh) =0,

so either sinf = 0 or cos® = —1/2. The first is true when 6 is 0 or 7, the second when 6
is 2w /3 or 47 /3. However, as above, when 6 = m, the numerator is also 0, so we cannot
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conclude that the tangent line is vertical. Figure 10.2.1 shows points corresponding to 6
equal to 0, £7/3, 27/3 and 47/3 on the graph of the function. Note that when § = 7 the
curve hits the origin and does not have a tangent line. O

Figure 10.2.1 Points of vertical and horizontal tangency for » = 1 + cos 6.

We know that the second derivative f”(z) is useful in describing functions, namely,
in describing concavity. We can compute f”(z) in terms of polar coordinates as well. We
already know how to write dy/dz =y’ in terms of 6, then

ddy _dy _dy'ds _ dy/ds
dedx ~ de ~ df do dz/df’

EXAMPLE 10.2.2 We find the second derivative for the cardioid r = 1 + cos 6:

iCOS@+COS297811129 r 3(1 + cosb) 1
df —sinf —2sinfcosf dr/d)  (sinf+2sinfcosh)? —(sinf -+ 2sinf cosd)
—3(1 + cosb)

(sind + 2sinf cos )3’

The ellipsis here represents rather a substantial amount of algebra. We know from above
that the cardioid has horizontal tangents at £ /3; substituting these values into the second
derivative we get 3" (n/3) = —v/3/2 and y"(—n/3) = V/3/2, indicating concave down and
concave up respectively. This agrees with the graph of the function. O

FEzxercises 10.2.

Compute 3’ = dy/dz and y’ = d2y/dm2.

1. r=0=> 2. r=1+sinf =
3. r=cosf = 4. r=sinf =
5. r=sec = 6. r=sin(20) =
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Sketch the curves over the interval [0,27] unless otherwise stated. Use the first and second
derivative to identify horizontal and vertical tangents and local maximum and minimum points.
You can check your work with

7. r=sinf + cosf 8. r=2+2sinf
9. T:%Jrsint? 10. 7 =2+ cosf
11. r= %-ﬁ—cos& 12. r=cos(6/2),0 <0 <4r
13. 7 =sin(0/3),0 < 0 < 67 14. r=sin’0
15. r =1+ cos*(26) 16. r = sin’(36)
17. r=tan6 18. 7 =sec(0/2),0 <0 <A4rm
19. r=1+secl 20. r= ﬁ
1
21. r= T simo 22. r = cot(20)
23. r=7/6,0<60<o0 24. r=1+7/0,0<60<o0
25. r=+/7/0,0<60<o0

10.3 AREAS IN POLAR COORDINATES

We can use the equation of a curve in polar coordinates to compute some areas bounded
by such curves. The basic approach is the same as with any application of integration: find
an approximation that approaches the true value. For areas in rectangular coordinates, we
approximated the region using rectangles; in polar coordinates, we use sectors of circles,
as depicted in figure 10.3.1. Recall that the area of a sector of a circle is ar?/2, where
« is the angle subtended by the sector. If the curve is given by r» = f(6), and the angle
subtended by a small sector is Af, the area is (A8)(f(6))%/2. Thus we approximate the

total area as

In the limit this becomes

EXAMPLE 10.3.1 We find the area inside the cardioid » = 1 + cos 6.

. 0 sin20 | 3r
(0+2sm0+§+ 1 )0 =5

27 1 1 27
/ ~(14-cos0)? df = —/ 142 cosf+cos? 6 df =
Jo 0

1
2 2 2
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Figure 10.3.1 Approximating area by sectors of circles.

EXAMPLE 10.3.2 We find the area between the circles r = 2 and r = 4sin 6, as shown
in figure 10.3.2. The two curves intersect where 2 = 4sin#f, or sinf = 1/2, so § = 7/6 or
57/6. The area we want is then

1 57 /6 4
7/ 16sin?60 — 4 df = —m + 2V/3.
2 )6 3

Figure 10.3.2 An area between curves.

This example makes the process appear more straightforward than it is. Because
points have many different representations in polar coordinates, it is not always so easy to
identify points of intersection.

EXAMPLE 10.3.3 We find the shaded area in the first graph of figure 10.3.3 as the
difference of the other two shaded areas. The cardioid is r = 1 + sinf and the circle is
r = 3sinf. We attempt to find points of intersection:

1+ sinf = 3sinf
1 =2sin6
1/2 = siné.

This has solutions 6 = /6 and 57/6; 7/6 corresponds to the intersection in the first quad-
rant that we need. Note that no solution of this equation corresponds to the intersection
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point at the origin, but fortunately that one is obvious. The cardioid goes through the
origin when 6§ = —/2; the circle goes through the origin at multiples of 7, starting with
0.

Now the larger region has area

1 (/6 ™ 9
= 14sinf)?dd=-——3
2/W/2( + sin ) 3 16\[

and the smaller has area

1 [/ f 319
= 3sin0)?df =— — —V/3
2 /0 (3sin6) 8 16
so the area we seek is 7/8. O
‘ ) )
_ —

Figure 10.3.3 An area between curves.

Exercises 10.3.

Find the area enclosed by the curve.

1. 7 =Vsinf = 2. r=2+cost =

3. r=sect,r/6<0<7/3= 4. r=cos0,0<0<7/3=
5. r=2acosf,a>0= 6. r=4+3sinf =

7. Find the area inside the loop formed by r = tan(0/2). =

8. Find the area inside one loop of r = cos(30). =

9. Find the area inside one loop of r = sin® 0. =

10. Find the area inside the small loop of r = (1/2) + cos§. =
11. Find the area inside 7 = (1/2) 4 cos 6, including the area inside the small loop. =
12. Find the area inside one loop of 7% = cos(26). =

csc

\/ﬁAé

13. Find the area enclosed by » = tanf and r =
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14. Find the area inside r = 2 cos# and outside r = 1. =

15. Find the area inside r = 2sin 6 and above the line r = (3/2) cscf. =
16. Find the area inside r =60,0<0 < 27. =

17. Find the area inside r = \/5, 0<6<2r. =

18. Find the area inside both 7 = v3cos0 and r = sinf. =

19. Find the area inside both r =1 — cos@ and r = cosf. =

20. The center of a circle of radius 1 is on the circumference of a circle of radius 2. Find the area
of the region inside both circles. =

21. Find the shaded area in figure 10.3.4. The curveisr =0,0< 0 < 37. =

Figure 10.3.4 An area bounded by the spiral of Archimedes.

10.4 PARAMETRIC EQUATIONS

When we computed the derivative dy/dz using polar coordinates, we used the expressions
z = f(#)cosf and y = f(0)sinf. These two equations completely specify the curve,
though the form r = f(0) is simpler. The expanded form has the virtue that it can easily
be generalized to describe a wider range of curves than can be specified in rectangular or
polar coordinates.

Suppose f(t) and g(t) are functions. Then the equations z = f(t) and y = g(t)
describe a curve in the plane. In the case of the polar coordinates equations, the variable
t is replaced by 6 which has a natural geometric interpretation. But ¢ in general is simply
an arbitrary variable, often called in this case a parameter, and this method of specifying
a curve is known as parametric equations. One important interpretation of ¢ is time.
In this interpretation, the equations z = f(t) and y = g(t) give the position of an object
at time ¢.
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EXAMPLE 10.4.1 Describe the path of an object that moves so that its position at
time ¢ is given by = = cost, y = cos?t. We see immediately that y = 22, so the path lies
on this parabola. The path is not the entire parabola, however, since x = cost is always
between —1 and 1. It is now easy to see that the object oscillates back and forth on the
parabola between the endpoints (1,1) and (—1,1), and is at point (1,1) at timet =0. O

It is sometimes quite easy to describe a complicated path in parametric equations
when rectangular and polar coordinate expressions are difficult or impossible to devise.

EXAMPLE 10.4.2 A wheel of radius 1 rolls along a straight line, say the z-axis. A
point on the rim of the wheel will trace out a curve, called a cycloid. Assume the point
starts at the origin; find parametric equations for the curve.

Figure 10.4.1 illustrates the generation of the curve (click on the AP link to see an
animation). The wheel is shown at its starting point, and again after it has rolled through
about 490 degrees. We take as our parameter ¢ the angle through which the wheel has
turned, measured as shown clockwise from the line connecting the center of the wheel
to the ground. Because the radius is 1, the center of the wheel has coordinates (¢,1).
We seek to write the coordinates of the point on the rim as (¢ + Az,1 + Ay), where
Az and Ay are as shown in figure 10.4.2. These values are nearly the sine and cosine
of the angle ¢, from the unit circle definition of sine and cosine. However, some care is
required because we are measuring ¢ from a nonstandard starting line and in a clockwise
direction, as opposed to the usual counterclockwise direction. A bit of thought reveals
that Az = —sint and Ay = —cost. Thus the parametric equations for the cycloid are
r=1—sint, y =1—cost. O

Figure 10.4.1 A cycloid. (AP)

BN

Figure 10.4.2 The wheel.
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Ezxercises 10.4.

1. What curve is described by = = 2, y = t*? If ¢ is interpreted as time, describe how the
object moves on the curve.

2. What curve is described by © = 3cost, y = 3sint? If ¢ is interpreted as time, describe how
the object moves on the curve.

3. What curve is described by & = 3cost, y = 2sint? If ¢ is interpreted as time, describe how
the object moves on the curve.

4. What curve is described by @ = 3sint, y = 3cost? If ¢ is interpreted as time, describe how
the object moves on the curve.

5. Sketch the curve described by @ = t* —t, y = t2. If ¢ is interpreted as time, describe how the
object moves on the curve.

6. A wheel of radius 1 rolls along a straight line, say the z-axis. A point P is located halfway
between the center of the wheel and the rim; assume P starts at the point (0,1/2). As the
wheel rolls, P traces a curve; find parametric equations for the curve. =

7. A wheel of radius 1 rolls around the outside of a circle of radius 3. A point P on the rim of
the wheel traces out a curve called a hypercycloid, as indicated in figure 10.4.3. Assuming
P starts at the point (3,0), find parametric equations for the curve. =

Figure 10.4.3 A hypercycloid and a hypocycloid.

8. A wheel of radius 1 rolls around the inside of a circle of radius 3. A point P on the rim of
the wheel traces out a curve called a hypocycloid, as indicated in figure 10.4.3. Assuming
P starts at the point (3,0), find parametric equations for the curve. =

9. An involute of a circle is formed as follows: Imagine that a long (that is, infinite) string is
wound tightly around a circle, and that you grasp the end of the string and begin to unwind
it, keeping the string taut. The end of the string traces out the involute. Find parametric
equations for this curve, using a circle of radius 1, and assuming that the string unwinds
counter-clockwise and the end of the string is initially at (1,0). Figure 10.4.4 shows part of
the curve; the dotted lines represent the string at a few different times. =
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Figure 10.4.4 An involute of a circle.

10.5 CALCULUS WITH PARAMETRIC EQUATIONS

We have already seen how to compute slopes of curves given by parametric equations—it
is how we computed slopes in polar coordinates.

EXAMPLE 10.5.1 Find the slope of the cycloid x = t—sint, y = 1 —cost. We compute
2’ =1—cost, y' =sint, so

dy sint

dz  1-—cost’
Note that when ¢ is an odd multiple of =, like 7 or 3w, this is (0/2) = 0, so there is
a horizontal tangent line, in agreement with figure 10.4.1. At even multiples of m, the
fraction is 0/0, which is undefined. The figure shows that there is no tangent line at such
points. O

Areas can be a bit trickier with parametric equations, depending on the curve and the
area desired. We can potentially compute areas between the curve and the z-axis quite
easily.

EXAMPLE 10.5.2 Find the area under one arch of the cycloid © = t—sint, y = 1—cos't.
We would like to compute
27
/ y dz,
0

but we do not know y in terms of x. However, the parametric equations allow us to make
a substitution: use y = 1 — cost to replace y, and compute dz = (1 — cost) dt. Then the

integral becomes
27

(I —cost)(1— cost) dt = 3m.
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Note that we need to convert the original = limits to ¢ limits using = ¢ — sint. When
z = 0, t = sint, which happens only when ¢ = 0. Likewise, when z = 27, t — 27 = sint
and t = 27. Alternately, because we understand how the cycloid is produced, we can see
directly that one arch is generated by 0 < ¢ < 27. In general, of course, the ¢ limits will
be different than the z limits. O

This technique will allow us to compute some quite interesting areas, as illustrated by
the exercises.

As a final example, we see how to compute the length of a curve given by parametric
equations. Section 9.9 investigates arc length for functions given as y in terms of x, and

[y () o

Using some properties of derivative% including the chain rule, we can convert this to use

develops the formula for length:

parametric equations x = yy=g(t):

[ w () ()

- [ VTOEE @R a

Here uw and v are the ¢ limits corresponding to the x limits a and b.

EXAMPLE 10.5.3 Find the length of one arch of the cycloid. From z = t — sint,
y =1 — cost, we get the derivatives f’ =1 — cost and ¢’ = sint, so the length is

2m 27
/ /(1 — cost)? + sin® ¢ dt = V2 —2cost dt.
0 0

Now we use the formula sin?(¢/2) = (1 — cos(t))/2 or 4sin*(t/2) = 2 — 2cost to get

/0 \/4sin?(t/2) dt

Since 0 < ¢ < 2w, sin(¢/2) > 0, so we can rewrite this as

27
/ 2sin(t/2) dt = 8.
0
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Exercises 10.5.

1.

10.

11.
12.

Consider the curve of exercise 6 in section 10.4. Find all values of ¢ for which the curve has
a horizontal tangent line. =

. Consider the curve of exercise 6 in section 10.4. Find the area under one arch of the curve.

=

. Consider the curve of exercise 6 in section 10.4. Set up an integral for the length of one arch

of the curve. =

. Consider the hypercycloid of exercise 7 in section 10.4. Find all points at which the curve

has a horizontal tangent line. =

. Consider the hypercycloid of exercise 7 in section 10.4. Find the area between the large circle

and one arch of the curve. =

. Consider the hypercycloid of exercise 7 in section 10.4. Find the length of one arch of the

curve. =

. Consider the hypocycloid of exercise 8 in section 10.4. Find the area inside the curve. =

. Consider the hypocycloid of exercise 8 in section 10.4. Find the length of one arch of the

curve. =

. Recall the involute of a circle from exercise 9 in section 10.4. Find the point in the first

quadrant in figure 10.4.4 at which the tangent line is vertical. =

Recall the involute of a circle from exercise 9 in section 10.4. Instead of an infinite string,
suppose we have a string of length 7 attached to the unit circle at (—1,0), and initially laid
around the top of the circle with its end at (1,0). If we grasp the end of the string and begin
to unwind it, we get a piece of the involute, until the string is vertical. If we then keep the
string taut and continue to rotate it counter-clockwise, the end traces out a semi-circle with
center at (—1,0), until the string is vertical again. Continuing, the end of the string traces
out the mirror image of the initial portion of the curve; see figure 10.5.1. Find the area of
the region inside this curve and outside the unit circle. =

Figure 10.5.1 A region formed by the end of a string.

Find the length of the curve from the previous exercise, shown in figure 10.5.1. =
Find the length of the spiral of Archimedes (figure 10.3.4) for 0 < 6 < 27. =



