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Transcendental Functions

So far we have used only algebraic functions as examples when finding derivatives, that is,

functions that can be built up by the usual algebraic operations of addition, subtraction,

multiplication, division, and raising to constant powers. Both in theory and practice there

are other functions, called transcendental, that are very useful. Most important among

these are the trigonometric functions, the inverse trigonometric functions, exponential

functions, and logarithms.

4.1 Trigonometri Funtions

When you first encountered the trigonometric functions it was probably in the context of

“triangle trigonometry,” defining, for example, the sine of an angle as the “side opposite

over the hypotenuse.” While this will still be useful in an informal way, we need to use a

more expansive definition of the trigonometric functions. First an important note: while

degree measure of angles is sometimes convenient because it is so familiar, it turns out to

be ill-suited to mathematical calculation, so (almost) everything we do will be in terms of

radian measure of angles.
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To define the radian measurement system, we consider the unit circle in the xy-plane:

......

......

......

......

......

......

......

......
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
........
........
........
.........

.........
..........

...........
............

...............
...................


..................

...............
............
...........
..........
.........
.........
........
........
.......
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..

..................................................................................................................................................................................

x

(cosx, sinx)

y

A

B

(1, 0)

An angle, x, at the center of the circle is associated with an arc of the circle which is said

to subtend the angle. In the figure, this arc is the portion of the circle from point (1, 0)

to point A. The length of this arc is the radian measure of the angle x; the fact that the

radian measure is an actual geometric length is largely responsible for the usefulness of

radian measure. The circumference of the unit circle is 2πr = 2π(1) = 2π, so the radian

measure of the full circular angle (that is, of the 360 degree angle) is 2π.

While an angle with a particular measure can appear anywhere around the circle, we

need a fixed, conventional location so that we can use the coordinate system to define

properties of the angle. The standard convention is to place the starting radius for the

angle on the positive x-axis, and to measure positive angles counterclockwise around the

circle. In the figure, x is the standard location of the angle π/6, that is, the length of the

arc from (1, 0) to A is π/6. The angle y in the picture is −π/6, because the distance from

(1, 0) to B along the circle is also π/6, but in a clockwise direction.

Now the fundamental trigonometric definitions are: the cosine of x and the sine of x

are the first and second coordinates of the point A, as indicated in the figure. The angle x

shown can be viewed as an angle of a right triangle, meaning the usual triangle definitions

of the sine and cosine also make sense. Since the hypotenuse of the triangle is 1, the “side

opposite over hypotenuse” definition of the sine is the second coordinate of point A over

1, which is just the second coordinate; in other words, both methods give the same value

for the sine.

The simple triangle definitions work only for angles that can “fit” in a right triangle,

namely, angles between 0 and π/2. The coordinate definitions, on the other hand, apply
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to any angles, as indicated in this figure:
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x

A

(cos x, sinx)

The angle x is subtended by the heavy arc in the figure, that is, x = 7π/6. Both

coordinates of point A in this figure are negative, so the sine and cosine of 7π/6 are both

negative.

The remaining trigonometric functions can be most easily defined in terms of the sine

and cosine, as usual:

tanx =
sinx

cosx

cotx =
cosx

sinx

sec x =
1

cosx

csc x =
1

sinx

and they can also be defined as the corresponding ratios of coordinates.

Although the trigonometric functions are defined in terms of the unit circle, the unit

circle diagram is not what we normally consider the graph of a trigonometric function.

(The unit circle is the graph of, well, the circle.) We can easily get a qualitatively correct

idea of the graphs of the trigonometric functions from the unit circle diagram. Consider

the sine function, y = sinx. As x increases from 0 in the unit circle diagram, the second

coordinate of the point A goes from 0 to a maximum of 1, then back to 0, then to a

minimum of −1, then back to 0, and then it obviously repeats itself. So the graph of

y = sinx must look something like this:
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Similarly, as angle x increases from 0 in the unit circle diagram, the first coordinate of

the point A goes from 1 to 0 then to −1, back to 0 and back to 1, so the graph of y = cosx

must look something like this:
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Exercises 4.1.

Some useful trigonometric identities are in appendix B.

1. Find all values of θ such that sin(θ) = −1; give your answer in radians. ⇒
2. Find all values of θ such that cos(2θ) = 1/2; give your answer in radians. ⇒
3. Use an angle sum identity to compute cos(π/12). ⇒
4. Use an angle sum identity to compute tan(5π/12). ⇒
5. Verify the identity cos2(t)/(1− sin(t)) = 1 + sin(t).

6. Verify the identity 2 csc(2θ) = sec(θ) csc(θ).

7. Verify the identity sin(3θ)− sin(θ) = 2 cos(2θ) sin(θ).

8. Sketch y = 2 sin(x).

9. Sketch y = sin(3x).

10. Sketch y = sin(−x).

11. Find all of the solutions of 2 sin(t)− 1− sin2(t) = 0 in the interval [0, 2π]. ⇒

4.2 The Derivative of sinx

What about the derivative of the sine function? The rules for derivatives that we have are

no help, since sinx is not an algebraic function. We need to return to the definition of the

derivative, set up a limit, and try to compute it. Here’s the definition:

d

dx
sinx = lim

∆x→0

sin(x+∆x)− sinx

∆x
.

Using some trigonometric identities, we can make a little progress on the quotient:

sin(x+∆x)− sinx

∆x
=

sinx cos∆x+ sin∆x cosx− sinx

∆x

= sinx
cos∆x− 1

∆x
+ cosx

sin∆x

∆x
.
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This isolates the difficult bits in the two limits

lim
∆x→0

cos∆x− 1

∆x
and lim

∆x→0

sin∆x

∆x
.

Here we get a little lucky: it turns out that once we know the second limit the first is quite

easy. The second is quite tricky, however. Indeed, it is the hardest limit we will actually

compute, and we devote a section to it.

4.3 A hard limit

We want to compute this limit:

lim
∆x→0

sin∆x

∆x
.

Equivalently, to make the notation a bit simpler, we can compute

lim
x→0

sinx

x
.

In the original context we need to keep x and ∆x separate, but here it doesn’t hurt to

rename ∆x to something more convenient.

To do this we need to be quite clever, and to employ some indirect reasoning. The

indirect reasoning is embodied in a theorem, frequently called the squeeze theorem.

THEOREM 4.3.1 Squeeze Theorem Suppose that g(x) ≤ f(x) ≤ h(x) for all x

close to a but not equal to a. If limx→a g(x) = L = limx→a h(x), then limx→a f(x) =

L.

This theorem can be proved using the official definition of limit. We won’t prove it

here, but point out that it is easy to understand and believe graphically. The condition

says that f(x) is trapped between g(x) below and h(x) above, and that at x = a, both g

and h approach the same value. This means the situation looks something like figure 4.3.1.

The wiggly curve is x2 sin(π/x), the upper and lower curves are x2 and −x2. Since the

sine function is always between −1 and 1, −x2 ≤ x2 sin(π/x) ≤ x2, and it is easy to see

that limx→0 −x2 = 0 = limx→0 x
2. It is not so easy to see directly, that is algebraically,

that limx→0 x
2 sin(π/x) = 0, because the π/x prevents us from simply plugging in x = 0.

The squeeze theorem makes this “hard limit” as easy as the trivial limits involving x2.

To do the hard limit that we want, limx→0(sinx)/x, we will find two simpler functions

g and h so that g(x) ≤ (sinx)/x ≤ h(x), and so that limx→0 g(x) = limx→0 h(x). Not too

surprisingly, this will require some trigonometry and geometry. Referring to figure 4.3.2,

x is the measure of the angle in radians. Since the circle has radius 1, the coordinates of
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Figure 4.3.1 The squeeze theorem.

point A are (cosx, sinx), and the area of the small triangle is (cosx sinx)/2. This triangle

is completely contained within the circular wedge-shaped region bordered by two lines and

the circle from (1, 0) to point A. Comparing the areas of the triangle and the wedge we

see (cosx sinx)/2 ≤ x/2, since the area of a circular region with angle θ and radius r is

θr2/2. With a little algebra this turns into (sinx)/x ≤ 1/ cosx, giving us the h we seek.
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Figure 4.3.2 Visualizing sin x/x.

To find g, we note that the circular wedge is completely contained inside the larger

triangle. The height of the triangle, from (1, 0) to point B, is tanx, so comparing areas we

get x/2 ≤ (tanx)/2 = sinx/(2 cosx). With a little algebra this becomes cosx ≤ (sinx)/x.

So now we have

cosx ≤ sinx

x
≤ 1

cosx
.
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Finally, the two limits limx→0 cosx and limx→0 1/ cosx are easy, because cos(0) = 1. By

the squeeze theorem, limx→0(sinx)/x = 1 as well.

Before we can complete the calculation of the derivative of the sine, we need one other

limit:

lim
x→0

cosx− 1

x
.

This limit is just as hard as sinx/x, but closely related to it, so that we don’t have to do

a similar calculation; instead we can do a bit of tricky algebra.

cosx− 1

x
=

cosx− 1

x

cosx+ 1

cosx+ 1
=

cos2 x− 1

x(cosx+ 1)
=

− sin2 x

x(cosx+ 1)
= −sin x

x

sinx

cosx+ 1
.

To compute the desired limit it is sufficient to compute the limits of the two final fractions,

as x goes to 0. The first of these is the hard limit we’ve just done, namely 1. The second

turns out to be simple, because the denominator presents no problem:

lim
x→0

sinx

cosx+ 1
=

sin 0

cos 0 + 1
=

0

2
= 0.

Thus,

lim
x→0

cosx− 1

x
= 0.

Exercises 4.3.

1. Compute lim
x→0

sin(5x)

x
⇒ 2. Compute lim

x→0

sin(7x)

sin(2x)
⇒

3. Compute lim
x→0

cot(4x)

csc(3x)
⇒ 4. Compute lim

x→0

tanx

x
⇒

5. Compute lim
x→π/4

sin x− cos x

cos(2x)
⇒

6. For all x ≥ 0, 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7. Find lim
x→4

f(x). ⇒

7. For all x, 2x ≤ g(x) ≤ x4 − x2 + 2. Find lim
x→1

g(x). ⇒

8. Use the Squeeze Theorem to show that lim
x→0

x4 cos(2/x) = 0.
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4.4 The Derivative of sinx , ontinued

Now we can complete the calculation of the derivative of the sine:

d

dx
sinx = lim

∆x→0

sin(x+∆x)− sinx

∆x

= lim
∆x→0

sinx
cos∆x− 1

∆x
+ cosx

sin∆x

∆x

= sinx · 0 + cosx · 1 = cosx.

The derivative of a function measures the slope or steepness of the function; if we

examine the graphs of the sine and cosine side by side, it should be that the latter appears

to accurately describe the slope of the former, and indeed this is true:
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cos x

Notice that where the cosine is zero the sine does appear to have a horizontal tangent

line, and that the sine appears to be steepest where the cosine takes on its extreme values

of 1 and −1.

Of course, now that we know the derivative of the sine, we can compute derivatives of

more complicated functions involving the sine.

EXAMPLE 4.4.1 Compute the derivative of sin(x2).

d

dx
sin(x2) = cos(x2) · 2x = 2x cos(x2).

EXAMPLE 4.4.2 Compute the derivative of sin2(x3 − 5x).

d

dx
sin2(x3 − 5x) =

d

dx
(sin(x3 − 5x))2

= 2(sin(x3 − 5x))1 cos(x3 − 5x)(3x2 − 5)

= 2(3x2 − 5) cos(x3 − 5x) sin(x3 − 5x).
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Exercises 4.4.

Find the derivatives of the following functions.

1. sin2(
√
x) ⇒ 2.

√
x sin x ⇒

3.
1

sin x
⇒ 4.

x2 + x

sinx
⇒

5.
√

1− sin2 x ⇒

4.5 Derivatives of the Trigonometri Funtions

All of the other trigonometric functions can be expressed in terms of the sine, and so their

derivatives can easily be calculated using the rules we already have. For the cosine we

need to use two identities,

cosx = sin(x+
π

2
),

sinx = − cos(x+
π

2
).

Now:
d

dx
cosx =

d

dx
sin(x+

π

2
) = cos(x+

π

2
) · 1 = − sinx

d

dx
tanx =

d

dx

sinx

cosx
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x

d

dx
secx =

d

dx
(cosx)−1 = −1(cosx)−2(− sinx) =

sinx

cos2 x
= sec x tanx

The derivatives of the cotangent and cosecant are similar and left as exercises.

Exercises 4.5.

Find the derivatives of the following functions.

1. sin x cos x ⇒ 2. sin(cos x) ⇒
3.

√
x tan x ⇒ 4. tan x/(1 + sin x) ⇒

5. cotx ⇒ 6. csc x ⇒
7. x3 sin(23x2) ⇒ 8. sin2 x+ cos2 x ⇒
9. sin(cos(6x)) ⇒

10. Compute
d

dθ

sec θ

1 + sec θ
. ⇒

11. Compute
d

dt
t5 cos(6t). ⇒

12. Compute
d

dt

t3 sin(3t)

cos(2t)
. ⇒

13. Find all points on the graph of f(x) = sin2(x) at which the tangent line is horizontal. ⇒
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14. Find all points on the graph of f(x) = 2 sin(x)−sin2(x) at which the tangent line is horizontal.
⇒

15. Find an equation for the tangent line to sin2(x) at x = π/3. ⇒
16. Find an equation for the tangent line to sec2 x at x = π/3. ⇒
17. Find an equation for the tangent line to cos2 x− sin2(4x) at x = π/6. ⇒
18. Find the points on the curve y = x+ 2 cos x that have a horizontal tangent line. ⇒
19. Let C be a circle of radius r. Let A be an arc on C subtending a central angle θ. Let B be

the chord of C whose endpoints are the endpoints of A. (Hence, B also subtends θ.) Let
s be the length of A and let d be the length of B. Sketch a diagram of the situation and
compute lim

θ→0+
s/d.

4.6 Exponential and Logarithmi funtions

An exponential function has the form ax, where a is a constant; examples are 2x, 10x, ex.

The logarithmic functions are the inverses of the exponential functions, that is, functions

that “undo” the exponential functions, just as, for example, the cube root function “un-

does” the cube function:
3
√
23 = 2. Note that the original function also undoes the inverse

function: (
3
√
8)3 = 8.

Let f(x) = 2x. The inverse of this function is called the logarithm base 2, denoted

log2(x) or (especially in computer science circles) lg(x). What does this really mean? The

logarithm must undo the action of the exponential function, so for example it must be that

lg(23) = 3—starting with 3, the exponential function produces 23 = 8, and the logarithm

of 8 must get us back to 3. A little thought shows that it is not a coincidence that lg(23)

simply gives the exponent—the exponent is the original value that we must get back to.

In other words, the logarithm is the exponent. Remember this catchphrase, and what it

means, and you won’t go wrong. (You do have to remember what it means. Like any

good mnemonic, “the logarithm is the exponent” leaves out a lot of detail, like “Which

exponent?” and “Exponent of what?”)

EXAMPLE 4.6.1 What is the value of log10(1000)? The “10” tells us the appropriate

number to use for the base of the exponential function. The logarithm is the exponent,

so the question is, what exponent E makes 10E = 1000? If we can find such an E, then

log10(1000) = log10(10
E) = E; finding the appropriate exponent is the same as finding the

logarithm. In this case, of course, it is easy: E = 3 so log10(1000) = 3.

Let’s review some laws of exponents and logarithms; let a be a positive number. Since

a5 = a ·a ·a ·a ·a and a3 = a ·a ·a, it’s clear that a5 ·a3 = a ·a ·a ·a ·a ·a ·a ·a= a8 = a5+3,

and in general that aman = am+n. Since “the logarithm is the exponent,” it’s no surprise

that this translates directly into a fact about the logarithm function. Here are three facts
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from the example: loga(a
5) = 5, loga(a

3) = 3, loga(a
8) = 8. So loga(a

5a3) = loga(a
8) =

8 = 5 + 3 = loga(a
5) + loga(a

3). Now let’s make this a bit more general. Suppose A and

B are two numbers, A = ax, and B = ay. Then loga(AB) = loga(a
xay) = loga(a

x+y) =

x+ y = loga(A) + loga(B).

Now consider (a5)3 = a5 · a5 · a5 = a5+5+5 = a5·3 = a15. Again it’s clear that more

generally (am)n = amn, and again this gives us a fact about logarithms. If A = ax then

Ay = (ax)y = axy, so loga(A
y) = xy = y loga(A)—the exponent can be “pulled out in

front.”

We have cheated a bit in the previous two paragraphs. It is obvious that a5 = a·a·a·a·a
and a3 = a · a · a and that the rest of the example follows; likewise for the second example.

But when we consider an exponential function ax we can’t be limited to substituting

integers for x. What does a2.5 or a−1.3 or aπ mean? And is it really true that a2.5a−1.3 =

a2.5−1.3? The answer to the first question is actually quite difficult, so we will evade it;

the answer to the second question is “yes.”

We’ll evade the full answer to the hard question, but we have to know something about

exponential functions. You need first to understand that since it’s not “obvious” what 2x

should mean, we are really free to make it mean whatever we want, so long as we keep the

behavior that is obvious, namely, when x is a positive integer. What else do we want to

be true about 2x? We want the properties of the previous two paragraphs to be true for

all exponents: 2x2y = 2x+y and (2x)y = 2xy.

After the positive integers, the next easiest number to understand is 0: 20 = 1. You

have presumably learned this fact in the past; why is it true? It is true precisely because

we want 2a2b = 2a+b to be true about the function 2x. We need it to be true that

202x = 20+x = 2x, and this only works if 20 = 1. The same argument implies that a0 = 1

for any a.

The next easiest set of numbers to understand is the negative integers: for example,

2−3 = 1/23. We know that whatever 2−3 means it must be that 2−323 = 2−3+3 = 20 = 1,

which means that 2−3 must be 1/23. In fact, by the same argument, once we know what

2x means for some value of x, 2−x must be 1/2x and more generally a−x = 1/ax.

Next, consider an exponent 1/q, where q is a positive integer. We want it to be true

that (2x)y = 2xy, so (21/q)q = 2. This means that 21/q is a q-th root of 2, 21/q =
q
√
2 . This

is all we need to understand that 2p/q = (21/q)p = ( q
√
2 )p and ap/q = (a1/q)p = ( q

√
a )p.

What’s left is the hard part: what does 2x mean when x cannot be written as a

fraction, like x =
√
2 or x = π? What we know so far is how to assign meaning to 2x
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whenever x = p/q; if we were to graph this we’d see something like this:
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But this is a poor picture, because you can’t see that the “curve” is really a whole lot

of individual points, above the rational numbers on the x-axis. There are really a lot of

“holes” in the curve, above x = π, for example. But (this is the hard part) it is possible

to prove that the holes can be “filled in”, and that the resulting function, called 2x, really

does have the properties we want, namely that 2x2y = 2x+y and (2x)y = 2xy.

Exercises 4.6.

1. Expand log10((x+ 45)7(x− 2)). ⇒

2. Expand log2
x3

3x− 5 + (7/x)
. ⇒

3. Write log2 3x+ 17 log2(x− 2)− 2 log2(x
2 + 4x+ 1) as a single logarithm. ⇒

4. Solve log2(1 +
√
x) = 6 for x. ⇒

5. Solve 2x
2

= 8 for x. ⇒
6. Solve log2(log3(x)) = 1 for x. ⇒

4.7 Derivatives of the exponential and

logarithmi funtions

As with the sine, we don’t know anything about derivatives that allows us to compute

the derivatives of the exponential and logarithmic functions without going back to basics.

Let’s do a little work with the definition again:

d

dx
ax = lim

∆x→0

ax+∆x − ax

∆x

= lim
∆x→0

axa∆x − ax

∆x

= lim
∆x→0

ax
a∆x − 1

∆x

= ax lim
∆x→0

a∆x − 1

∆x
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There are two interesting things to note here: As in the case of the sine function we are left

with a limit that involves ∆x but not x, which means that whatever lim
∆x→0

(a∆x − 1)/∆x

is, we know that it is a number, that is, a constant. This means that ax has a remarkable

property: its derivative is a constant times itself.

We earlier remarked that the hardest limit we would compute is lim
x→0

sinx/x = 1; we

now have a limit that is just a bit too hard to include here. In fact the hard part is to

see that lim
∆x→0

(a∆x − 1)/∆x even exists—does this fraction really get closer and closer to

some fixed value? Yes it does, but we will not prove this fact.

We can look at some examples. Consider (2x − 1)/x for some small values of x: 1,

0.828427124, 0.756828460, 0.724061864, 0.70838051, 0.70070877 when x is 1, 1/2, 1/4,

1/8, 1/16, 1/32, respectively. It looks like this is settling in around 0.7, which turns out

to be true (but the limit is not exactly 0.7). Consider next (3x − 1)/x: 2, 1.464101616,

1.264296052, 1.177621520, 1.13720773, 1.11768854, at the same values of x. It turns out

to be true that in the limit this is about 1.1. Two examples don’t establish a pattern, but

if you do more examples you will find that the limit varies directly with the value of a:

bigger a, bigger limit; smaller a, smaller limit. As we can already see, some of these limits

will be less than 1 and some larger than 1. Somewhere between a = 2 and a = 3 the limit

will be exactly 1; the value at which this happens is called e, so that

lim
∆x→0

e∆x − 1

∆x
= 1.

As you might guess from our two examples, e is closer to 3 than to 2, and in fact e ≈ 2.718.

Now we see that the function ex has a truly remarkable property:

d

dx
ex = lim

∆x→0

ex+∆x − ex

∆x

= lim
∆x→0

exe∆x − ex

∆x

= lim
∆x→0

ex
e∆x − 1

∆x

= ex lim
∆x→0

e∆x − 1

∆x

= ex

That is, ex is its own derivative, or in other words the slope of ex is the same as its height,

or the same as its second coordinate: The function f(x) = ex goes through the point

(z, ez) and has slope ez there, no matter what z is. It is sometimes convenient to express

the function ex without an exponent, since complicated exponents can be hard to read. In

such cases we use exp(x), e.g., exp(1 + x2) instead of e1+x2

.
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What about the logarithm function? This too is hard, but as the cosine function was

easier to do once the sine was done, so the logarithm is easier to do now that we know

the derivative of the exponential function. Let’s start with loge x, which as you probably

know is often abbreviated lnx and called the “natural logarithm” function.

Consider the relationship between the two functions, namely, that they are inverses,

that one “undoes” the other. Graphically this means that they have the same graph except

that one is “flipped” or “reflected” through the line y = x, as shown in figure 4.7.1.
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Figure 4.7.1 The exponential and logarithm functions.

This means that the slopes of these two functions are closely related as well: For example,

the slope of ex is e at x = 1; at the corresponding point on the ln(x) curve, the slope must

be 1/e, because the “rise” and the “run” have been interchanged. Since the slope of ex is

e at the point (1, e), the slope of ln(x) is 1/e at the point (e, 1).
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Figure 4.7.2 Slope of the exponential and logarithm functions.

More generally, we know that the slope of ex is ez at the point (z, ez), so the slope of

ln(x) is 1/ez at (ez, z), as indicated in figure 4.7.2. In other words, the slope of lnx is the

reciprocal of the first coordinate at any point; this means that the slope of lnx at (x, lnx)

is 1/x. The upshot is:
d

dx
lnx =

1

x
.
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We have discussed this from the point of view of the graphs, which is easy to understand

but is not normally considered a rigorous proof—it is too easy to be led astray by pictures

that seem reasonable but that miss some hard point. It is possible to do this derivation

without resorting to pictures, and indeed we will see an alternate approach soon.

Note that lnx is defined only for x > 0. It is sometimes useful to consider the function

ln |x|, a function defined for x 6= 0. When x < 0, ln |x| = ln(−x) and

d

dx
ln |x| = d

dx
ln(−x) =

1

−x
(−1) =

1

x
.

Thus whether x is positive or negative, the derivative is the same.

What about the functions ax and loga x? We know that the derivative of ax is some

constant times ax itself, but what constant? Remember that “the logarithm is the expo-

nent” and you will see that a = eln a. Then

ax = (eln a)x = ex ln a,

and we can compute the derivative using the chain rule:

d

dx
ax =

d

dx
(eln a)x =

d

dx
ex ln a = (ln a)ex ln a = (lna)ax.

The constant is simply ln a. Likewise we can compute the derivative of the logarithm

function loga x. Since

x = elnx

we can take the logarithm base a of both sides to get

loga(x) = loga(e
lnx) = lnx loga e.

Then
d

dx
loga x =

1

x
loga e.

This is a perfectly good answer, but we can improve it slightly. Since

a = eln a

loga(a) = loga(e
ln a) = lna loga e

1 = lna loga e

1

ln a
= loga e,
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we can replace loga e to get
d

dx
loga x =

1

x lna
.

You may if you wish memorize the formulas

d

dx
ax = (lna)ax and

d

dx
loga x =

1

x lna
.

Because the “trick” a = eln a is often useful, and sometimes essential, it may be better to

remember the trick, not the formula.

EXAMPLE 4.7.1 Compute the derivative of f(x) = 2x.

d

dx
2x =

d

dx
(eln 2)x

=
d

dx
ex ln 2

=

(

d

dx
x ln 2

)

ex ln 2

= (ln 2)ex ln 2 = 2x ln 2

EXAMPLE 4.7.2 Compute the derivative of f(x) = 2x
2

= 2(x
2).

d

dx
2x

2

=
d

dx
ex

2 ln 2

=

(

d

dx
x2 ln 2

)

ex
2 ln 2

= (2 ln 2)xex
2 ln 2

= (2 ln 2)x2x
2

EXAMPLE 4.7.3 Compute the derivative of f(x) = xx. At first this appears to be

a new kind of function: it is not a constant power of x, and it does not seem to be an

exponential function, since the base is not constant. But in fact it is no harder than the

previous example.
d

dx
xx =

d

dx
ex ln x

=

(

d

dx
x lnx

)

ex lnx

= (x
1

x
+ lnx)xx

= (1 + lnx)xx
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EXAMPLE 4.7.4 Recall that we have not justified the power rule except when the

exponent is a positive or negative integer. We can use the exponential function to take

care of other exponents.
d

dx
xr =

d

dx
er lnx

=

(

d

dx
r lnx

)

er lnx

= (r
1

x
)xr

= rxr−1

Exercises 4.7.

In 1–19, find the derivatives of the functions.

1. 3x
2

⇒ 2.
sin x

ex
⇒

3. (ex)2 ⇒ 4. sin(ex) ⇒
5. esin x ⇒ 6. xsin x ⇒
7. x3ex ⇒ 8. x+ 2x ⇒
9. (1/3)x

2

⇒ 10. e4x/x ⇒
11. ln(x3 + 3x) ⇒ 12. ln(cos(x)) ⇒
13.

√

ln(x2)/x ⇒ 14. ln(sec(x) + tan(x)) ⇒
15. xcos(x) ⇒ 16. x lnx ⇒

17. ln(ln(3x)) ⇒ 18.
1 + ln(3x2)

1 + ln(4x)
⇒

19.
x8(x− 23)1/2

27x6(4x− 6)8
⇒

20. Find the value of a so that the tangent line to y = ln(x) at x = a is a line through the origin.
Sketch the resulting situation. ⇒

21. If f(x) = ln(x3 + 2) compute f ′(e1/3). ⇒

4.8 Impliit Differentiation

As we have seen, there is a close relationship between the derivatives of ex and lnx because

these functions are inverses. Rather than relying on pictures for our understanding, we

would like to be able to exploit this relationship computationally. In fact this technique

can help us find derivatives in many situations, not just when we seek the derivative of an

inverse function.
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We will begin by illustrating the technique to find what we already know, the derivative

of lnx. Let’s write y = lnx and then x = elnx = ey , that is, x = ey. We say that

this equation defines the function y = lnx implicitly because while it is not an explicit

expression y = . . ., it is true that if x = ey then y is in fact the natural logarithm function.

Now, for the time being, pretend that all we know of y is that x = ey; what can we say

about derivatives? We can take the derivative of both sides of the equation:

d

dx
x =

d

dx
ey.

Then using the chain rule on the right hand side:

1 =

(

d

dx
y

)

ey = y′ey .

Then we can solve for y′:

y′ =
1

ey
=

1

x
.

There is one little difficulty here. To use the chain rule to compute d/dx(ey) = y′ey we

need to know that the function y has a derivative. All we have shown is that if it has a

derivative then that derivative must be 1/x. When using this method we will always have

to assume that the desired derivative exists, but fortunately this is a safe assumption for

most such problems.

The example y = lnx involved an inverse function defined implicitly, but other func-

tions can be defined implicitly, and sometimes a single equation can be used to implicitly

define more than one function. Here’s a familiar example. The equation r2 = x2 + y2

describes a circle of radius r. The circle is not a function y = f(x) because for some values

of x there are two corresponding values of y. If we want to work with a function, we can

break the circle into two pieces, the upper and lower semicircles, each of which is a function.

Let’s call these y = U(x) and y = L(x); in fact this is a fairly simple example, and it’s

possible to give explicit expressions for these: U(x) =
√

r2 − x2 and L(x) = −
√

r2 − x2 .

But it’s somewhat easier, and quite useful, to view both functions as given implicitly by

r2 = x2 + y2: both r2 = x2 + U(x)2 and r2 = x2 + L(x)2 are true, and we can think of

r2 = x2 + y2 as defining both U(x) and L(x).

Now we can take the derivative of both sides as before, remembering that y is not

simply a variable but a function—in this case, y is either U(x) or L(x) but we’re not yet

specifying which one. When we take the derivative we just have to remember to apply the
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chain rule where y appears.
d

dx
r2 =

d

dx
(x2 + y2)

0 = 2x+ 2yy′

y′ =
−2x

2y
= −x

y

Now we have an expression for y′, but it contains y as well as x. This means that if we

want to compute y′ for some particular value of x we’ll have to know or compute y at that

value of x as well. It is at this point that we will need to know whether y is U(x) or L(x).

Occasionally it will turn out that we can avoid explicit use of U(x) or L(x) by the nature

of the problem.

EXAMPLE 4.8.1 Find the slope of the circle 4 = x2 + y2 at the point (1,−
√
3). Since

we know both the x and y coordinates of the point of interest, we do not need to explicitly

recognize that this point is on L(x), and we do not need to use L(x) to compute y—but

we could. Using the calculation of y′ from above,

y′ = −x

y
= − 1

−
√
3
=

1√
3
.

It is instructive to compare this approach to others.

We might have recognized at the start that (1,−
√
3) is on the function y = L(x) =

−
√

4− x2. We could then take the derivative of L(x), using the power rule and the chain

rule, to get

L′(x) = −1

2
(4− x2)−1/2(−2x) =

x√
4− x2

.

Then we could compute L′(1) = 1/
√
3 by substituting x = 1.

Alternately, we could realize that the point is on L(x), but use the fact that y′ = −x/y.

Since the point is on L(x) we can replace y by L(x) to get

y′ = − x

L(x)
=

x√
4− x2

,

without computing the derivative of L(x) explicitly. Then we substitute x = 1 and get the

same answer as before.

In the case of the circle it is possible to find the functions U(x) and L(x) explicitly, but

there are potential advantages to using implicit differentiation anyway. In some cases it is

more difficult or impossible to find an explicit formula for y and implicit differentiation is

the only way to find the derivative.
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EXAMPLE 4.8.2 Find the derivative of any function defined implicitly by yx2+ey = x.

We treat y as an unspecified function and use the chain rule:

d

dx
(yx2 + ey) =

d

dx
x

(y · 2x+ y′ · x2) + y′ey = 1

y′x2 + y′ey = 1− 2xy

y′(x2 + ey) = 1− 2xy

y′ =
1− 2xy

x2 + ey

You might think that the step in which we solve for y′ could sometimes be difficult—

after all, we’re using implicit differentiation here because we can’t solve the equation

yx2 + ey = x for y, so maybe after taking the derivative we get something that is hard to

solve for y′. In fact, this never happens. All occurrences of y′ come from applying the chain

rule, and whenever the chain rule is used it deposits a single y′ multiplied by some other

expression. So it will always be possible to group the terms containing y′ together and

factor out the y′, just as in the previous example. If you ever get anything more difficult

you have made a mistake and should fix it before trying to continue.

It is sometimes the case that a situation leads naturally to an equation that defines a

function implicitly.

EXAMPLE 4.8.3 Consider all the points (x, y) that have the property that the distance

from (x, y) to (x1, y1) plus the distance from (x, y) to (x2, y2) is 2a (a is some constant).

These points form an ellipse, which like a circle is not a function but can viewed as two

functions pasted together. Because we know how to write down the distance between two

points, we can write down an implicit equation for the ellipse:

√

(x− x1)2 + (y − y1)2 +
√

(x− x2)2 + (y − y2)2 = 2a.

Then we can use implicit differentiation to find the slope of the ellipse at any point, though

the computation is rather messy.

EXAMPLE 4.8.4 We have already justified the power rule by using the exponential

function, but we could also do it for rational exponents by using implicit differentiation.

Suppose that y = xm/n, where m and n are positive integers. We can write this implicitly

as yn = xm, then because we justified the power rule for integers, we can take the derivative
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of each side:
nyn−1y′ = mxm−1

y′ =
m

n

xm−1

yn−1

y′ =
m

n

xm−1

(xm/n)n−1

y′ =
m

n
xm−1−(m/n)(n−1)

y′ =
m

n
xm−1−m+(m/n)

y′ =
m

n
x(m/n)−1

Exercises 4.8.

In exercises 1–8, find a formula for the derivative y′ at the point (x, y):

1. y2 = 1 + x2 ⇒
2. x2 + xy + y2 = 7 ⇒
3. x3 + xy2 = y3 + yx2 ⇒
4. 4 cosx sin y = 1 ⇒
5.

√
x+

√
y = 9 ⇒

6. tan(x/y) = x+ y ⇒
7. sin(x+ y) = xy ⇒

8.
1

x
+

1

y
= 7 ⇒

9. A hyperbola passing through (8, 6) consists of all points whose distance from the origin is a
constant more than its distance from the point (5,2). Find the slope of the tangent line to
the hyperbola at (8, 6). ⇒

10. Compute y′ for the ellipse of example 4.8.3.

11. If y = loga x then ay = x. Use implicit differentiation to find y′.

12. The graph of the equation x2 −xy+ y2 = 9 is an ellipse. Find the lines tangent to this curve
at the two points where it intersects the x-axis. Show that these lines are parallel. ⇒

13. Repeat the previous problem for the points at which the ellipse intersects the y-axis. ⇒
14. Find the points on the ellipse from the previous two problems where the slope is horizontal

and where it is vertical. ⇒
15. Find an equation for the tangent line to x4 = y2+x2 at (2,

√
12). (This curve is the kampyle

of Eudoxus.) ⇒
16. Find an equation for the tangent line to x2/3 + y2/3 = a2/3 at a point (x1, y1) on the curve,

with x1 6= 0 and y1 6= 0. (This curve is an astroid.) ⇒
17. Find an equation for the tangent line to (x2+y2)2 = x2−y2 at a point (x1, y1) on the curve,

when y1 6= 0. (This curve is a lemniscate.) ⇒
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Definition. Two curves are orthogonal if at each point of intersection, the angle between
their tangent lines is π/2. Two families of curves, A and B, are orthogonal trajectories of each
other if given any curve C in A and any curve D in B the curves C and D are orthogonal. For
example, the family of horizontal lines in the plane is orthogonal to the family of vertical lines in
the plane.

18. Show that x2 − y2 = 5 is orthogonal to 4x2 + 9y2 = 72. (Hint: You need to find the
intersection points of the two curves and then show that the product of the derivatives at
each intersection point is −1.)

19. Show that x2+y2 = r2 is orthogonal to y = mx. Conclude that the family of circles centered
at the origin is an orthogonal trajectory of the family of lines that pass through the origin.

Note that there is a technical issue when m = 0. The circles fail to be differentiable
when they cross the x-axis. However, the circles are orthogonal to the x-axis. Explain why.
Likewise, the vertical line through the origin requires a separate argument.

20. For k 6= 0 and c 6= 0 show that y2 − x2 = k is orthogonal to yx = c. In the case where k and
c are both zero, the curves intersect at the origin. Are the curves y2 − x2 = 0 and yx = 0
orthogonal to each other?

21. Suppose that m 6= 0. Show that the family of curves {y = mx + b | b ∈ R} is orthogonal to
the family of curves {y = −(x/m) + c | c ∈ R}.

4.9 Inverse Trigonometri Funtions

The trigonometric functions frequently arise in problems, and often it is necessary to

invert the functions, for example, to find an angle with a specified sine. Of course, there

are many angles with the same sine, so the sine function doesn’t actually have an inverse

that reliably “undoes” the sine function. If you know that sinx = 0.5, you can’t reverse

this to discover x, that is, you can’t solve for x, as there are infinitely many angles with

sine 0.5. Nevertheless, it is useful to have something like an inverse to the sine, however

imperfect. The usual approach is to pick out some collection of angles that produce all

possible values of the sine exactly once. If we “discard” all other angles, the resulting

function does have a proper inverse.

The sine takes on all values between −1 and 1 exactly once on the interval [−π/2, π/2].

If we truncate the sine, keeping only the interval [−π/2, π/2], as shown in figure 4.9.1, then

this truncated sine has an inverse function. We call this the inverse sine or the arcsine,

and write y = arcsin(x).

Recall that a function and its inverse undo each other in either order, for example,

( 3
√
x)3 = x and

3
√
x3 = x. This does not work with the sine and the “inverse sine” because

the inverse sine is the inverse of the truncated sine function, not the real sine function.

It is true that sin(arcsin(x)) = x, that is, the sine undoes the arcsine. It is not true that

the arcsine undoes the sine, for example, sin(5π/6) = 1/2 and arcsin(1/2) = π/6, so doing

first the sine then the arcsine does not get us back where we started. This is because 5π/6
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Figure 4.9.1 The sine, the truncated sine, the inverse sine.

is not in the domain of the truncated sine. If we start with an angle between −π/2 and

π/2 then the arcsine does reverse the sine: sin(π/6) = 1/2 and arcsin(1/2) = π/6.

What is the derivative of the arcsine? Since this is an inverse function, we can discover

the derivative by using implicit differentiation. Suppose y = arcsin(x). Then

sin(y) = sin(arcsin(x)) = x.

Now taking the derivative of both sides, we get

y′ cos y = 1

y′ =
1

cos y

As we expect when using implicit differentiation, y appears on the right hand side here.

We would certainly prefer to have y′ written in terms of x, and as in the case of lnx we

can actually do that here. Since sin2 y + cos2 y = 1, cos2 y = 1 − sin2 y = 1 − x2. So

cos y = ±
√

1− x2 , but which is it—plus or minus? It could in general be either, but this

isn’t “in general”: since y = arcsin(x) we know that −π/2 ≤ y ≤ π/2, and the cosine of

an angle in this interval is always positive. Thus cos y =
√

1− x2 and

d

dx
arcsin(x) =

1√
1− x2

.

Note that this agrees with figure 4.9.1: the graph of the arcsine has positive slope every-

where.

We can do something similar for the cosine. As with the sine, we must first truncate

the cosine so that it can be inverted, as shown in figure 4.9.2. Then we use implicit
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Figure 4.9.2 The truncated cosine, the inverse cosine.

differentiation to find that
d

dx
arccos(x) =

−1√
1− x2

.

Note that the truncated cosine uses a different interval than the truncated sine, so that if

y = arccos(x) we know that 0 ≤ y ≤ π. The computation of the derivative of the arccosine

is left as an exercise.

Finally we look at the tangent; the other trigonometric functions also have “partial

inverses” but the sine, cosine and tangent are enough for most purposes. The tangent,

truncated tangent and inverse tangent are shown in figure 4.9.3; the derivative of the

arctangent is left as an exercise.
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Figure 4.9.3 The tangent, the truncated tangent, the inverse tangent.

Exercises 4.9.

1. Show that the derivative of arccos x is − 1√
1− x2

.

2. Show that the derivative of arctan x is
1

1 + x2
.
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3. The inverse of cot is usually defined so that the range of arccot is (0, π). Sketch the graph
of y = arccotx. In the process you will make it clear what the domain of arccot is. Find the
derivative of the arccotangent. ⇒

4. Show that arccotx+ arctan x = π/2.

5. Find the derivative of arcsin(x2). ⇒
6. Find the derivative of arctan(ex). ⇒
7. Find the derivative of arccos(sinx3) ⇒
8. Find the derivative of ln((arcsin x)2) ⇒
9. Find the derivative of arccos ex ⇒

10. Find the derivative of arcsin x+ arccos x ⇒
11. Find the derivative of log5(arctan(x

x)) ⇒

4.10 Limits revisited

We have defined and used the concept of limit, primarily in our development of the deriva-

tive. Recall that lim
x→a

f(x) = L is true if, in a precise sense, f(x) gets closer and closer to

L as x gets closer and closer to a. While some limits are easy to see, others take some

ingenuity; in particular, the limits that define derivatives are always difficult on their face,

since in

lim
∆x→0

f(x+∆x)− f(x)

∆x

both the numerator and denominator approach zero. Typically this difficulty can be re-

solved when f is a “nice” function and we are trying to compute a derivative. Occasionally

such limits are interesting for other reasons, and the limit of a fraction in which both nu-

merator and denominator approach zero can be difficult to analyze. Now that we have

the derivative available, there is another technique that can sometimes be helpful in such

circumstances.

Before we introduce the technique, we will also expand our concept of limit, in two

ways. When the limit of f(x) as x approaches a does not exist, it may be useful to note in

what way it does not exist. We have already talked about one such case: one-sided limits.

Another case is when “f goes to infinity”. We also will occasionally want to know what

happens to f when x “goes to infinity”.

EXAMPLE 4.10.1 What happens to 1/x as x goes to 0? From the right, 1/x gets

bigger and bigger, or goes to infinity. From the left it goes to negative infinity.

EXAMPLE 4.10.2 What happens to the function cos(1/x) as x goes to infinity? It

seems clear that as x gets larger and larger, 1/x gets closer and closer to zero, so cos(1/x)

should be getting closer and closer to cos(0) = 1.
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As with ordinary limits, these concepts can be made precise. Roughly, we want

lim
x→a

f(x) = ∞ to mean that we can make f(x) arbitrarily large by making x close enough

to a, and lim
x→∞

f(x) = L should mean we can make f(x) as close as we want to L by

making x large enough. Compare this definition to the definition of limit in section 2.3,

definition 2.3.2.

DEFINITION 4.10.3 If f is a function, we say that lim
x→a

f(x) = ∞ if for every N > 0

there is a δ > 0 such that whenever |x − a| < δ, f(x) > N . We can extend this in the

obvious ways to define lim
x→a

f(x) = −∞, lim
x→a−

f(x) = ±∞, and lim
x→a+

f(x) = ±∞.

DEFINITION 4.10.4 Limit at infinity If f is a function, we say that lim
x→∞

f(x) =

L if for every ǫ > 0 there is an N > 0 so that whenever x > N , |f(x)− L| < ǫ. We may

similarly define lim
x→−∞

f(x) = L, and using the idea of the previous definition, we may

define lim
x→±∞

f(x) = ±∞.

We include these definitions for completeness, but we will not explore them in detail.

Suffice it to say that such limits behave in much the same way that ordinary limits do; in

particular there are some analogs of theorem 2.3.6.

Now consider this limit:

lim
x→π

x2 − π2

sinx
.

As x approaches π, both the numerator and denominator approach zero, so it is not

obvious what, if anything, the quotient approaches. We can often compute such limits by

application of the following theorem.

THEOREM 4.10.5 L’Hôpital’s Rule For “sufficiently nice” functions f(x) and

g(x), if lim
x→a

f(x) = 0 = lim
x→a

g(x) or both lim
x→a

f(x) = ±∞ and limx→a g(x) = ±∞, and if

lim
x→a

f ′(x)

g′(x)
exists, then lim

x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. This remains true if “x → a” is replaced by

“x → ∞” or “x → −∞”.

This theorem is somewhat difficult to prove, in part because it incorporates so many

different possibilities, so we will not prove it here. We also will not need to worry about

the precise definition of “sufficiently nice”, as the functions we encounter will be suitable.

EXAMPLE 4.10.6 Compute lim
x→π

x2 − π2

sinx
in two ways.
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First we use L’Hôpital’s Rule: Since the numerator and denominator both approach

zero,

lim
x→π

x2 − π2

sinx
= lim

x→π

2x

cosx
,

provided the latter exists. But in fact this is an easy limit, since the denominator now

approaches −1, so

lim
x→π

x2 − π2

sinx
=

2π

−1
= −2π.

We don’t really need L’Hôpital’s Rule to do this limit. Rewrite it as

lim
x→π

(x+ π)
x− π

sinx

and note that

lim
x→π

x− π

sinx
= lim

x→π

x− π

− sin(x− π)
= lim

x→0
− x

sinx

since x− π approaches zero as x approaches π. Now

lim
x→π

(x+ π)
x− π

sinx
= lim

x→π
(x+ π) lim

x→0
− x

sinx
= 2π(−1) = −2π

as before.

EXAMPLE 4.10.7 Compute lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
in two ways.

As x goes to infinity both the numerator and denominator go to infinity, so we may

apply L’Hôpital’s Rule:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

4x− 3

2x+ 47
.

In the second quotient, it is still the case that the numerator and denominator both go to

infinity, so we are allowed to use L’Hôpital’s Rule again:

lim
x→∞

4x− 3

2x+ 47
= lim

x→∞

4

2
= 2.

So the original limit is 2 as well.

Again, we don’t really need L’Hôpital’s Rule, and in fact a more elementary approach

is easier—we divide the numerator and denominator by x2:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

2x2 − 3x+ 7

x2 + 47x+ 1

1
x2

1
x2

= lim
x→∞

2− 3
x + 7

x2

1 + 47
x + 1

x2

.

Now as x approaches infinity, all the quotients with some power of x in the denominator

approach zero, leaving 2 in the numerator and 1 in the denominator, so the limit again is

2.
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EXAMPLE 4.10.8 Compute lim
x→0

secx− 1

sinx
.

Both the numerator and denominator approach zero, so applying L’Hôpital’s Rule:

lim
x→0

sec x− 1

sinx
= lim

x→0

secx tanx

cosx
=

1 · 0
1

= 0.

EXAMPLE 4.10.9 Compute lim
x→0+

x lnx.

This doesn’t appear to be suitable for L’Hôpital’s Rule, but it also is not “obvious”.

As x approaches zero, lnx goes to −∞, so the product looks like (something very small) ·
(something very large and negative). But this could be anything: it depends on how small

and how large. For example, consider (x2)(1/x), (x)(1/x), and (x)(1/x2). As x approaches

zero, each of these is (something very small) · (something very large), yet the limits are

respectively zero, 1, and ∞.

We can in fact turn this into a L’Hôpital’s Rule problem:

x lnx =
lnx

1/x
=

lnx

x−1
.

Now as x approaches zero, both the numerator and denominator approach infinity (one

−∞ and one +∞, but only the size is important). Using L’Hôpital’s Rule:

lim
x→0+

lnx

x−1
= lim

x→0+

1/x

−x−2
= lim

x→0+

1

x
(−x2) = lim

x→0+
−x = 0.

One way to interpret this is that since lim
x→0+

x lnx = 0, the x approaches zero much faster

than the lnx approaches −∞.

Exercises 4.10.

Compute the limits.

1. lim
x→0

cosx− 1

sin x
⇒ 2. lim

x→∞

ex

x3
⇒

3. lim
x→∞

√

x2 + x−
√

x2 − x ⇒ 4. lim
x→∞

lnx

x
⇒

5. lim
x→∞

lnx√
x

⇒ 6. lim
x→∞

ex + e−x

ex − e−x
⇒

7. lim
x→0

√
9 + x− 3

x
⇒ 8. lim

t→1+

(1/t)− 1

t2 − 2t+ 1
⇒

9. lim
x→2

2−
√
x+ 2

4− x2
⇒ 10. lim

t→∞

t+ 5− 2/t− 1/t3

3t+ 12− 1/t2
⇒

11. lim
y→∞

√
y + 1 +

√
y − 1

y
⇒ 12. lim

x→1

√
x− 1

3
√
x− 1

⇒
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13. lim
x→0

(1− x)1/4 − 1

x
⇒ 14. lim

t→0

(

t+
1

t

)

((4− t)3/2 − 8) ⇒

15. lim
t→0+

(

1

t
+

1√
t

)

(
√
t+ 1− 1) ⇒ 16. lim

x→0

x2

√
2x+ 1− 1

⇒

17. lim
u→1

(u− 1)3

(1/u)− u2 + 3u− 3
⇒ 18. lim

x→0

2 + (1/x)

3− (2/x)
⇒

19. lim
x→0+

1 + 5/
√
x

2 + 1/
√
x

⇒ 20. lim
x→0+

3 + x−1/2 + x−1

2 + 4x−1/2
⇒

21. lim
x→∞

x+ x1/2 + x1/3

x2/3 + x1/4
⇒ 22. lim

t→∞

1−
√

t
t+1

2−
√

4t+1
t+2

⇒

23. lim
t→∞

1− t
t−1

1−
√

t
t−1

⇒ 24. lim
x→−∞

x+ x−1

1 +
√
1− x

⇒

25. lim
x→π/2

cos x

(π/2)− x
⇒ 26. lim

x→0

ex − 1

x
⇒

27. lim
x→0

x2

ex − x− 1
⇒ 28. lim

x→1

lnx

x− 1
⇒

29. lim
x→0

ln(x2 + 1)

x
⇒ 30. lim

x→1

x ln x

x2 − 1
⇒

31. lim
x→0

sin(2x)

ln(x+ 1)
⇒ 32. lim

x→1

x1/4 − 1

x
⇒

33. lim
x→1+

√
x

x− 1
⇒ 34. lim

x→1

√
x− 1

x− 1
⇒

35. lim
x→∞

x−1 + x−1/2

x+ x−1/2
⇒ 36. lim

x→∞

x+ x−2

2x+ x−2
⇒

37. lim
x→∞

5 + x−1

1 + 2x−1
⇒ 38. lim

x→∞

4x√
2x2 + 1

⇒

39. lim
x→0

3x2 + x+ 2

x− 4
⇒ 40. lim

x→0

√
x+ 1− 1√
x+ 4− 2

⇒

41. lim
x→0

√
x+ 1− 1√
x+ 2− 2

⇒ 42. lim
x→0+

√
x+ 1 + 1√
x+ 1− 1

⇒

43. lim
x→0

√
x2 + 1− 1√
x+ 1− 1

⇒ 44. lim
x→∞

(x+ 5)

(

1

2x
+

1

x+ 2

)

⇒

45. lim
x→0+

(x+ 5)

(

1

2x
+

1

x+ 2

)

⇒ 46. lim
x→1

(x+ 5)

(

1

2x
+

1

x+ 2

)

⇒

47. lim
x→2

x3 − 6x− 2

x3 + 4
⇒ 48. lim

x→2

x3 − 6x− 2

x3 − 4x
⇒

49. lim
x→1+

x3 + 4x+ 8

2x3 − 2
⇒
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50. The function f(x) =
x√

x2 + 1
has two horizontal asymptotes. Find them and give a rough

sketch of f with its horizontal asymptotes. ⇒

4.11 Hyperboli Funtions

The hyperbolic functions appear with some frequency in applications, and are quite similar

in many respects to the trigonometric functions. This is a bit surprising given our initial

definitions.

DEFINITION 4.11.1 The hyperbolic cosine is the function

coshx =
ex + e−x

2
,

and the hyperbolic sine is the function

sinhx =
ex − e−x

2
.

Notice that cosh is even (that is, cosh(−x) = cosh(x)) while sinh is odd (sinh(−x) =

− sinh(x)), and coshx + sinh x = ex. Also, for all x, cosh x > 0, while sinh x = 0 if and

only if ex − e−x = 0, which is true precisely when x = 0.

LEMMA 4.11.2 The range of coshx is [1,∞).

Proof. Let y = coshx. We solve for x:

y =
ex + e−x

2

2y = ex + e−x

2yex = e2x + 1

0 = e2x − 2yex + 1

ex =
2y ±

√

4y2 − 4

2

ex = y ±
√

y2 − 1

From the last equation, we see y2 ≥ 1, and since y ≥ 0, it follows that y ≥ 1.

Now suppose y ≥ 1, so y ±
√

y2 − 1 > 0. Then x = ln(y ±
√

y2 − 1) is a real number,

and y = coshx, so y is in the range of cosh(x).
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DEFINITION 4.11.3 The other hyperbolic functions are

tanhx =
sinhx

coshx

cothx =
coshx

sinhx

sech x =
1

coshx

csch x =
1

sinhx

The domain of coth and csch is x 6= 0 while the domain of the other hyperbolic functions

is all real numbers. Graphs are shown in figure 4.11.1
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Figure 4.11.1 The hyperbolic functions: cosh, sinh, tanh, sech, csch, coth.

Certainly the hyperbolic functions do not closely resemble the trigonometric functions

graphically. But they do have analogous properties, beginning with the following identity.

THEOREM 4.11.4 For all x in R, cosh2 x− sinh2 x = 1.

Proof. The proof is a straightforward computation:

cosh2 x−sinh2 x =
(ex + e−x)2

4
− (ex − e−x)2

4
=

e2x + 2 + e−2x − e2x + 2− e−2x

4
=

4

4
= 1.

This immediately gives two additional identities:

1− tanh2 x = sech2 x and coth2 x− 1 = csch2 x.

The identity of the theorem also helps to provide a geometric motivation. Recall that

the graph of x2 − y2 = 1 is a hyperbola with asymptotes x = ±y whose x-intercepts are
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±1. If (x, y) is a point on the right half of the hyperbola, and if we let x = cosh t, then

y = ±
√

x2 − 1 = ±
√

cosh2 t− 1 = ± sinh t. So for some suitable t, cosh t and sinh t are

the coordinates of a typical point on the hyperbola. In fact, it turns out that t is twice

the area shown in the first graph of figure 4.11.2. Even this is analogous to trigonometry;

cos t and sin t are the coordinates of a typical point on the unit circle, and t is twice the

area shown in the second graph of figure 4.11.2.

1 2 3

−3

−2

−1

0

1

2

3

(cosh t, sinh t)
•

1

(cos t, sin t)
•

Figure 4.11.2 Geometric definitions of sin, cos, sinh, cosh: t is twice the shaded area in
each figure.

Given the definitions of the hyperbolic functions, finding their derivatives is straight-

forward. Here again we see similarities to the trigonometric functions.

THEOREM 4.11.5
d

dx
cosh x = sinhx and

d

dx
sinhx = coshx.

Proof.
d

dx
coshx =

d

dx

ex + e−x

2
=

ex − e−x

2
= sinhx, and

d

dx
sinhx =

d

dx

ex − e−x

2
=

ex + e−x

2
= coshx.

Since coshx > 0, sinhx is increasing and hence injective, so sinhx has an inverse,

arcsinhx. Also, sinhx > 0 when x > 0, so coshx is injective on [0,∞) and has a (partial)

inverse, arccosh x. The other hyperbolic functions have inverses as well, though arcsech x

is only a partial inverse. We may compute the derivatives of these functions as we have

other inverse functions.

THEOREM 4.11.6
d

dx
arcsinh x =

1√
1 + x2

.

Proof. Let y = arcsinhx, so sinh y = x. Then
d

dx
sinh y = cosh(y) · y′ = 1, and so

y′ =
1

cosh y
=

1
√

1 + sinh2 y
=

1√
1 + x2

.
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The other derivatives are left to the exercises.

Exercises 4.11.

1. Show that the range of sinh x is all real numbers. (Hint: show that if y = sinhx then

x = ln(y +
√

y2 + 1).)

2. Compute the following limits:

a. lim
x→∞

cosh x

b. lim
x→∞

sinh x

c. lim
x→∞

tanh x

d. lim
x→∞

(cosh x− sinh x)

⇒
3. Show that the range of tanh x is (−1, 1). What are the ranges of coth, sech, and csch? (Use

the fact that they are reciprocal functions.)

4. Prove that for every x, y ∈ R, sinh(x + y) = sinhx cosh y + cosh x sinh y. Obtain a similar
identity for sinh(x− y).

5. Prove that for every x, y ∈ R, cosh(x + y) = cosh x cosh y + sinhx sinh y. Obtain a similar
identity for cosh(x− y).

6. Use exercises 4 and 5 to show that sinh(2x) = 2 sinh x cosh x and cosh(2x) = cosh2 x+sinh2 x
for every x. Conclude also that (cosh(2x)− 1)/2 = sinh2 x and (cosh(2x) + 1)/2 = cosh2 x.

7. Show that
d

dx
(tanhx) = sech2 x. Compute the derivatives of the remaining hyperbolic

functions as well.

8. What are the domains of the six inverse hyperbolic functions?

9. Sketch the graphs of all six inverse hyperbolic functions.


