For Kathleen,
without whose encouragement
this book would not have
been written.
Contents

1
Analytic Geometry 15
 1.1 Lines 16
 1.2 Distance Between Two Points; Circles 21
 1.3 Functions 22
 1.4 Shifts and Dilations 27

2
Instantaneous Rate of Change: The Derivative 31
 2.1 The slope of a function 31
 2.2 An example 36
 2.3 Limits 38
 2.4 The Derivative Function 48
 2.5 Adjectives For Functions 53

3
Rules for Finding Derivatives 57
 3.1 The Power Rule 57
 3.2 Linearity of the Derivative 60
 3.3 The Product Rule 62
 3.4 The Quotient Rule 64
 3.5 The Chain Rule 67

4
Transcendental Functions 73
 4.1 Trigonometric Functions 73
 4.2 The Derivative of sin x 76
 4.3 A hard limit 77
 4.4 The Derivative of sin x, continued 80
 4.5 Derivatives of the Trigonometric Functions 81
 4.6 Exponential and Logarithmic functions 82
 4.7 Derivatives of the exponential and logarithmic functions 84
 4.8 Implicit Differentiation 89
 4.9 Inverse Trigonometric Functions 94
 4.10 Limits revisited 97
 4.11 Hyperbolic Functions 102

5
Curve Sketching 107
 5.1 Maxima and Minima 107
 5.2 The first derivative test 111
 5.3 The second derivative test 112
 5.4 Concavity and inflection points 113
 5.5 Asymptotes and Other Things to Look For 115
Applications of the Derivative

6.1 Optimization ... 119
6.2 Related Rates .. 131
6.3 Newton’s Method .. 139
6.4 Linear Approximations 143
6.5 The Mean Value Theorem 145

Integration

7.1 Two examples ... 149
7.2 The Fundamental Theorem of Calculus 153
7.3 Some Properties of Integrals 160

Techniques of Integration

8.1 Substitution ... 166
8.2 Powers of sine and cosine 171
8.3 Trigonometric Substitutions 173
8.4 Integration by Parts 176
8.5 Rational Functions 180
8.6 Numerical Integration 184
8.7 Additional exercises 189

Applications of Integration

9.1 Area between curves 191
9.2 Distance, Velocity, Acceleration 196
9.3 Volume .. 199
9.4 Average value of a function 206
9.5 Work .. 209
9.6 Center of Mass ... 213
9.7 Kinetic energy; improper integrals 219
9.8 Probability .. 223
9.9 Arc Length ... 232
9.10 Surface Area .. 234

Polar Coordinates, Parametric Equations

10.1 Polar Coordinates 241
10.2 Slopes in polar coordinates 245
10.3 Areas in polar coordinates 247
10.4 Parametric Equations 251
10.5 Calculus with Parametric Equations 253
17

Differential Equations

17.1 First Order Differential Equations . 456
17.2 First Order Homogeneous Linear Equations . 460
17.3 First Order Linear Equations . 463
17.4 Approximation . 466
17.5 Second Order Homogeneous Equations . 469
17.6 Second Order Linear Equations . 473
17.7 Second Order Linear Equations, take two . 477

A

Selected Answers

B

Useful Formulas

Index
Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem solving one needs a tremendous amount of practice doing problems. The more problems you do the better you will be at doing them, as patterns will start to emerge in both the problems and in successful approaches to them. You will learn fastest and best if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.
2. Assign letters to quantities that are described only in words; draw a diagram if appropriate.
3. Decide which letters are constants and which are variables. A letter stands for a constant if its value remains the same throughout the problem.
4. Using mathematical notation, write down what you know and then write down what you want to find.
5. Decide what category of problem it is (this might be obvious if the problem comes at the end of a particular chapter, but will not necessarily be so obvious if it comes on an exam covering several chapters).
6. Double check each step as you go along; don’t wait until the end to check your work.
7. Use common sense; if an answer is out of the range of practical possibilities, then check your work to see where you went wrong.

Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask someone for help if you can’t follow the solution to a worked example).
2. Later use the worked examples to study by covering the solutions, and seeing if you can solve the problems on your own.
3. Most exercises have answers in Appendix A; the availability of an answer is marked by “⇒” at the end of the exercise. In the pdf version of the full text, clicking on the arrow will take you to the answer. The answers should be used only as a final check on your work, not as a crutch. Keep in mind that sometimes an answer could be expressed in various ways that are algebraically equivalent, so don’t assume that your answer is wrong just because it doesn’t have exactly the same form as the answer in the back.
4. A few figures in the pdf and print versions of the book are marked with “(AP)” at the end of the caption. Clicking on this should open a related interactive applet or Sage worksheet in your web browser. Occasionally another link will do the same thing, like this example. (Note to users of a printed text: the words “this example” in the pdf file are blue, and are a link to a Sage worksheet.)