Single and Multivariable Calculus

Early Transcendentals
For Kathleen,
without whose encouragement
this book would not have
been written.
Contents

1

Analytic Geometry 15

1.1 Lines ... 16
1.2 Distance Between Two Points; Circles 21
1.3 Functions 22
1.4 Shifts and Dilations 27

2

Instantaneous Rate of Change: The Derivative 31

2.1 The slope of a function 31
2.2 An example 36
2.3 Limits ... 38
2.4 The Derivative Function 48
2.5 Properties of Functions 53
Contents

3 Rules for Finding Derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The Power Rule</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Linearity of the Derivative</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>The Product Rule</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>The Quotient Rule</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>The Chain Rule</td>
<td>67</td>
</tr>
</tbody>
</table>

4 Transcendental Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Trigonometric Functions</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>The Derivative of sin x</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>A hard limit</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>The Derivative of sin x, continued</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Derivatives of the Trigonometric Functions</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Exponential and Logarithmic functions</td>
<td>82</td>
</tr>
<tr>
<td>4.7</td>
<td>Derivatives of the exponential and logarithmic functions</td>
<td>84</td>
</tr>
<tr>
<td>4.8</td>
<td>Implicit Differentiation</td>
<td>89</td>
</tr>
<tr>
<td>4.9</td>
<td>Inverse Trigonometric Functions</td>
<td>94</td>
</tr>
<tr>
<td>4.10</td>
<td>Limits revisited</td>
<td>97</td>
</tr>
<tr>
<td>4.11</td>
<td>Hyperbolic Functions</td>
<td>102</td>
</tr>
</tbody>
</table>

5 Curve Sketching

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Maxima and Minima</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>The first derivative test</td>
<td>111</td>
</tr>
<tr>
<td>5.3</td>
<td>The second derivative test</td>
<td>113</td>
</tr>
<tr>
<td>5.4</td>
<td>Concavity and inflection points</td>
<td>114</td>
</tr>
<tr>
<td>5.5</td>
<td>Asymptotes and Other Things to Look For</td>
<td>116</td>
</tr>
</tbody>
</table>
6
Applications of the Derivative

6.1 Optimization .. 119
6.2 Related Rates .. 131
6.3 Newton’s Method 139
6.4 Linear Approximations 143
6.5 The Mean Value Theorem 145

7
Integration

7.1 Two examples ... 149
7.2 The Fundamental Theorem of Calculus 153
7.3 Some Properties of Integrals 160

8
Techniques of Integration

8.1 Substitution .. 166
8.2 Powers of sine and cosine 171
8.3 Trigonometric Substitutions 173
8.4 Integration by Parts 176
8.5 Rational Functions 180
8.6 Numerical Integration 184
8.7 Additional exercises 189
9
Applications of Integration
9.1 Area between curves ... 191
9.2 Distance, Velocity, Acceleration 196
9.3 Volume .. 199
9.4 Average value of a function .. 206
9.5 Work ... 209
9.6 Center of Mass .. 213
9.7 Kinetic energy; improper integrals 218
9.8 Probability ... 222
9.9 Arc Length .. 232
9.10 Surface Area ... 234

10
Polar Coordinates, Parametric Equations
10.1 Polar Coordinates ... 239
10.2 Slopes in polar coordinates .. 243
10.3 Areas in polar coordinates .. 245
10.4 Parametric Equations .. 248
10.5 Calculus with Parametric Equations 251
11
Sequences and Series

11.1 Sequences ... 256
11.2 Series .. 262
11.3 The Integral Test ... 266
11.4 Alternating Series 271
11.5 Comparison Tests 273
11.6 Absolute Convergence 276
11.7 The Ratio and Root Tests 277
11.8 Power Series .. 280
11.9 Calculus with Power Series 283
11.10 Taylor Series .. 285
11.11 Taylor’s Theorem 288
11.12 Additional exercises 294

12
Three Dimensions

12.1 The Coordinate System 297
12.2 Vectors ... 300
12.3 The Dot Product 306
12.4 The Cross Product 312
12.5 Lines and Planes 316
12.6 Other Coordinate Systems 323

13
Vector Functions

13.1 Space Curves ... 329
13.2 Calculus with vector functions 331
13.3 Arc length and curvature 339
13.4 Motion along a curve 345
14 Partial Differentiation 349

14.1 Functions of Several Variables 349
14.2 Limits and Continuity 353
14.3 Partial Differentiation 357
14.4 The Chain Rule 364
14.5 Directional Derivatives 367
14.6 Higher order derivatives 372
14.7 Maxima and minima 373
14.8 Lagrange Multipliers 379

15 Multiple Integration 385

15.1 Volume and Average Height 385
15.2 Double Integrals in Cylindrical Coordinates 395
15.3 Moment and Center of Mass 400
15.4 Surface Area 402
15.5 Triple Integrals 404
15.6 Cylindrical and Spherical Coordinates 407
15.7 Change of Variables 411

16 Vector Calculus 419

16.1 Vector Fields 419
16.2 Line Integrals 421
16.3 The Fundamental Theorem of Line Integrals 425
16.4 Green’s Theorem 428
16.5 Divergence and Curl 433
16.6 Vector Functions for Surfaces 436
16.7 Surface Integrals 442
16.8 Stokes’s Theorem 446
16.9 The Divergence Theorem 450
Differential Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>First Order Differential Equations</td>
<td>456</td>
</tr>
<tr>
<td>17.2</td>
<td>First Order Homogeneous Linear Equations</td>
<td>460</td>
</tr>
<tr>
<td>17.3</td>
<td>First Order Linear Equations</td>
<td>463</td>
</tr>
<tr>
<td>17.4</td>
<td>Approximation</td>
<td>466</td>
</tr>
<tr>
<td>17.5</td>
<td>Second Order Homogeneous Equations</td>
<td>469</td>
</tr>
<tr>
<td>17.6</td>
<td>Second Order Linear Equations</td>
<td>473</td>
</tr>
<tr>
<td>17.7</td>
<td>Second Order Linear Equations, take two</td>
<td>477</td>
</tr>
</tbody>
</table>

A

Selected Answers

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>481</td>
</tr>
</tbody>
</table>

B

Useful Formulas

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>509</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
</tr>
</tbody>
</table>
Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem solving one needs a tremendous amount of practice doing problems. The more problems you do the better you will be at doing them, as patterns will start to emerge in both the problems and in successful approaches to them. You will learn fastest and best if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.
2. Assign letters to quantities that are described only in words; draw a diagram if appropriate.
3. Decide which letters are constants and which are variables. A letter stands for a constant if its value remains the same throughout the problem.
4. Using mathematical notation, write down what you know and then write down what you want to find.
5. Decide what category of problem it is (this might be obvious if the problem comes at the end of a particular chapter, but will not necessarily be so obvious if it comes on an exam covering several chapters).
6. Double check each step as you go along; don’t wait until the end to check your work.
7. Use common sense; if an answer is out of the range of practical possibilities, then check your work to see where you went wrong.
Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask someone for help if you can’t follow the solution to a worked example).

2. Later use the worked examples to study by covering the solutions, and seeing if you can solve the problems on your own.

3. Most exercises have answers in Appendix A; the availability of an answer is marked by “⇒” at the end of the exercise. Clicking on the arrow will take you to the answer. The answers should be used only as a final check on your work, not as a crutch. Keep in mind that sometimes an answer could be expressed in various ways that are algebraically equivalent, so don’t assume that your answer is wrong just because it doesn’t have exactly the same form as the given answer.

4. A few figures in the pdf and print versions of the book are marked with “(AP)” at the end of the caption. Clicking on this in the pdf should open a related interactive applet or Sage worksheet in your web browser. Occasionally another link will do the same thing, like this example. (Note to users of a printed text: the words “this example” in the pdf file are blue, and are a link to a Sage worksheet.) In the html version of the text, these features appear in the text itself.