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Integration

7.1 Two examples
Up to now we have been concerned with extracting information about how a function

changes from the function itself. Given knowledge about an object’s position, for example,

we want to know the object’s speed. Given information about the height of a curve we

want to know its slope. We now consider problems that are, whether obviously or not, the

reverse of such problems.

EXAMPLE 7.1 An object moves in a straight line so that its speed at time t is given

by v(t) = 3t in, say, cm/sec. If the object is at position 10 on the straight line when t = 0,

where is the object at any time t?

There are two reasonable ways to approach this problem. If s(t) is the position of the

object at time t, we know that s′(t) = v(t). Because of our knowledge of derivatives, we

know therefore that s(t) = 3t2/2+k, and because s(0) = 10 we easily discover that k = 10,

so s(t) = 3t2/2 + 10. For example, at t = 1 the object is at position 3/2+ 10 = 11.5. This

is certainly the easiest way to deal with this problem. Not all similar problems are so easy,

as we will see; the second approach to the problem is more difficult but also more general.

We start by considering how we might approximate a solution. We know that at t = 0

the object is at position 10. How might we approximate its position at, say, t = 1? We

know that the speed of the object at time t = 0 is 0; if its speed were constant then in the

first second the object would not move and its position would still be 10 when t = 1. In

fact, the object will not be too far from 10 at t = 1, but certainly we can do better. Let’s

look at the times 0.1, 0.2, 0.3, . . . , 1.0, and try approximating the location of the object
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at each, by supposing that during each tenth of a second the object is going at a constant

speed. Since the object initially has speed 0, we again suppose it maintains this speed, but

only for a tenth of second; during that time the object would not move. During the tenth

of a second from t = 0.1 to t = 0.2, we suppose that the object is traveling at 0.3 cm/sec,

namely, its actual speed at t = 0.1. In this case the object would travel (0.3)(0.1) = 0.03

centimeters: 0.3 cm/sec times 0.1 seconds. Similarly, between t = 0.2 and t = 0.3 the

object would travel (0.6)(0.1) = 0.06 centimeters. Continuing, we get as an approximation

that the object travels

(0.0)(0.1) + (0.3)(0.1) + (0.6)(0.1) + · · ·+ (2.7)(0.1) = 1.35

centimeters, ending up at position 11.35. This is a better approximation than 10, certainly,

but is still just an approximation. (We know in fact that the object ends up at position

11.5, because we’ve already done the problem using the first approach.) Presumably,

we will get a better approximation if we divide the time into one hundred intervals of a

hundredth of a second each, and repeat the process:

(0.0)(0.01) + (0.03)(0.01) + (0.06)(0.01) + · · ·+ (2.97)(0.01) = 1.485.

We thus approximate the position as 11.485. Since we know the exact answer, we can see

that this is much closer, but if we did not already know the answer, we wouldn’t really

know how close.

We can keep this up, but we’ll never really know the exact answer if we simply compute

more and more examples. Let’s instead look at a “typical” approximation. Suppose we

divide the time into n equal intervals, and imagine that on each of these the object travels

at a constant speed. Over the first time interval we approximate the distance traveled

as (0.0)(1/n) = 0, as before. During the second time interval, from t = 1/n to t = 2/n,

the object travels approximately 3(1/n)(1/n) = 3/n2 centimeters. During time interval

number i, the object travels approximately (3(i − 1)/n)(1/n) = 3(i − 1)/n2 centimeters,

that is, its speed at time (i− 1)/n, 3(i− 1)/n, times the length of time interval number i,

1/n. Adding these up as before, we approximate the distance traveled as

(0)
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1

n2
+ · · ·+ 3(n− 1)

1

n2

centimeters. What can we say about this? At first it looks rather less useful than the

concrete calculations we’ve already done. But in fact a bit of algebra reveals it to be much
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more useful. We can factor out a 3 and 1/n2 to get

3

n2
(0 + 1 + 2 + 3 + · · ·+ (n− 1)),

that is, 3/n2 times the sum of the first n− 1 positive integers. Now we make use of a fact

you may have run across before:

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
.

In our case we’re interested in k = n− 1, so

1 + 2 + 3 + · · ·+ (n− 1) =
(n− 1)(n)

2
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2
.

This simplifies the approximate distance traveled to
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Now this is quite easy to understand: as n gets larger and larger this approximation gets

closer and closer to (3/2)(1− 0) = 3/2, so that 3/2 is the exact distance traveled during

one second, and the final position is 11.5.

So for t = 1, at least, this rather cumbersome approach gives the same answer as

the first approach. But really there’s nothing special about t = 1; let’s just call it t

instead. In this case the approximate distance traveled during time interval number i is

3(i − 1)(t/n)(t/n) = 3(i − 1)t2/n2, that is, speed 3(i − 1)(t/n) times time t/n, and the

total distance traveled is approximately
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As before we can simplify this to

3t2

n2
(0 + 1 + 2 + · · ·+ (n− 1)) =

3t2
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3

2
t2
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.

In the limit, as n gets larger, this gets closer and closer to (3/2)t2 and the approximated

position of the object gets closer and closer to (3/2)t2 + 10, so the actual position is

(3/2)t2 + 10, exactly the answer given by the first approach to the problem.

EXAMPLE 7.2 Find the area under the curve y = 3x between x = 0 and any positive

value x. There is here no obvious analogue to the first approach in the previous example,
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but the second approach works fine. (Because the function y = 3x is so simple, there

is another approach that works here, but it is even more limited in potential application

than is approach number one.) How might we approximate the desired area? We know

how to compute areas of rectangles, so we approximate the area by rectangles. Jumping

straight to the general case, suppose we divide the interval between 0 and x into n equal

subintervals, and use a rectangle above each subinterval to approximate the area under the

curve. There are many ways we might do this, but let’s use the height of the curve at the

left endpoint of the subinterval as the height of the rectangle, as in figure 7.1. The height of

rectangle number i is then 3(i−1)(x/n), the width is x/n, and the area is 3(i−1)(x2/n2).

The total area of the rectangles is
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By factoring out 3x2/n2 this simplifies to

3x2
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As n gets larger this gets closer and closer to 3x2/2, which must therefore be the true area

under the curve.
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Figure 7.1 Approximating the area under y = 3t with rectangles.

What you will have noticed, of course, is that while the problem in the second example

appears to be much different than the problem in the first example, and while the easy

approach to problem one does not appear to apply to problem two, the “approximation”

approach works in both, and moreover the calculations are identical. As we will see, there
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are many, many problems that appear much different on the surface but that turn out to

be the same as these problems, in the sense that when we try to approximate solutions we

end up with mathematics that looks like the two examples, though of course the function

involved will not always be so simple.

Even better, we now see that while the second problem did not appear to be amenable

to approach one, it can in fact be solved in the same way. The reasoning is this: we know

that problem one can be solved easily by finding a function whose derivative is 3t. We

also know that mathematically the two problems are the same, because both can be solved

by taking a limit of a sum, and the sums are identical. Therefore, we don’t really need

to compute the limit of either sum because we know that we will get the same answer by

computing a function with the derivative 3t or, which is the same thing, 3x.

It’s true that the first problem had the added complication of the “10”, and we certainly

need to be able to deal with such minor variations, but that turns out to be quite simple.

The lesson then is this: whenever we can solve a problem by taking the limit of a sum of

a certain form, we can instead of computing the (often nasty) limit find a new function

with a certain derivative.

Exercises 7.1.

1. Suppose an object moves in a straight line so that its speed at time t is given by v(t) = 2t+2,
and that at t = 1 the object is at position 5. Find the position of the object at t = 2. ⇒

2. Suppose an object moves in a straight line so that its speed at time t is given by v(t) = t2+2,
and that at t = 0 the object is at position 5. Find the position of the object at t = 2. ⇒

3. By a method similar to that in example 7.2, find the area under y = 2x between x = 0 and
any positive value for x. ⇒

4. By a method similar to that in example 7.2, find the area under y = 4x between x = 0 and
any positive value for x. ⇒

5. By a method similar to that in example 7.2, find the area under y = 4x between x = 2 and
any positive value for x bigger than 2. ⇒

6. By a method similar to that in example 7.2, find the area under y = 4x between any two
positive values for x, say a < b. ⇒

7. Let f(x) = x2 + 3x + 2. Approximate the area under the curve between x = 0 and x = 2
using 4 rectangles and also using 8 rectangles. ⇒

8. Let f(x) = x2 − 2x + 3. Approximate the area under the curve between x = 1 and x = 3
using 4 rectangles. ⇒7.2 The Fundamental Theorem of Calulus

Let’s recast the first example from the previous section. Suppose that the speed of the

object is 3t at time t. How far does the object travel between time t = a and time t = b?

We are no longer assuming that we know where the object is at time t = 0 or at any other
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time. It is certainly true that it is somewhere, so let’s suppose that at t = 0 the position is k.

Then just as in the example, we know that the position of the object at any time is 3t2/2+k.

This means that at time t = a the position is 3a2/2 + k and at time t = b the position is

3b2/2 + k. Therefore the change in position is 3b2/2 + k − (3a2/2 + k) = 3b2/2 − 3a2/2.

Notice that the k drops out; this means that it doesn’t matter that we don’t know k, it

doesn’t even matter if we use the wrong k, we get the correct answer. In other words, to

find the change in position between time a and time b we can use any antiderivative of the

speed function 3t—it need not be the one antiderivative that actually gives the location of

the object.

What about the second approach to this problem, in the new form? We now want to

approximate the change in position between time a and time b. We take the interval of

time between a and b, divide it into n subintervals, and approximate the distance traveled

during each. The starting time of subinterval number i is now a+ (i− 1)(b− a)/n, which

we abbreviate as ti−1, so that t0 = a, t1 = a + (b − a)/n, and so on. The speed of the

object is f(t) = 3t, and each subinterval is (b − a)/n = ∆t seconds long. The distance

traveled during subinterval number i is approximately f(ti−1)∆t, and the total change in

distance is approximately

f(t0)∆t+ f(t1)∆t+ · · ·+ f(tn−1)∆t.

The exact change in position is the limit of this sum as n goes to infinity. We abbreviate

this sum using sigma notation:

n−1
∑

i=0

f(ti)∆t = f(t0)∆t+ f(t1)∆t+ · · ·+ f(tn−1)∆t.

The notation on the left side of the equal sign uses a large capital sigma, a Greek letter,

and the left side is an abbreviation for the right side. The answer we seek is

lim
n→∞

n−1
∑

i=0

f(ti)∆t.

Since this must be the same as the answer we have already obtained, we know that

lim
n→∞

n−1
∑

i=0

f(ti)∆t =
3b2

2
− 3a2

2
.

The significance of 3t2/2, into which we substitute t = b and t = a, is of course that it is

a function whose derivative is f(t). As we have discussed, by the time we know that we
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want to compute

lim
n→∞

n−1
∑

i=0

f(ti)∆t,

it no longer matters what f(t) stands for—it could be a speed, or the height of a curve,

or something else entirely. We know that the limit can be computed by finding any

function with derivative f(t), substituting a and b, and subtracting. We summarize this

in a theorem. First, we introduce some new notation and terms.

We write
∫ b

a

f(t) dt = lim
n→∞

n−1
∑

i=0

f(ti)∆t

if the limit exists. That is, the left hand side means, or is an abbreviation for, the right

hand side. The symbol
∫

is called an integral sign, and the whole expression is read

as “the integral of f(t) from a to b.” What we have learned is that this integral can be

computed by finding a function, say F (t), with the property that F ′(t) = f(t), and then

computing F (b)− F (a). The function F (t) is called an antiderivative of f(t). Now the

theorem:

THEOREM 7.3 Fundamental Theorem of Calculus Suppose that f(x) is con-

tinuous on the interval [a, b]. If F (x) is any antiderivative of f(x), then

∫ b

a

f(x) dx = F (b)− F (a).

Let’s rewrite this slightly:

∫ x

a

f(t) dt = F (x)− F (a).

We’ve replaced the variable x by t and b by x. These are just different names for quantities,

so the substitution doesn’t change the meaning. It does make it easier to think of the two

sides of the equation as functions. The expression

∫ x

a

f(t) dt

is a function: plug in a value for x, get out some other value. The expression F (x)−F (a)

is of course also a function, and it has a nice property:

d

dx
(F (x)− F (a)) = F ′(x) = f(x),
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since F (a) is a constant and has derivative zero. In other words, by shifting our point of

view slightly, we see that the odd looking function

G(x) =

∫ x

a

f(t) dt

has a derivative, and that in fact G′(x) = f(x). This is really just a restatement of the

Fundamental Theorem of Calculus, and indeed is often called the Fundamental Theorem

of Calculus. To avoid confusion, some people call the two versions of the theorem “The

Fundamental Theorem of Calculus, part I” and “The Fundamental Theorem of Calculus,

part II”, although unfortunately there is no universal agreement as to which is part I and

which part II. Since it really is the same theorem, differently stated, some people simply

call them both “The Fundamental Theorem of Calculus.”

THEOREM 7.4 Fundamental Theorem of Calculus Suppose that f(x) is con-

tinuous on the interval [a, b] and let

G(x) =

∫ x

a

f(t) dt.

Then G′(x) = f(x).

We have not really proved the Fundamental Theorem. In a nutshell, we gave the

following argument to justify it: Suppose we want to know the value of

∫ b

a

f(t) dt = lim
n→∞

n−1
∑

i=0

f(ti)∆t.

We can interpret the right hand side as the distance traveled by an object whose speed

is given by f(t). We know another way to compute the answer to such a problem: find

the position of the object by finding an antiderivative of f(t), then substitute t = a and

t = b and subtract to find the distance traveled. This must be the answer to the original

problem as well, even if f(t) does not represent a speed.

What’s wrong with this? In some sense, nothing. As a practical matter it is a very

convincing argument, because our understanding of the relationship between speed and

distance seems to be quite solid. From the point of view of mathematics, however, it

is unsatisfactory to justify a purely mathematical relationship by appealing to our un-

derstanding of the physical universe, which could, however unlikely it is in this case, be

wrong.

A complete proof is a bit too involved to include here, but we will indicate how it goes.

First, if we can prove the second version of the Fundamental Theorem, theorem 7.4, then

we can prove the first version from that:
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Proof of Theorem 7.3. We know from theorem 7.4 that

G(x) =

∫ x

a

f(t) dt

is an antiderivative of f(x), and therefore any antiderivative F (x) of f(x) is of the form

F (x) = G(x) + k. Then

F (b)− F (a) = G(b) + k − (G(a) + k) = G(b)−G(a)

=

∫ b

a

f(t) dt−
∫ a

a

f(t) dt.

It is not hard to see that

∫ a

a

f(t) dt = 0, so this means that

F (b)− F (a) =

∫ b

a

f(t) dt,

which is exactly what theorem 7.3 says.

So the real job is to prove theorem 7.4. We will sketch the proof, using some facts that

we do not prove. First, the following identity is true of integrals:

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.

This can be proved directly from the definition of the integral, that is, using the limits

of sums. It is quite easy to see that it must be true by thinking of either of the two

applications of integrals that we have seen. It turns out that the identity is true no matter

what c is, but it is easiest to think about the meaning when a ≤ c ≤ b.

First, if f(t) represents a speed, then we know that the three integrals represent the

distance traveled between time a and time b; the distance traveled between time a and

time c; and the distance traveled between time c and time b. Clearly the sum of the latter

two is equal to the first of these.

Second, if f(t) represents the height of a curve, the three integrals represent the area

under the curve between a and b; the area under the curve between a and c; and the area

under the curve between c and b. Again it is clear from the geometry that the first is equal

to the sum of the second and third.
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Proof sketch for Theorem 7.4. We want to compute G′(x), so we start with the

definition of the derivative in terms of a limit:

G′(x) = lim
∆x→0

G(x+∆x)−G(x)

∆x

= lim
∆x→0

1

∆x

(

∫ x+∆x

a

f(t) dt−
∫ x

a

f(t) dt

)

= lim
∆x→0

1

∆x

(

∫ x

a

f(t) dt+

∫ x+∆x

x

f(t) dt−
∫ x

a

f(t) dt

)

= lim
∆x→0

1

∆x

∫ x+∆x

x

f(t) dt.

Now we need to know something about

∫ x+∆x

x

f(t) dt

when ∆x is small; in fact, it is very close to ∆xf(x), but we will not prove this. Once

again, it is easy to believe this is true by thinking of our two applications: The integral

∫ x+∆x

x

f(t) dt

can be interpreted as the distance traveled by an object over a very short interval of time.

Over a sufficiently short period of time, the speed of the object will not change very much,

so the distance traveled will be approximately the length of time multiplied by the speed at

the beginning of the interval, namely, ∆xf(x). Alternately, the integral may be interpreted

as the area under the curve between x and x+ ∆x. When ∆x is very small, this will be

very close to the area of the rectangle with base ∆x and height f(x); again this is ∆xf(x).

If we accept this, we may proceed:

lim
∆x→0

1

∆x

∫ x+∆x

x

f(t) dt = lim
∆x→0

∆xf(x)

∆x
= f(x),

which is what we wanted to show.

It is still true that we are depending on an interpretation of the integral to justify the

argument, but we have isolated this part of the argument into two facts that are not too

hard to prove. Once the last reference to interpretation has been removed from the proofs

of these facts, we will have a real proof of the Fundamental Theorem.
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Now we know that to solve certain kinds of problems, those that lead to a sum of a

certain form, we “merely” find an antiderivative and substitute two values and subtract.

Unfortunately, finding antiderivatives can be quite difficult. While there are a small number

of rules that allow us to compute the derivative of any common function, there are no such

rules for antiderivatives. There are some techniques that frequently prove useful, but we

will never be able to reduce the problem to a completely mechanical process.

Because of the close relationship between an integral and an antiderivative, the integral

sign is also used to mean “antiderivative”. You can tell which is intended by whether the

limits of integration are included:
∫ 2

1

x2 dx

is an ordinary integral, also called a definite integral, because it has a definite value,

namely
∫ 2

1

x2 dx =
23

3
− 13

3
=

7

3
.

We use
∫

x2 dx

to denote the antiderivative of x2, also called an indefinite integral. So this is evaluated

as
∫

x2 dx =
x3

3
+ C.

It is customary to include the constant C to indicate that there are really an infinite

number of antiderivatives. We do not need this C to compute definite integrals, but in

other circumstances we will need to remember that the C is there, so it is best to get

into the habit of writing the C. When we compute a definite integral, we first find an

antiderivative and then substitute. It is convenient to first display the antiderivative and

then do the substitution; we need a notation indicating that the substitution is yet to be

done. A typical solution would look like this:

∫ 2

1

x2 dx =
x3

3

∣

∣

∣

∣

2

1

=
23

3
− 13

3
=

7

3
.

The vertical line with subscript and superscript is used to indicate the operation “substitute

and subtract” that is needed to finish the evaluation.
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Exercises 7.2.

Find the antiderivatives of the functions:

1. 8
√
x ⇒ 2. 3t2 + 1 ⇒

3. 4/
√
x ⇒ 4. 2/z2 ⇒

5. (5x+ 1)2 ⇒ 6. (x− 6)2 ⇒

7. x3/2 ⇒ 8.
2

x
√
x

⇒

9. |2t− 4| ⇒
Compute the values of the integrals:

10.

∫

4

1

t2 + 3t dt ⇒ 11.

∫ π

0

sin t dt ⇒

12.

∫

3

0

x3 dx ⇒ 13.

∫

2

1

x5 dx ⇒

14. Find the derivative of G(x) =

∫ x

1

t2 − 3t dt ⇒

15. Find the derivative of G(x) =

∫ x2

1

t2 − 3t dt ⇒

16. Find the derivative of G(x) =

∫ x

1

tan(t2) dt ⇒

17. Find the derivative of G(x) =

∫ x2

1

tan(t2) dt ⇒7.3 Some Properties of Integrals
Suppose an object moves so that its speed, or more properly velocity, is given by v(t) =

−t2+5t, as shown in figure 7.2. Let’s examine the motion of this object carefully. We know

that the velocity is the derivative of position, so position is given by s(t) = −t3/3+5t2/2+

C. Let’s suppose that at time t = 0 the object is at position 0, so s(t) = −t3/3 + 5t2/2;

this function is also pictured in figure 7.2.

Between t = 0 and t = 5 the velocity is positive, so the object moves away from the

starting point, until it is a bit past position 20. Then the velocity becomes negative and

the object moves back toward its starting point. The position of the object at t = 5 is

exactly s(5) = 125/6, and at t = 6 it is s(6) = 18. The total distance traveled by the

object is therefore 125/6 + (125/6− 18) = 71/3 ≈ 23.7.

As we have seen, we can also compute distance traveled with an integral; let’s try it.
∫ 6

0

v(t) dt =

∫ 6

0

−t2 + 5t dt =
−t3

3
+

5

2
t2
∣

∣

∣

∣

6

0

= 18.

What went wrong? Well, nothing really, except that it’s not really true after all that “we

can also compute distance traveled with an integral”. Instead, as you might guess from this
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Figure 7.2 The velocity of an object and its position.

example, the integral actually computes the net distance traveled, that is, the difference

between the starting and ending point.

As we have already seen,

∫ 6

0

v(t) dt =

∫ 5

0

v(t) dt+

∫ 6

5

v(t) dt.

Computing the two integrals on the right (do it!) gives 125/6 and −17/6, and the sum of

these is indeed 18. But what does that negative sign mean? It means precisely what you

might think: it means that the object moves backwards. To get the total distance traveled

we can add 125/6 + 17/6 = 71/3, the same answer we got before.

Remember that we can also interpret an integral as measuring an area, but now we

see that this too is a little more complicated that we have suspected. The area under the

curve v(t) from 0 to 5 is given by

∫ 5

0

v(t) dt =
125

6
,

and the “area” from 5 to 6 is
∫ 6

5

v(t) dt = −17

6
.

In other words, the area between the x-axis and the curve, but under the x-axis, “counts

as negative area”. So the integral

∫ 6

0

v(t) dt = 18

measures “net area”, the area above the axis minus the (positive) area below the axis.
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If we recall that the integral is the limit of a certain kind of sum, this behavior is not

surprising. Recall the sort of sum involved:

n−1
∑

i=0

v(ti)∆t.

In each term v(t)∆t the ∆t is positive, but if v(ti) is negative then the term is negative. If

over an entire interval, like 5 to 6, the function is always negative, then the entire sum is

negative. In terms of area, v(t)∆t is then a negative height times a positive width, giving

a negative rectangle “area”.

So now we see that when evaluating

∫ 6

5

v(t) dt = −17

6

by finding an antiderivative, substituting, and subtracting, we get a surprising answer, but

one that turns out to make sense.

Let’s now try something a bit different:

∫ 5

6

v(t) dt =
−t3

3
+

5

2
t2
∣

∣

∣

∣

5

6

=
−53

3
+

5

2
52 − −63

3
− 5

2
62 =

17

6
.

Here we simply interchanged the limits 5 and 6, so of course when we substitute and

subtract we’re subtracting in the opposite order and we end up multiplying the answer

by −1. This too makes sense in terms of the underlying sum, though it takes a bit more

thought. Recall that in the sum
n−1
∑

i=0

v(ti)∆t,

the ∆t is the “length” of each little subinterval, but more precisely we could say that

∆t = ti+1 − ti, the difference between two endpoints of a subinterval. We have until now

assumed that we were working left to right, but could as well number the subintervals from

right to left, so that t0 = b and tn = a. Then ∆t = ti+1 − ti is negative and in

∫ 5

6

v(t) dt =

n−1
∑

i=0

v(ti)∆t,

the values v(ti) are negative but also ∆t is negative, so all terms are positive again. On

the other hand, in
∫ 0

5

v(t) dt =
n−1
∑

i=0

v(ti)∆t,

7.3 Some Properties of Integrals 133

the values v(ti) are positive but ∆t is negative,and we get a negative result:

∫ 0

5

v(t) dt =
−t3

3
+

5

2
t2
∣

∣

∣

∣

0

5

= 0− −53

3
− 5

2
52 = −125

6
.

Finally we note one simple property of integrals:

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

This is easy to understand once you recall that (F (x) +G(x))′ = F ′(x) +G′(x). Hence, if

F ′(x) = f(x) and G′(x) = g(x), then

∫ b

a

f(x) + g(x) dx = (F (x) +G(x))|ba

= F (b) +G(b)− F (a)−G(a)

= F (b)− F (a) +G(b)−G(a)

= F (x)|ba + G(x)|ba

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

In summary, we will frequently use these properties of integrals:

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

and if a < b and f(x) ≤ 0 on [a, b] then

∫ b

a

f(x) dx ≤ 0

and in fact
∫ b

a

f(x) dx = −
∫ b

a

|f(x)| dx.
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Exercises 7.3.

1. An object moves so that its velocity at time t is v(t) = −9.8t+20 m/s. Describe the motion
of the object between t = 0 and t = 5, find the total distance traveled by the object during
that time, and find the net distance traveled. ⇒

2. An object moves so that its velocity at time t is v(t) = sin t. Set up and evaluate a single
definite integral to compute the net distance traveled between t = 0 and t = 2π. ⇒

3. An object moves so that its velocity at time t is v(t) = 1+ 2 sin t m/s. Find the net distance
traveled by the object between t = 0 and t = 2π, and find the total distance traveled during
the same period. ⇒

4. Consider the function f(x) = (x + 2)(x + 1)(x − 1)(x − 2) on [−2, 2]. Find the total area
between the curve and the x-axis (measuring all area as positive). ⇒

5. Consider the function f(x) = x2 − 3x + 2 on [0, 4]. Find the total area between the curve
and the x-axis (measuring all area as positive). ⇒

6. Evaluate the three integrals:

A =

∫

3

0

(−x2 + 9) dx B =

∫

4

0

(−x2 + 9) dx C =

∫

3

4

(−x2 + 9) dx,

and verify that A = B + C. ⇒7.4 Substitution
We have converted the problem of integration into the problem of finding antiderivatives.

Sometimes this is a simple problem, since it will be apparent that the function you wish

to integrate is a derivative in some straightforward way. For example, faced with

∫

x10 dx

you realize immediately that the derivative of x11 will supply an x10: (x11)′ = 11x10. We

don’t want the “11”, but constants are easy to alter, because differentiation “ignores” them

in certain circumstances, so

d

dx

1

11
x11 =

1

11
11x10 = x10.

From our knowledge of derivatives, we can immediately write down a number of an-

tiderivatives. Here is a list of those most often used:
∫

xn dx =
xn+1

n+ 1
+ C, if n 6= −1

∫

x−1 dx = ln |x|+ C

∫

ex dx = ex + C
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∫

sinx dx = − cosx+ C

∫

cosx dx = sinx+ C

∫

sec2 x dx = tanx+ C

∫

secx tanx dx = sec x+ C

∫

1

1 + x2
dx = arctanx+ C

∫

1√
1− x2

dx = arcsinx+ C

Needless to say, most problems we encounter will not be so simple. Here’s a slightly

more complicated example: find
∫

2x cos(x2) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from

an application of the chain rule. Multiplied on the “outside” is 2x, which is the derivative

of the “inside” function x2. Checking:

d

dx
sin(x2) = cos(x2)

d

dx
x2 = 2x cos(x2),

so
∫

2x cos(x2) dx = sin(x2) + C.

Even when the chain rule has “produced” a certain derivative, it is not always easy to

see. Consider this problem:
∫

x3
√

1− x2 dx.

There are two factors in this expression, x3 and
√

1− x2, but it is not apparent that the

chain rule is involved. Some clever rearrangement reveals that it is:

∫

x3
√

1− x2 dx =

∫

(−2x)

(

−1

2

)

(1− (1− x2))
√

1− x2 dx.

This looks messy, but we do now have something that looks like the result of the chain

rule: the function 1 − x2 has been substituted into −(1/2)(1 − x)
√
x, and the derivative
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of 1− x2, −2x, multiplied on the outside. If we can find a function F (x) whose derivative

is −(1/2)(1− x)
√
x we’ll be done, since then

d

dx
F (1− x2) = −2xF ′(1− x2) = (−2x)

(

−1

2

)

(1− (1− x2))
√

1− x2

= x3
√

1− x2

But this isn’t hard:
∫

−1

2
(1− x)

√
xdx =

∫

−1

2
(x1/2 − x3/2) dx (7.1)

= −1

2

(

2

3
x3/2 − 2

5
x5/2

)

+ C

=

(

1

5
x− 1

3

)

x3/2 + C.

So finally we have

∫

x3
√

1− x2 dx =

(

1

5
(1− x2)− 1

3

)

(1− x2)3/2 + C.

So we succeeded, but it required a clever first step, rewriting the original function so

that it looked like the result of using the chain rule. Fortunately, there is a technique that

makes such problems simpler, without requiring cleverness to rewrite a function in just the

right way. It does sometimes not work, or may require more than one attempt, but the

idea is simple: guess at the most likely candidate for the “inside function”, then do some

algebra to see what this requires the rest of the function to look like.

One frequently good guess is any complicated expression inside a square root, so we

start by trying u = 1− x2, using a new variable, u, for convenience in the manipulations

that follow. Now we know that the chain rule will multiply by the derivative of this inner

function:
du

dx
= −2x,

so we need to rewrite the original function to include this:

∫

x3
√

1− x2 =

∫

x3
√
u
−2x

−2x
dx =

∫

x2

−2

√
u
du

dx
dx.

Recall that one benefit of the Leibniz notation is that it often turns out that what looks

like ordinary arithmetic gives the correct answer, even if something more complicated is
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going on. For example, in Leibniz notation the chain rule is

dy

dx
=

dy

dt

dt

dx
.

The same is true of our current expression:

∫

x2

−2

√
u
du

dx
dx =

∫

x2

−2

√
udu.

Now we’re almost there: since u = 1− x2, x2 = 1− u and the integral is

∫

−1

2
(1− u)

√
u du.

It’s no coincidence that this is exactly the integral we computed in (7.1), we have simply

renamed the variable u to make the calculations less confusing. Just as before:

∫

−1

2
(1− u)

√
udu =

(

1

5
u− 1

3

)

u3/2 + C.

Then since u = 1− x2:

∫

x3
√

1− x2 dx =

(

1

5
(1− x2)− 1

3

)

(1− x2)3/2 + C.

To summarize: if we suspect that a given function is the derivative of another via the

chain rule, we let u denote a likely candidate for the inner function, then translate the

given function so that it is written entirely in terms of u, with no x remaining in the

expression. If we can integrate this new function of u, then the antiderivative of the

original function is obtained by replacing u by the equivalent expression in x.

Even in simple cases you may prefer to use this mechanical procedure, since it often

helps to avoid silly mistakes. For example, consider again this simple problem:

∫

2x cos(x2) dx.

Let u = x2, then du/dx = 2x or du = 2x dx. Since we have exactly 2x dx in the original

integral, we can replace it by du:

∫

2x cos(x2) dx =

∫

cosu du = sinu+ C = sin(x2) + C.

This is not the only way to do the algebra, and typically there are many paths to the

correct answer. Another possibility, for example, is: Since du/dx = 2x, dx = du/2x, and
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then the integral becomes
∫

2x cos(x2) dx =

∫

2x cosu
du

2x
=

∫

cosu du.

The important thing to remember is that you must eliminate all instances of the original

variable x.

EXAMPLE 7.5 Evaluate

∫

(ax+ b)n dx, assuming that a and b are constants, a 6= 0,

and n is a positive integer. We let u = ax+ b so du = a dx or dx = du/a. Then
∫

(ax+ b)n dx =

∫

1

a
un du =

1

a(n+ 1)
un+1 + C =

1

a(n+ 1)
(ax+ b)n+1 + C.

EXAMPLE 7.6 Evaluate

∫

sin(ax + b) dx, assuming that a and b are constants and

a 6= 0. Again we let u = ax+ b so du = a dx or dx = du/a. Then
∫

sin(ax+ b) dx =

∫

1

a
sinu du =

1

a
(− cosu) + C = −1

a
cos(ax+ b) + C.

EXAMPLE 7.7 Evaluate

∫ 4

2

x sin(x2) dx. First we compute the antiderivative, then

evaluate the definite integral. Let u = x2 so du = 2x dx or x dx = du/2. Then
∫

x sin(x2) dx =

∫

1

2
sinu du =

1

2
(− cosu) + C = −1

2
cos(x2) + C.

Now
∫ 4

2

x sin(x2) dx = −1

2
cos(x2)

∣

∣

∣

∣

4

2

= −1

2
cos(16) +

1

2
cos(4).

A somewhat neater alternative to this method is to change the original limits to match

the variable u. Since u = x2, when x = 2, u = 4, and when x = 4, u = 16. So we can do

this:
∫ 4

2

x sin(x2) dx =

∫ 16

4

1

2
sinu du = −1

2
(cosu)

∣

∣

∣

∣

16

4

= −1

2
cos(16) +

1

2
cos(4).

An incorrect, and dangerous, alternative is something like this:
∫ 4

2

x sin(x2) dx =

∫ 4

2

1

2
sinu du = −1

2
cos(u)

∣

∣

∣

∣

4

2

= −1

2
cos(x2)

∣

∣

∣

∣

4

2

= −1

2
cos(16) +

1

2
cos(4).

This is incorrect because

∫ 4

2

1

2
sinu dumeans that u takes on values between 2 and 4, which

is wrong. It is dangerous, because it is very easy to get to the point −1

2
cos(u)

∣

∣

∣

∣

4

2

and forget
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to substitute x2 back in for u, thus getting the incorrect answer −1

2
cos(4) +

1

2
cos(2). A

somewhat clumsy, but acceptable, alternative is something like this:

∫ 4

2

x sin(x2) dx =

∫ x=4

x=2

1

2
sinu du = −1

2
cos(u)

∣

∣

∣

∣

x=4

x=2

= −1

2
cos(x2)

∣

∣

∣

∣

4

2

= −cos(16)

2
+

cos(4)

2
.

EXAMPLE 7.8 Evaluate

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt. Let u = sin(πt) so du = π cos(πt) dt or

du/π = cos(πt) dt. We change the limits to sin(π/4) =
√
2/2 and sin(π/2) = 1. Then

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt =

∫ 1

√
2/2

1

π

1

u2
du =

∫ 1

√
2/2

1

π
u−2 du =

1

π

u−1

−1

∣

∣

∣

∣

1

√
2/2

= − 1

π
+

√
2

π
.

Exercises 7.4.

Find the antiderivatives.

1.

∫

(1− t)9 dt ⇒ 2.

∫

(x2 + 1)2 dx ⇒

3.

∫

x(x2 + 1)100 dx ⇒ 4.

∫

1
3
√
1− 5t

dt ⇒

5.

∫

sin3 x cos xdx ⇒ 6.

∫

x
√

100− x2 dx ⇒

7.

∫

x2

√
1− x3

dx ⇒ 8.

∫

cos(πt) cos
(

sin(πt)
)

dt ⇒

9.

∫

sin x

cos3 x
dx ⇒ 10.

∫

tanx dx ⇒

11.

∫ π

0

sin5(3x) cos(3x) dx ⇒ 12.

∫

sec2 x tan xdx ⇒

13.

∫

√
π/2

0

x sec2(x2) tan(x2) dx ⇒ 14.

∫

sin(tanx)

cos2 x
dx ⇒

15.

∫

4

3

1

(3x− 7)2
dx ⇒ 16.

∫ π/6

0

(cos2 x− sin2 x) dx ⇒

17.

∫

6x

(x2 − 7)1/9
dx ⇒ 18.

∫

1

−1

(2x3 − 1)(x4 − 2x)6 dx ⇒

19.

∫

1

−1

sin7 xdx ⇒ 20.

∫

f(x)f ′(x) dx ⇒


