PRICES AS QUALITY SIGNALS: EVIDENCE FROM THE WINE MARKET

Karl Storchmann and Hubert Schnabel
Prices as Quality Signals: Evidence from the Wine Market

Karl Storchmann
Hubert Schnabel

To copy, abstract, post on servers, or otherwise redistribute is not to be done without the express permission of the author(s).

WORKING PAPER No. 18
Prices as Quality Signals: Evidence from the Wine Market*

Karl Storchmanna and Hubert Schnabelb

Abstract
In this paper we empirically analyze whether prices serve as signals for consumers. Specifically, and following the hypothesis by Bagwell and Riordan (1991), we examine whether (1) higher quality and (2) low consumer information levels about quality are associated with prices that are above the full information equilibrium. We refer to two price samples of identical wines and analyze the difference between them. The first sample consists of prices for informed wholesalers who can taste the wines before purchase. The second sample comprises retail prices for the imperfectly informed public. We find support for the Bagwell-Riordan model, i.e., price signals respond positively to wine quality and negatively to increasing information. For our sample, the information effect by far dominates the quality effect.

I. Introduction
In many markets sellers of a product are better informed about the good’s quality than buyers, resulting in the well-known lemon problem (Akerlof, 1970). Because it is impossible for many consumers to distinguish high quality from low quality, goods of each type sell for the same price. A growing body of literature has shown that the lemon

* We are indebted to Orley Ashenfelter and Victor Ginsburgh for many helpful comments. Our thank also goes to participants of the session on Price Discrimination at the 2nd Annual Conference of the American Association of Wine Economists on August 15, 2008, in Portland, OR.
a Economics Department, Whitman College, Walla Walla, WA 99362, email: storchkh@whitman.edu
b Vereinigte Hospitien, Krahnufer 19, 54290 Trier, Germany. email: H.Schnabel@vereinigehospitien.de
problem is an important issue for experience and credence goods for which quality cannot be ascertained before consumption.1 Food items and environmentally-friendly products are one of the most investigated goods within this category (e.g., Karl and Orwat, 1999; McCluskey and Loureiro, 2000; Loureiro et al., 2003).

However, as shown first by Spence (1973), producers can signal quality. High quality can be signaled by offering warranties (Spence, 1977; Grossmann, 1980), by advertising (Milgrom and Roberts, 1986) or by reputation (Shapiro, 1983). Theoretical models of prices as quality signals were first developed by Farrell (1980), Wolinsky (1983) and especially by Milgrom and Roberts (1986), Tirole (1988) and Bagwell and Riordan (1991).

As first shown by Bagwell and Riordan (1991) for a two-seller, two-quality monopoly model, prices can signal quality given that the high-quality product is more costly to produce than a low-quality product. In the incomplete information equilibrium, the firm producing low-quality chooses the full-information price whereas the high-quality firm distorts its price upwards compared to the full-information price for high quality.

This paper focuses on the role of prices as quality clues and is inspired by the theoretical analysis of Bagwell and Riordan (1991). We refer to the wine market to explore the role of price as a quality signal, conditional on wine quality and the degree of consumer information. Like previous empirical studies, we do not have any information about

1 The quality of an experience good, such as wine, cannot be judged before consumption (Nelson, 1970). The quality of credence goods, such as services from automobile mechanics or dentists, cannot be accurately evaluated even a certain time after consumption (Darby and Karni, 1973).
marginal production cost. However, we circumvent this problem by drawing on two different datasets that include identical wines sold on different markets. In one market, wines are tasted before purchase and buyers are (almost) fully informed wholesalers. The other market is the retail market where prices are set by producers. Here, most buyers do not taste the wines before purchase and only a small fraction of all buyers are informed.

When analyzing the price difference between the two samples we find strong support for the Bagwell-Riordan model. The price signal varies proportional to the wine’s quality. In addition, the price premium falls non-linearly when the fraction of informed buyers increases.

This paper is organized as follows: Sections 2 and 3 provide an overview over the theoretical and empirical literature, respectively; Section 4 presents the dataset and Section 5 describes the model; Section 6 reports the results; Section 7 summarizes our findings.

II. Theoretical Literature

Following the logic of Nelson (1970 and 1974), a winery can signal high quality by setting the price below the full information price. Quality signaling by under-pricing is dependent on the condition that present profits foregone are lower than profits from future sales (at higher full-information prices). For the signal to be credible the price must
be sufficiently low, i.e., lower than a winemaker producing low-quality wine can possibly go.

This, however, may be too low for the winemaker offering high-quality wine for two reasons. First, given the fact that wine is regularly sold within one year after production, the time span in which to earn sufficient future profits to offset the initial loss incurred by the signal is limited. Second, high-quality wine is typically produced with higher marginal cost than low quality wine.²

This cost difference is the basis of the “Schmalensee effect” (Schmalensee, 1978). Because a low-quality winemaker wants to be mistaken for a high-quality winemaker, he will charge the same price as the high-quality winemaker. For the high-quality winemake, one way to distinguish himself from the mimicking low-quality winemaker is to openly exhibit his high production cost in a way that is too costly for the low-quality producer. For instance, he can use a helicopter to dry his vineyard before harvesting (e.g., Mahenc and Meunier, 2006).³

Farrell (1980) goes one step further and shows that it is the presence of informed buyers that attracts high-quality producers and thereby establishes the price as a quality signal to uninformed buyers. On the one hand, firms that signal high quality with prices that are

² A different model of initial under-pricing developed by Bergemann and Välimäki (2006) draws on the fact that every person’s consumption also incorporates an element of information that is relevant for future purchases, referred to as “experimental consumption”. The value of the consumption-related information is determined endogenously and is dependent on the future price of the good. Bergemann and Välimäki show that optimal prices in niche markets are initially low and increase subsequently.

³ Tirole (1988) developed a signaling model that combines both the “Nelson effect” and the “Schmalensee effect.”
above the full-information level will gain sales from uninformed customers who believe the signal. On the other hand, they will also lose sales from informed customers. Bagwell and Riordan (1991) analyze a two-firm and two-quality market and argue that high-quality producers can credibly signal the quality of a new product with premiums above the full information profit-maximizing price as long as low-quality producers cannot mimic this strategy. This conclusion is based on the assumption that a loss of customers hurts low-quality producers more than it does high-quality producers.

Over time, as information about the good proliferates into the market and the fraction of uninformed customers falls, the price loses its function as quality signal to uninformed buyers and approximates the full information price. Thus, the quality premium disappears. In other words, the remaining uninformed agents free-ride on the learning of informed agents (see also Grossman and Stiglitz, 1980).

Given the possibility that competition may dissipate the rents from signaling, Daughety and Reinganum (2007a, 2007b) examine whether quality signaling via prices can also occur in markets with several competing sellers. For an oligopolistic market, they show that incomplete information about sufficiently horizontally-differentiated products considerably softens price competition by firms and is consistent with price-induced quality signaling.

Janssen and Roy (2007) investigate the question of whether horizontal product differentiation is necessary for price competition to soften and thus allow for quality

\[^4\text{Daughety and Reinganum (1995) provide a model with a continuum of qualities.}\]
signaling through prices. They show that price signaling occurs even when products are not horizontally differentiated and firms are engaged in a stiff price competition.

III. Empirical Literature

On the empirical side, there are numerous marketing and economics papers that analyze the degree and the development of quality-signaling through prices on particular markets. Most authors examine the correlation between price and quality across a large variety of consumer goods (e.g., Riesz, 1978; Geistfeld, 1982; Hjorth-Andersen, 1984; Gerstner, 1985). The underlying theory is that the equilibrium correlation between price and quality increases with the level of information in the market and is equal to one when consumers are fully informed about quality. The typical findings are that, although most correlations are positive, there is a large variance in price-quality correlations with some coefficients even being negative.

For instance, Tellis and Wernerfelt (1987) find that the correlation between price and quality is stronger in markets with a wide price spread. Assuming that more consumers search and are better informed as the spread in prices at which goods are sold increases, consumers infer that prices serve as quality signals on these markets.

Similarly, Caves and Greene (1996) show that the quality-price correlation coefficients are determined by the amounts and types of information that consumers gather to select among brands. On the one hand, quality-price correlations were found to be higher for product categories that include more brands and presumably give greater scope for
vertical differentiation. Caves and Greene infer that vertically-differentiated markets stimulate consumer search and increase the level of information. On the other hand, price-quality correlations were found to be low for innovative and convenience goods, suggesting that here prices signal quality.

Curry and Riesz (1988) show that during a product’s life cycle, prices converge and decline. The mean price, the price range, and the quality-price correlation fall subsequent to a new product’s introduction. However, it is not clear whether this is due to an increasing fraction of informed buyers. The results may as well be the result of a substantial decline in marginal costs over time.

Miller et al. (2007) examine the quality-price relation for 2001 Napa Cabernet Sauvignon wines and find that wine quality only partially explains the enormous variation in wine prices. According to the authors, this finding suggests the existence of a substantial degree of signaling.

Although quality-price correlations are a convenient tool to analyze whether a particular market is outside of its full-information equilibrium, this method is inappropriate to empirically test the Bagwell-Riordan model for several reasons. First, the correlation coefficient does not provide any information about the nature of the disequilibrium; under- and overpricing is indistinguishable. Second, price-quality correlations only provide information for a market as a whole; quality signaling of particular brands cannot be analyzed. As a result, we are unable to empirically examine the Bagwell-Riordan
model of overpricing where the signal size is assumed to be a function of quality. Third, without any information about marginal cost it is speculative to interpret falling prices over time as induced by consumer learning (e.g., Curry and Riesz, 1988). The same effect could have been caused by increasing competition or falling marginal cost. Hence, it is apparent that the ideal dataset includes information on marginal production costs as well as on the information level of each consumer group.

Among the very few studies that do not have to deal with these issues are the exceptional papers by Ashenfelter et al. (1995) and Ashenfelter (2008) who examine the price development of Bordeaux grands crus wine vintages over time. First, the authors calculate a full-information price as a function of temperature and precipitation and show that directly after the release of the wine, auction prices substantially deviate from the respective full-information price. However, as more information about the wines’ quality becomes available—e.g., Bordeaux grands crus are very tannic upon release and need to mature for five to eight years in order to be drinkable—auction prices steadily move towards the full-information equilibrium.

IV. Data

We circumvent the problem of lacking cost information by referring to two different datasets that contain identical wines. The first dataset contains wholesale prices from the Mainz Wine Trade Fair. Once a year for two days, the Fair showcases the wines of about
100 VDP estates to trade professionals only.\(^5\) Our dataset covers the Fair years 1993 to 2001 and contains a total of 3399 wines from the German wine regions Mosel, Rheingau and Nahe (Mainzer Weinbörse, 1993-2001). Given the nature of the buyers (wine-experienced wholesalers) and the fact that all wines can be tasted before purchase, we assume that buyers are characterized by an extraordinarily high information level, suggesting that the fair prices can be deemed very close to full-information prices.

Our second dataset consists of retail prices of the same wines when they are bought at the estate. The prices are published annually in the Gault Millau wine guide for Germany (Diel and Payne, 1994-2002). Covering the same time span and regions we collected prices of more than 7000 wines. However, only 1105 of these wines are identical with the first dataset. These 1105 wines constitute our basic price dataset. Customers that buy retail are typically substantially less informed about the wines’ quality than the professionals that frequent the Mainz Wine Fair. In addition, in almost all cases wines are not tasted before purchase. We therefore assume that only a small fraction of all buyers are informed. Table 1 reports selected descriptive statistics of the price data.

Quality in a wine is multi-dimensional and difficult to measure.\(^6\) We refer to two different measures. First, all German wines are assigned a legal quality level according to the sugar content of the grapes they are made from. The grape juice sweetness is

\(^5\) In Germany, most high-quality wine producers are organized in the Association of German Quality Wine Estates (Verband Deutscher Prädikatsweingüter VDP).

\(^6\) Some authors distinguish between a vertical and a horizontal quality dimension. While the first refers to the quality of the good, the latter denotes the respective idiosynchratic consumer’s taste at each vertical quality level (e.g., Tirole, 1988). In this analysis, we only refer to the vertical quality dimension.
Table 1
Descriptive Statistics of Wine Prices
in €/0.75 liter bottle

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>minimum</th>
<th>maximum</th>
<th>mean</th>
<th>standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gault Millau Sample (retail)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>1105</td>
<td>3.32</td>
<td>493.87</td>
<td>16.54</td>
<td>36.80</td>
</tr>
<tr>
<td>all (<€300)</td>
<td>1102</td>
<td>3.32</td>
<td>270.96</td>
<td>15.46</td>
<td>29.97</td>
</tr>
<tr>
<td>quality wine</td>
<td>198</td>
<td>3.32</td>
<td>14.31</td>
<td>6.71</td>
<td>1.78</td>
</tr>
<tr>
<td>kabinett</td>
<td>342</td>
<td>4.35</td>
<td>38.34</td>
<td>10.43</td>
<td>4.31</td>
</tr>
<tr>
<td>spätlese</td>
<td>408</td>
<td>5.11</td>
<td>38.35</td>
<td>10.43</td>
<td>4.31</td>
</tr>
<tr>
<td>auslese</td>
<td>107</td>
<td>7.67</td>
<td>94.89</td>
<td>24.27</td>
<td>14.74</td>
</tr>
<tr>
<td>beerenauslese</td>
<td>24</td>
<td>41.41</td>
<td>221.90</td>
<td>127.77</td>
<td>51.51</td>
</tr>
<tr>
<td>eiswein</td>
<td>21</td>
<td>73.62</td>
<td>460.16</td>
<td>153.54</td>
<td>89.44</td>
</tr>
<tr>
<td>trockenbeerenauslese</td>
<td>5</td>
<td>223.42</td>
<td>493.87</td>
<td>309.66</td>
<td>106.54</td>
</tr>
<tr>
<td>Mainz Trade Fair Sample (wholesale)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>1105</td>
<td>2.22</td>
<td>227.51</td>
<td>11.47</td>
<td>23.28</td>
</tr>
<tr>
<td>quality wine</td>
<td>198</td>
<td>2.22</td>
<td>23.01</td>
<td>4.74</td>
<td>2.83</td>
</tr>
<tr>
<td>kabinett</td>
<td>342</td>
<td>3.32</td>
<td>9.20</td>
<td>4.96</td>
<td>1.17</td>
</tr>
<tr>
<td>spätlese</td>
<td>408</td>
<td>4.19</td>
<td>27.61</td>
<td>7.53</td>
<td>2.69</td>
</tr>
<tr>
<td>auslese</td>
<td>107</td>
<td>7.16</td>
<td>51.12</td>
<td>16.21</td>
<td>8.22</td>
</tr>
<tr>
<td>beerenauslese</td>
<td>24</td>
<td>31.73</td>
<td>150.82</td>
<td>87.91</td>
<td>32.67</td>
</tr>
<tr>
<td>eiswein</td>
<td>21</td>
<td>23.01</td>
<td>203.99</td>
<td>102.86</td>
<td>48.06</td>
</tr>
<tr>
<td>trockenbeerenauslese</td>
<td>5</td>
<td>153.37</td>
<td>227.51</td>
<td>192.74</td>
<td>28.16</td>
</tr>
</tbody>
</table>

Table 2
Descriptive Statistics of Critical Wine Points

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>minimum points</th>
<th>maximum points</th>
<th>mean points</th>
<th>standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>1015</td>
<td>75</td>
<td>98</td>
<td>86.17</td>
<td>3.35</td>
</tr>
<tr>
<td>quality wine</td>
<td>167</td>
<td>75</td>
<td>90</td>
<td>83.29</td>
<td>2.59</td>
</tr>
<tr>
<td>kabinett</td>
<td>312</td>
<td>78</td>
<td>90</td>
<td>85.00</td>
<td>2.37</td>
</tr>
<tr>
<td>spätlese</td>
<td>388</td>
<td>78</td>
<td>93</td>
<td>86.79</td>
<td>2.58</td>
</tr>
<tr>
<td>auslese</td>
<td>98</td>
<td>81</td>
<td>94</td>
<td>88.95</td>
<td>2.54</td>
</tr>
<tr>
<td>beerenauslese</td>
<td>24</td>
<td>86</td>
<td>95</td>
<td>92.13</td>
<td>2.54</td>
</tr>
<tr>
<td>eiswein</td>
<td>21</td>
<td>85</td>
<td>96</td>
<td>92.52</td>
<td>3.16</td>
</tr>
<tr>
<td>trockenbeerenauslese</td>
<td>5</td>
<td>93</td>
<td>98</td>
<td>96.80</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Source: Diel and Payne, 1994-2002
measured on the Oechsle7 scale and in ascending order we distinguish \textit{quality wine}, \textit{kabinett, spätlese, auslese, beerenauslese, eiswein and trockenbeerenauslese}. For all these categories, except for \textit{quality wine}, it is illegal to add any additional sugar (a practice known as chaptalisation). The quality category of each wine is displayed on the label and reported in both the Gault Millau and the Mainz Wine Trade Fair guide.

Our second measure of quality is points given by wine experts. As the most comprehensive guide for German wine we draw on the Gault Millau wine guide (Diel and Payne, 1994-2002). The Gault Millau rates wines on a 100-point scale of which only the last 30-point-segment is utilized. Accordingly, 70-79 points denote “average wines for daily consumption” and 100 points “a perfect wine that is worth its weight gold” (Diel and Payne, 1999a).

Due to the fact that Armin Diel, one of the editors of the Gault Millau Guide and a winemaker, does not rate his own wines, the point variable comprises only 1015 observations. Table 2 reports selected descriptive statistics of the critical point data.

7 Degrees Oechsle (°Oe) is used in Germany and Switzerland and denotes the specific weight of the must compared to the weight of water at a temperature of 20°C, while much of the English speaking world uses a measure called brix. One liter of water weighs 1000g, which equals zero degrees Oechsle. Accordingly, grape must with a mass of 1084 grams per liter has 84 °Oe. Since the mass difference between equivalent volumes of must and water is almost entirely due to the dissolved sugar in the must, degrees Oechsle measures the relative sweetness of the grape juice. Approximately, one brix is approximately equal to one degree Oechsle divided by 4.35 (Peynaud, 1984).
V. Model

Because the size of the quality signal is defined as the difference between the set retail price and the full-information price, we define our dependent variable as the ratio of retail (Gault Millau) price and wholesale (Mainz) price. We are not interested in the fact that the retail price is higher than the wholesale price but in the variation of the percentage price difference dependent on wine quality and buyers’ information level. The basic equation of interest is therefore

\[
\frac{p_{\text{gault}}}{p_{\text{mainz}}} = \beta_0 + \beta_1 Q_i + \beta_2 I_i + \sum aX_i + \epsilon_i
\]

where \(p_{\text{gault}}\) denotes the retail price of wine \(i\), \(p_{\text{mainz}}\) the wholesale price of wine \(i\), \(Q_i\) its quality and \(I_i\) the information level of the person buying wine \(i\). The retail-wholesale price ratio is affected by more than quality and information level, and \(X_i\) stands for a vector of these variables. For instance, one winemaker may prefer to sell directly to end consumers and does not grant large discounts to the wine trade. Another winemaker may not want to be involved in retailing his wine and sells mainly to intermediaries at substantial discounts. We capture these effects with firm-specific dummy variables. In contrast to the theoretical signaling literature, we do not consider different firm types (e.g., high and low quality) but different wine types. Each firm offers a broad spectrum of quality. However, independent of the quality of a particular wine each winery draws on its respective quality reputation (e.g., Shapiro, 1983). Firm dummy variables account for
these differences provided that firm-specific reputation is time-invariant in our sample.\footnote{The Gault Millau guide measures the overall quality (reputation) of a wine estate by granting “grapes” that vary from one (“reliable producers”) to five (“the world’s finest”). Since most of the wineries in our sample remain in the same reputation bracket the use of this variable would have substantially reduced our sample size. We therefore did not follow this path and, instead, rely on fixed producer dummy variables to capture reputational effects.} Similar effects may be associated with the winegrowing region, the grape variety or the vintage. We control for these effects by including appropriate dummy variables. The term ε_i denotes the normally distributed error term.

While we assume that wholesale prices are very close to the full information level, we are\textit{a priori} uncertain about the information level of retail customers. By assumption, the group of retail wine shoppers is comparatively heterogeneous. While most consumers are uninformed, there are certainly some well-informed wine connoisseurs within this group. It is costly for the uninformed to procure information. In order to capture the horizontal idiosyncratic quality dimension, consumers must either read critical wine reviews or, even better, buy selected wines and taste them before making further purchases.

Theoretically, consumers will search for sample wines up to the point where the marginal benefits and marginal cost of the search are equal. Two different models have been developed to rationalize the search process. On the one hand, the search process can be sequential, i.e., consumers search a sample of wines one by one and incur an incremental cost with each additional unit (e.g., Stigler, 1961; Rothschild, 1974, Stahl, 1989; McAfee, 1995). On the other hand, consumers can access information by consulting an information clearinghouse such as an internet price comparison site or a newspaper, resulting in sample search cost that is almost fixed (e.g., Salop and Stiglitz, 1973; Varian,
It is a typical feature of clearinghouse models that a subset of consumers gain access to the clearinghouse and become informed while others do not. Since the Gault Millau Wine Guide functions as an information clearinghouse we follow the latter model. Gaining access to the entire price and quality list of all high-end wines is essentially associated with a fixed cost. Thus, the incentive to become informed is a function of the cost of being uninformed.

We assume that the utility (u) derived from a certain wine is a function of its quality (q) which itself depends on the wine’s price (p):

$$u = u[q(p)]$$

with diminishing marginal quality returns to price \(\left(\frac{\partial q}{\partial p} > 0 \text{ and } \frac{\partial^2 q}{\partial p^2} < 0 \right)\) and increasing marginal utility to quality \(\left(\frac{\partial u}{\partial q} > 0 \text{ and } \frac{\partial^2 u}{\partial q^2} > 0 \right)\).

Table 3 shows our sample’s wine quality for selected price brackets. We see that expected wine quality, measured as the mean value of critical points, is a function of the wine’s price. In addition, the following linear-logarithmic function

$$PTS_i = \beta_0 + \beta_1 \ln(p_{\text{gault}_i}) + \sum aX_i + \epsilon_i$$

9 Consumers may decide not to access the clearinghouse because they are loyal to a certain firm (Rosenthal, 1980) or have different access costs (Salop and Stiglitz, 1973; Varian, 1980). Both assume that firms can advertise their prices at the clearinghouse at no cost. In contrast, Baye and Morgan (2001) describe the clearinghouse as an economic agent who maximizes profits by endogenously choosing listing fees from firms and subscription fees from consumers.
where PTS stands for critical points, p_{gault} for the retail price and X denotes a vector of control variables, yields a value of 2.40 for β_1 (significant at the 0.01% level) suggesting decreasing marginal quality returns per price increase.

In column (5) of Table 3, we also report the quality dispersion, i.e. the quality standard deviation, within each price bracket. Accordingly, for the uninformed buyer the risk of failure, i.e., the chance of picking a wine that has a lower than average quality, appears to be the highest at the lower and the higher end of the price spectrum. However, due to the diminishing marginal quality returns per euro spent, the loss of one quality point for a €150 wine equals a financial loss of approximately €62.50 while a quality point for a €10 wine is worth only €4.20.10 Therefore, even with identical standard deviations, the financial loss due to an uninformed choice grows exponentially with the wine’s price.

Assuming further that the increasing marginal utility of quality does not offset this financial loss, we conclude that the incentive to become informed is a positive function of the wine’s retail price. We therefore assume that the retail price ideally proxies the degree of consumer information, i.e. the fraction of informed buyers.

Inserting the retail price (p_{gault}) for I_i into equation (1), however, is problematic because the same covariate is already part of the dependent variable. A simple Hausman

\[\frac{1}{\beta_1 / p_{\text{gault}}} \] for $\beta_1 = 2.4$.10
Table 3
Wine Price and Quality Variation

<table>
<thead>
<tr>
<th>price range in real €</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>minimum</td>
<td>maximum</td>
<td>mean</td>
<td>standard deviation</td>
</tr>
<tr>
<td>0<p≤20</td>
<td>884</td>
<td>75</td>
<td>93</td>
<td>85.6</td>
<td>2.86</td>
</tr>
<tr>
<td>20<p≤40</td>
<td>68</td>
<td>82</td>
<td>94</td>
<td>88.6</td>
<td>2.76</td>
</tr>
<tr>
<td>40<p≤60</td>
<td>12</td>
<td>87</td>
<td>93</td>
<td>90.6</td>
<td>2.22</td>
</tr>
<tr>
<td>60<p≤80</td>
<td>8</td>
<td>88</td>
<td>93</td>
<td>90.6</td>
<td>1.99</td>
</tr>
<tr>
<td>80<p≤100</td>
<td>7</td>
<td>87</td>
<td>95</td>
<td>92.0</td>
<td>2.82</td>
</tr>
<tr>
<td>100<p≤200</td>
<td>13</td>
<td>86</td>
<td>96</td>
<td>92.7</td>
<td>2.99</td>
</tr>
<tr>
<td>p≥200</td>
<td>1105</td>
<td>1068</td>
<td>1051</td>
<td>973</td>
<td></td>
</tr>
</tbody>
</table>

Source: Diel and Payne, 1994-2002

Table 4
Model Results Using Degree Oechsle Categories

<table>
<thead>
<tr>
<th>dependent variable (retail price/wholesale price) for real retail price segment^a</th>
<th>(1)</th>
<th>(2) < €100</th>
<th>(3) < €50</th>
<th>(4) < €20</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>information</td>
<td>-0.206*</td>
<td>-0.367***</td>
<td>-0.351***</td>
<td>-0.523***</td>
</tr>
<tr>
<td>level^b</td>
<td>(-1.75)</td>
<td>(-2.73)</td>
<td>(-3.07)</td>
<td>(-4.11)</td>
</tr>
<tr>
<td>quality wine</td>
<td>-0.651*</td>
<td>-1.273**</td>
<td>-1.104***</td>
<td>-0.604***</td>
</tr>
<tr>
<td>kabinett</td>
<td>(-1.77)</td>
<td>(-2.42)</td>
<td>(-3.40)</td>
<td>(-3.88)</td>
</tr>
<tr>
<td>spätlese</td>
<td>-0.653*</td>
<td>-1.253**</td>
<td>-1.094***</td>
<td>-0.560***</td>
</tr>
<tr>
<td>auslese</td>
<td>(-1.86)</td>
<td>(-2.47)</td>
<td>(-3.52)</td>
<td>(-3.99)</td>
</tr>
<tr>
<td>beereinauslese</td>
<td>-0.528*</td>
<td>-1.061**</td>
<td>-0.908***</td>
<td>-0.319***</td>
</tr>
<tr>
<td>(1.74)</td>
<td>(-2.31)</td>
<td>(-3.48)</td>
<td>(-3.58)</td>
<td></td>
</tr>
<tr>
<td>auslese</td>
<td>-0.273</td>
<td>-0.693*</td>
<td>-0.570***</td>
<td></td>
</tr>
<tr>
<td>(1.23)</td>
<td>(-1.85)</td>
<td>(-3.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beereinauslese</td>
<td>-0.040</td>
<td>-0.283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.40)</td>
<td>(-1.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trockenbeereinauslese</td>
<td>0.343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R2 0.317 | 0.324 | 0.319 | 0.446
adj. R2 0.272 | 0.279 | 0.273 | 0.406
SSE 50.37 | 46.95 | 39.37 | 16.66
F statistic 7.08 | 7.16 | 6.97 | 11.24
n 1105 | 1068 | 1051 | 973

Heteroskedasticity-consistent t-values in parentheses. Significance level 1% (***) , 2%(**) and 5% (*). ^a in € per 0.75l bottle. ^b proxied by the natural logarithm of the real retail price which is instrumented with weather variables. All quality categories are relative to eiswein. Although not shown here, all equations contain a constant term, dummy variables for style, grape variety, region and a full set of producer fixed effects.
test confirms the endogeneity problem at the 0.1% level. We thus have to find an instrument for the retail price that is uncorrelated with the price ratio.

Following the work by Ashenfelter and collaborators (Ashenfelter et al., 1995; Ashenfelter, 2008; Ashenfelter and Storchmann, 2009), we chose to instrument the retail price by employing a hedonic price function that essentially relies on three weather variables: rainfall in the winter preceding the growing season, rainfall during the harvest, and growing season temperatures. Given the small area covered, we assume that each wine is affected by weather changes in the same way (see also Ashenfelter, 2008; Ashenfelter and Storchmann, 2009).

We augment this function with a variable denoting the age of the wine and dummy variables for the quality level (kabinett, spätlese etc.), the wine’s character (dry, sweet) and the region of origin (Mosel, Rheingau). We denote the instrumented retail price variable \(\hat{I} \) and obtain our final model

\[
(4) \quad \frac{p_{\text{gault}}}{p_{\text{mainz}}} = \beta_0 + \beta_1 Q_i + \beta_2 \hat{I}_i + \sum a X_i + u_i
\]

According to Bagwell-Riordan, we expect the price signal \(p_{\text{gault}}/p_{\text{mainz}} \) to be positively associated with quality and negatively with the fraction of informed consumers, i.e. we expect \(\beta_1 \) to be positive and \(\beta_2 \) to be negative.

\[11\] The Rheingau region and the vineyards of the Rhine tributaries Mosel and Nahe river lie within an area of about 60 by 40 miles, which equals an area covered by Napa and Sonoma county together.
VI. Results

A. Price-Quality Correlations and Price Dispersion

Before turning to the results of the model described above, we display quality-price correlations for each of the two data sets differentiated by price segments (Figure 1). In the price segment below $150 per bottle both data sets show almost identically low correlations ranging between 0.4 and -0.2. However, for the price brackets of $150 and above, the wholesale price-quality correlation increases dramatically to 0.74. In contrast, the retail price-quality correlation, while also growing, remains close to zero.

Figure 1
Price-Quality Correlations by Sample and Price Bracket
The u-shape of both curves suggests that the level of signaling in both samples increases up to the $100-149 price segment and then falls off. This may be caused by two different forces. First, assuming a positive correlation between price and quality, prices may serve as quality indicators resulting in falling price-quality correlations for expensive wines. Second, price may proxy customers’ information levels yielding rising price-quality correlations with increasing price levels. The latter finds further support from the high price-quality correlation for high-priced wines in the wholesale sample. We will refer to the model described in equation (2) to decompose these effects.

B. Signaling when quality is measured by Oechsle degrees

Table 4 reports the results of the model described in equation 2 when quality refers to the Oechsle-based categories quality wine, kabinett, spätlese, etc.

As expected, the price signal is negatively correlated with the fraction of informed buyers. Independent of the price bracket, the information-proxy exhibits a significance level that is consistently above the 2% level. By removing the most expensive wines from the sample, i.e. by moving from column (1) towards column (4), the coefficient as well as its statistical significance grow considerably, suggesting that the price signal quickly disappears as buyers become more informed. For instance, the coefficient (and constant elasticity) of \(-0.206\) in column (1) indicates that a retail price increase of €1 and the resulting increase in the number of informed buyers lowers \((p_{gault}/p_{mainz})\) by 1.2% at the mean retail price of the sample. This information effect gets substantially stronger if
we consider only lower priced wines.

We also find a positive relation between signal size and wine quality. Starting with the lowest category *quality wine* the coefficients consistently grow with quality12. This is true for all price segments. The effect becomes more significant when we consider only lower priced wines. However, because there is no *beerenauslese* and *trockenbeerenauslese* below €15 we omit two of seven quality categories.

C. Signaling When Quality is Measured by Experts’ Critical Points

When we change the quality variable and refer to expert ratings instead of degrees Oechsle we obtain very similar results. Table 5 reports similar coefficients for the information variable in all price segments.

Similarly, the quality variable also yields significant results that increase with the price level. In addition to the general critical point variable, we also introduced slope shifters for each legal quality (degree Oechsle) category. As expected, the coefficients suggest that the marginal effect of one critical point on the price signal is an increasing function of the quality categories. For instance, referring to the entire sample (column 1), while the marginal effect of critical points for *quality wine* is 0.002, that one of *trockenbeerenauslese* is 0.011 (with 0.008 for *eiswein* as the reference).

12 Note that all coefficients are relative to the reference category *eiswein*.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>-0.162</td>
<td>-0.359***</td>
<td>-0.365***</td>
<td>-0.509***</td>
</tr>
<tr>
<td>information level</td>
<td>-1.47</td>
<td>(-2.67)</td>
<td>(-3.09)</td>
<td>(-4.08)</td>
</tr>
<tr>
<td>points</td>
<td>0.008</td>
<td>0.016**</td>
<td>0.015***</td>
<td>0.011***</td>
</tr>
<tr>
<td>points*quality wine</td>
<td>-0.006</td>
<td>-0.013**</td>
<td>-0.013***</td>
<td>-0.006***</td>
</tr>
<tr>
<td>points*kabinett</td>
<td>-1.54</td>
<td>(-2.36)</td>
<td>(-3.52)</td>
<td>(-3.69)</td>
</tr>
<tr>
<td>points*spätlese</td>
<td>-0.004</td>
<td>-0.011*</td>
<td>-0.011***</td>
<td>-0.003***</td>
</tr>
<tr>
<td>points*auslese</td>
<td>-1.49</td>
<td>(-2.23)</td>
<td>(-3.59)</td>
<td>(-3.30)</td>
</tr>
<tr>
<td>points*beerenauslese</td>
<td>-0.002</td>
<td>-0.007*</td>
<td>-0.007***</td>
<td></td>
</tr>
<tr>
<td>points*trockenbeerenauslese</td>
<td>0.003</td>
<td>(1.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0.313</td>
<td>0.322</td>
<td>0.318</td>
<td>0.457</td>
</tr>
<tr>
<td>adj. R2</td>
<td>0.264</td>
<td>0.273</td>
<td>0.268</td>
<td>0.414</td>
</tr>
<tr>
<td>SSE</td>
<td>48.77</td>
<td>45.24</td>
<td>37.62</td>
<td>15.11</td>
</tr>
<tr>
<td>F statistic</td>
<td>6.41</td>
<td>6.55</td>
<td>6.41</td>
<td>10.75</td>
</tr>
<tr>
<td>n</td>
<td>1012</td>
<td>976</td>
<td>959</td>
<td>833</td>
</tr>
</tbody>
</table>

Heteroskedasticity-consistent t-values in parentheses. Significance level 1% (***) and 10% (*). \(^a \) in € per 0.75l bottle. \(^b \) proxied by the natural logarithm of the real retail price which is instrumented with climate variables. All quality categories are relative to eiswein. Although not shown here, all equations contain a constant term, dummy variables for style, grape variety, region and a full set of producer fixed effects.
Given that both the fraction of informed customers as well as wine quality are positive functions of the price and have opposite effects on the size of the price signal, i.e. the ratio of retail over wholesale price, we are now interested in the strength of the combined effects. In order to express both variables along the price axis we need to convert critical points into prices.13

Figure 2 shows the effect of each of these variables as well their combined impact on the price signal for wines under €100 in the spaetlese category. The curve denoted “Quality”

13 Equation (3), run for spaetlese wines only, yields a β_1 of 2.37.
shows the isolated effect of increasing quality on prices. Note that quality is converted from critical points into prices. Higher quality leads to a statistically significant but only moderately increasing price signal. The surcharge over the full information price rises from 21% to 23%. In contrast, the Information curve depicts the impact of a higher information level (also expressed in terms of prices) on the price. Rising information yields substantial price discounts. While the surcharge over the full information price within the under-€10 category is about 100 percent, it falls to zero at €95. That is, the information effect by far dominates the quality effect. Both effects combined exhibit a decline in the ratio of retail over wholesale price from 2.25 to 1.20. Quality and information effects are similar in the remaining wine categories.

VII. Summary

In this paper, we analyze if, and to what extent, prices can signal product quality. We empirically examine the following hypothesis, first published by Bagwell and Riordan (1991): high quality producers distinguish themselves from low quality producers by charging a price above the full information price. This may attract uninformed buyers but deter informed ones. As a result, the price signal decreases as the market learns about the true quality and the fraction of uninformed consumers declines.

We refer to two price samples of identical wines and analyze the difference between both. The first sample consists of prices for informed wholesalers and restaurateurs who professionally deal with wines. These prices are set at an annual wholesaler wine fair
where each wine can be tasted. The second sample comprises retail prices for the
imperfectly-informed public.

Referring to critical wine points as quality measure and retail prices as information proxy
we find support for the Bagwell-Riordan model. Price signals respond positively to wine
quality and negatively to increasing information. We show that the information effect by
far dominates the quality effect. Overall, the surcharge over the full information price
declines dramatically as the price level—and with it the information level of
consumers—increases.
References

