
Linear Programming: Theory and Applications

Catherine Lewis

May 11, 2008

1

Contents

1 Introduction to Linear Programming 3

1.1 What is a linear program? . 3

1.2 Assumptions . 5

1.3 Manipulating a Linear Programming Problem 6

1.4 The Linear Algebra of Linear Programming 7

1.5 Convex Sets and Directions . 8

2 Examples from Bazaraa et. al. and Winston 11

2.1 Examples . 11

2.2 Discussion . 16

3 The Theory Behind Linear Programming 17

3.1 Definitions . 17

3.2 The General Representation Theorem 19

4 An Outline of the Proof 20

5 Examples With Convex Sets and Extreme Points From Bazaara

et. al. 22

6 Tools for Solving Linear Programs 23

6.1 Important Precursors to the Simplex Method 23

7 The Simplex Method In Practice 25

8 What if there is no initial basis in the Simplex tableau? 28

8.1 The Two-Phase Method . 29

8.2 The Big-M Method . 31

9 Cycling 33

9.1 The Lexicographic Method . 34

9.2 Bland’s Rule . 37

9.3 Theorem from [2] . 37

9.4 Which Rule to Use? . 39

10 Sensitivity Analysis 39

10.1 An Example . 39

10.1.1 Sensitivity Analysis for a cost coefficient 40

1

10.1.2 Sensitivity Analysis for a right-hand-side value 41

11 Case Study: Busing Children to School 41

11.1 The Problem . 42

11.2 The Solution . 42

11.2.1 Variables . 42

11.2.2 Objective Function . 43

11.2.3 Constraints . 43

11.3 The Complete Program . 47

11.4 Road Construction and Portables 49

11.4.1 Construction . 49

11.4.2 Portable Classrooms . 50

11.5 Keeping Neighborhoods Together 55

11.6 The Case Revisited . 56

11.6.1 Shadow Prices . 56

11.6.2 The New Result . 57

12 Conclusion 57

2

1 Introduction to Linear Programming

Linear programming was developed during World War II, when a system with

which to maximize the efficiency of resources was of utmost importance. New

war-related projects demanded attention and spread resources thin. “Program-

ming” was a military term that referred to activities such as planning schedules

efficiently or deploying men optimally. George Dantzig, a member of the U.S.

Air Force, developed the Simplex method of optimization in 1947 in order to

provide an efficient algorithm for solving programming problems that had linear

structures. Since then, experts from a variety of fields, especially mathematics

and economics, have developed the theory behind “linear programming” and

explored its applications [1].

This paper will cover the main concepts in linear programming, including

examples when appropriate. First, in Section 1 we will explore simple prop-

erties, basic definitions and theories of linear programs. In order to illustrate

some applications of linear programming, we will explain simplified “real-world”

examples in Section 2. Section 3 presents more definitions, concluding with the

statement of the General Representation Theorem (GRT). In Section 4, we ex-

plore an outline of the proof of the GRT and in Section 5 we work through a

few examples related to the GRT.

After learning the theory behind linear programs, we will focus methods

of solving them. Section 6 introduces concepts necessary for introducing the

Simplex algorithm, which we explain in Section 7. In Section 8, we explore

the Simplex further and learn how to deal with no initial basis in the Simplex

tableau. Next, Section 9 discusses cycling in Simplex tableaux and ways to

counter this phenomenon. We present an overview of sensitivity analysis in

Section 10. Finally, we put all of these concepts together in an extensive case

study in Section 11.

1.1 What is a linear program?

We can reduce the structure that characterizes linear programming problems

(perhaps after several manipulations) into the following form:

3

Minimize c1x1 + c2x2 + · · · + cnxn = z

Subject to a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

x1, x2, . . . , xn ≥ 0.

In linear programming z, the expression being optimized, is called the objec-

tive function. The variables x1, x2 . . . xn are called decision variables, and their

values are subject to m + 1 constraints (every line ending with a bi, plus the

nonnegativity constraint). A set of x1, x2 . . . xn satisfying all the constraints is

called a feasible point and the set of all such points is called the feasible re-

gion. The solution of the linear program must be a point (x1, x2, . . . , xn) in the

feasible region, or else not all the constraints would be satisfied.

The following example from Chapter 3 of Winston [3] illustrates that ge-

ometrically interpreting the feasible region is a useful tool for solving linear

programming problems with two decision variables. The linear program is:

Minimize 4x1 + x2 = z

Subject to 3x1 + x2 ≥ 10

x1 + x2 ≥ 5

x1 ≥ 3

x1, x2 ≥ 0.

We plotted the system of inequalities as the shaded region in Figure 1. Since

all of the constraints are “greater than or equal to” constraints, the shaded

region above all three lines is the feasible region. The solution to this linear

program must lie within the shaded region.

Recall that the solution is a point (x1, x2) such that the value of z is the

smallest it can be, while still lying in the feasible region. Since z = 4x1 + x2,

plotting the line x1 = (z − x2)/4 for various values of z results in isocost lines,

which have the same slope. Along these lines, the value of z is constant. In

Figure 1, the dotted lines represent isocost lines for different values of z. Since

isocost lines are parallel to each other, the thick dotted isocost line for which

z = 14 is clearly the line that intersects the feasible region at the smallest

possible value for z. Therefore, z = 14 is the smallest possible value of z given

4

the constraints. This value occurs at the intersection of the lines x1 = 3 and

x1 + x2 = 5, where x1 = 3 and x2 = 2.

Figure 1: The shaded region above all three solid lines is the feasible region
(one of the constraints does not contribute to defining the feasible region). The
dotted lines are isocost lines. The thick isocost line that passes through the
intersection of the two defining constraints represents the minimum possible
value of z = 14 while still passing through the feasible region.

.

1.2 Assumptions

Before we get too focused on solving linear programs, it is important to review

some theory. For instance, several assumptions are implicit in linear programing

problems. These assumptions are:

1. Proportionality The contribution of any variable to the objective func-

tion or constraints is proportional to that variable. This implies no dis-

5

counts or economies to scale. For example, the value of 8x1 is twice the

value of 4x1, no more or less.

2. Additivity The contribution of any variable to the objective function or

constraints is independent of the values of the other variables.

3. Divisibility Decision variables can be fractions. However, by using a spe-

cial technique called integer programming, we can bypass this condition.

Unfortunately, integer programming is beyond the scope of this paper.

4. Certainty This assumption is also called the deterministic assumption.

This means that all parameters (all coefficients in the objective function

and the constraints) are known with certainty. Realistically, however,

coefficients and parameters are often the result of guess-work and approx-

imation. The effect of changing these numbers can be determined with

sensitivity analysis, which will be explored later in Section 9 [3].

1.3 Manipulating a Linear Programming Problem

Many linear problems do not initially match the canonical form presented in the

introduction, which will be important when we consider the Simplex algorithm.

The constraints may be in the form of inequalities, variables may not have

a nonnegativity constraint, or the problem may want to maximize z instead

of minimize z. We now consider some ways to manipulate problems into the

desired form.

Constraint Inequalities We first consider the problem of making all con-

straints of a linear programming problem in the form of strict equalities. By

introducing new variables to the problem that represent the difference between

the left and the right-hand sides of the constraints, we eliminate this concern.

Subtracting a slack variable from a “greater than or equal to” constraint or

by adding an excess variable to a “less than or equal to” constraint, trans-

forms inequalities into equalities. For example, the constraint 4x1 + x2 ≤ 3

becomes 4x1 + x2 + e1 = 3 with the addition of e1 ≥ 0. If the constraint were

originally 4x1 + x2 ≥ 3, the additional surplus variable s1 must be subtracted

(4x1 + x2 − s1 = 3) so that s1 can be a strictly nonnegative variable.

URS Variables If a variable can be negative in the context of a linear pro-

gramming problem it is called a urs (or “unrestricted in sign”) variable. By

6

replacing this variable xj with x′

j − x′′

j where x′

j , x′′

j ≥ 0, the problem fits the

canonical form.

Minimization/Maximization If needed, converting a maximization prob-

lem to a minimization problem is quite simple. Given that z is an objective

function for a maximization problem

max z = −min (−z).

1.4 The Linear Algebra of Linear Programming

The example of a canonical linear programming problem from the introduction

lends itself to a linear algebra-based interpretation. As a reminder, the form of

a canonical problem is:

Minimize c1x1 + c2x2 + · · · + cnxn = z

Subject to a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

x1, x2, . . . , xn ≥ 0.

By applying some basic linear algebra, this problem becomes:

Minimize
∑n

j=1 cjxj = z

Subject to
∑n

j=1 ajxj = b

xj ≥ 0 j = 1, 2, . . . , n.

or, more compactly,

Minimize cx = z

Subject to Ax = b

x ≥ 0,

Here A is an mxn matrix whose jth column is aj . This matrix corresponds

to the coefficients on x1, x2, . . . , xn in the constraints of a linear programming

7

problem. The vector x is a vector of solutions to the problem, b is the right-

hand-side vector, and c is the cost coefficient vector. This more compact way of

thinking about linear programming problems is useful especially in sensitivity

analysis, which will be discussed in Section 9.

1.5 Convex Sets and Directions

This section defines important terms related to the feasible region of a linear

program.

Definition 1.1. A set X ∈ R is a convex set if given any two points x1

and x2 in X, any convex combination of these two points is also in X. That is,

λx1 + (1 − λ)x2 ∈ X for any λ ∈ [0, 1] [2]. See Figure 4 for an example of a

convex set.

A set X is convex if the line segment connecting any two points in X is also

contained in X. If any part of the line segment not in X, then X is said to be

nonconvex. Figure 2 shows an example of a nonconvex set and a convex set.

The feasible region of a linear program is always a convex set. To see why this

makes sense, consider the 2-dimensional region outlined on the axes in Figure

3. This region is nonconvex. In linear programming, this region could not occur

because (from Figure 3) y ≤ mx + h for c ≤ x ≤ d but y ≤ b for d < x ≤ e.

The constraint y ≤ mx + h doesn’t hold when d < x ≤ e and the constraint

y ≤ b doesn’t hold when 0 ≤ x ≤ d. These sorts of conditional constraints do

not occur in linear programming. A constraint cannot be valid on one region

and invalid on another.

A

B

1 2

Figure 2: Set 1 is an example of a nonconvex set and set 2 is an example of a
convex set. The endpoints of line segment AB are in set 1, yet the entire line is
not contained in set 1. No such line segment is possible in set 2.

8

Figure 3: A nonconvex (and therefore invalid) feasible region.

Definition 1.2. A point x in a convex set X is called an extreme point

of X if x cannot be represented as a strict convex combination of two distinct

points in X [2]. A strict convex combination is a convex combination for which

λ ∈ (0, 1).

Graphically, an extreme point is a corner point. We will not prove this

fact rigorously. In two dimensions, two constraints define an extreme point at

their intersection. Further, if two points x′ and x′′ make up a strict convex

combination that equals x̄, then all three of these points must be defined by the

same constraints, or else they could not be colinear. However, if two constraints

define x̄ at their intersection, then x̄ is unique, since two lines can only intersect

once (or not at all). Since this intersection is unique, yet all three points must

lie on both constraints, x′ = x′′ = x̄. Therefore, the strict convex combination

can’t exist and hence corner points and extreme points are equivalent.

Definition 1.3. Given a convex set, a nonzero vector d is a direction of the

set if for each x0 in the set, the ray {x0 + λd : λ ≥ 0} also belongs to the set.

Definition 1.4. An extreme direction of a convex set is a direction of the set

that cannot be represented as a positive combination of two distinct directions

of the set.

9

Figure 4: A bounded set with 4 extreme points. This set is bounded because
there are no directions. Also, the extreme point (2, 1) is a degenerate extreme
point because it is the intersection of 3 constraints, but the feasible region is
only two-dimensional. In general, an extreme point is degenerate if the number
of intersecting constraints at that point is greater than the dimension of the
feasible region.

Examples of a direction and an extreme direction can be seen in Figure 5.

We need all of these definitions to state the General Representation The-

orem, a building-block in linear programming. The General Representation

Theorem states that every point in a convex set can be represented as a con-

vex combination of extreme points, plus a nonnegative linear combination of

extreme directions. This theorem will be discussed more later.

10

�

��

� � � � � �	�
�

�

�

�

�

�

�

�

Figure 5: The shaded region in this figure is an unbounded convex set. Point A
is an example of an extreme point, vector B is an example of a direction of the
set and vector C is an example of an extreme direction of the set.

2 Examples from Bazaraa et. al. and Winston

The following examples deal with interpreting a word problem and setting up a

linear program.

2.1 Examples

1. Consider the problem of locating a new machine to an existing layout

consisting of four machines. These machines are located at the following

(x, y) coordinates: (3, 0), (0,−3), (−2, 1), and (1, 4). Let the coordinates

of the new machine be (x1, x2). Formulate the problem of finding an

optimal location as a linear program if the sum of the distances from

the new machine to the existing four machines is minimized. Use street

distance; for example, the distance from (x1, x2) to the first machine at

11

(3, 0) is |x1 − 3|+ |x2|. This means that the distance is not defined by the

length of a line between two points, rather it is the sum of the lengths of

the horizontal and vertical components of such a line.

Solution Since absolute value signs cannot be included in a linear pro-

gram, recall that:

|x| = max {x, − x}.

With this in mind, the following linear program models the problem:

Minimize z = (P1 + P2) + (P3 + P4) + (P5 + P6) + (P7 + P8)

Subject to P1 ≥ −(x1 − 3)

P1 ≥ x1 − 3

P2 ≥ −(x2)

P2 ≥ x2

P3 ≥ −(x1 − 1)

P3 ≥ x1 − 1

P4 ≥ −(x2 − 4)

P4 ≥ x2 − 4

P5 ≥ −(x1 + 2)

P5 ≥ x1 + 2

P6 ≥ −(x2 − 1)

P6 ≥ x2 − 1

P7 ≥ −(x1)

P7 ≥ x1

P8 ≥ −(x2 + 3)

P8 ≥ x2 + 3

all variables ≥ 0.

Each P2i−1 represents the horizontal distance between the new machine

and the ith old machine for i = 1, 2, 3, 4. Also for i = 1, 2, 3, 4, P2i rep-

resents the vertical distance between the new machine and the ith old

machine. The objective function reflects the desire to minimize total dis-

tance between the new machine and all the others. The constraints relate

the P variables to the distances in terms of x1 and x2. Two constraints

for each P variable allow each Pi (i = 1, 2, . . . , 8) to equal the maximum

12

of xj − cj and −(xj − cj) (for j = 1, 2 and where c is the jth compo-

nent of the position of one of the old machines). Since this program is

a minimization problem and the smallest any of the variables can be is

max {(xj −cj), − (xj −cj)}, each Pi will naturally equal its least possible

value. This value will be the absolute value of xj − cj .

In the next problem we will also interpret a “real-world” situation as a

linear program. Perhaps the most notable aspect of this problem is the

concept of inventory and recursion in constraints.

2. A company is opening a new franchise and wants to try minimizing their

quarterly cost using linear programming. Each of their workers gets paid

$500 per quarter and works 3 contiguous quarters per year. Additionally,

each worker can only make 50 pairs of shoes per quarter. The demand (in

pairs of shoes) is 600 for quarter 1, 300 for quarter 2, 800 for quarter 3,

and 100 for quarter 4. Pairs of shoes may be put in inventory, but this

costs $50 per quarter per pair of shoes, and inventory must be empty at

the end of quarter 4.

Solution In order to minimize the cost per year, decision variables are

defined. If we let

Pt − number of pairs of shoes during quarter t, t = 1, 2, 3, 4

Wt − number of workers starting work in quarter t, t = 1, 2, 3, 4

It − number of pairs of shoes in inventory after quarter t, t = 1, 2, 3, 4,

the objective function is therefore

min z = 50I1 + 50I2 + 50I3 + 1500W1 + 1500W2 + 1500W3 + 1500W4.

Since each worker works three quarters they must be payed three times

their quarterly rate. The objective function takes into account the salary

paid to the workers, as well as inventory costs. Next, demand for shoes

must be considered. The following constraints account for demand:

13

P1 ≥ 600

I1 = P1 − 600

I2 = I1 + P2 − 300

I3 = I2 + P3 − 800

I4 = I3 + P4 − 100 = 0.

Note these constraints are recursive, meaning they can be defined by the

expression:

In = In1
+ Pn − Dn

where Dn is just a number symbolizing demand for that quarter.

Also, the workers can only make 50 pairs of shoes per quarter, which gives

us the constraints

P1 ≤ 50W1 + 50W3 + 50W4

P2 ≤ 50W2 + 50W4 + 50W1

P3 ≤ 50W3 + 50W1 + 50W2

P4 ≤ 50W4 + 50W3 + 50W2

This linear program is somewhat cyclical, since workers starting work in

quarter 4 can produce shoes during quarters 1 and 2. It is set up this way

in order to promote long-term minimization of cost and to emphasize that

the number of workers starting work during each quarter should always

be the optimal value, and not vary year to year.

The next example is a similar type of problem. Again, decision variable

must be identified and constraints formed to meet a certain objective.

However, this problem deals with a different real-world situation and it is

interesting to see the difference in the structure of the program.

In the previous problem, the concepts of inventory and scheduling were

key, in the next problem, the most crucial aspect is conservation of matter.

This means that several options will be provided concerning how to dispose

of waste and all of the waste must be accounted for by the linear program.

3. Suppose that there are m sources that generate waste and n disposal sites.

The amount of waste generated at source i is ai and the capacity of site j

is bj . It is desired to select appropriate transfer facilities from among K

candidate facilities. Potential transfer facility k has fixed cost fk, capacity

14

qk and unit processing cost αk per ton of waste. Let cik and c̄kj be the

unit shipping costs from source i to transfer station k and from transfer

station k to disposal site j respectively. The problem is to choose the

transfer facilities and the shipping pattern that minimize the total capital

and operating costs of the transfer stations plus the transportation costs.

Solution As with the last problem, defining variables is the first step.

wik = tons of waste moved from i to k, 1 ≤ i ≤ m, 1 ≤ k ≤ K

yk = a binary variable that equals 1 when transfer station k is used

and 0 otherwise, 1 ≤ k ≤ K

xkj = tons of waste moved from k to j, 1 ≤ k ≤ K, 1 ≤ j ≤ n

The objective function features several double sums in order to describe

all the costs faced in the process of waste disposal. The objective function

is:

min z =
∑

i

∑

k

cikwik +
∑

k

∑

j

c̄kjxkj +
∑

k

fkyk +
∑

k

∑

i

αkwik .

The first constraint equates the tons of waste coming from all the sources

with the tons of waste going to all the disposal sites. This constraint is

∑

i

wik =
∑

j

xkj .

The next constraint says that the amount of waste produced equals the

amount moved to all the transfer facilities:

∑

k

wik =
∑

i

ai.

Next, there must be a constraint that restricts how much waste is at

transfer or disposal sites depending on their capacity. This restriction

15

gives:
∑

k

xkj ≤ bj and
∑

i

wik ≤ qk.

Putting these constraints all together, the linear program is:

Minimize z =
∑

i

∑

k cikwik +
∑

k

∑

j c̄kjxkj +
∑

k fkyk +
∑

k

∑

i αkwik

Subject to
∑

i wik =
∑

j xkj
∑

k wik =
∑

i ai
∑

k xkj ≤ bj
∑

i wik ≤ qk

all variables ≥ 0.

Most linear program-solving software allows the user to designate certain vari-

ables as binary, so ensuring this property of yk would not be an obstacle in

solving this problem.

2.2 Discussion

Now let’s discuss the affects altering a linear program has on the program’s

feasible region and optimal objective function value. Consider the typical linear

program: minimize cx subject to Ax ≥ b, x ≥ 0.

First, suppose that a new variable xn+1 is added to the problem. The

feasible region gets larger or stays the same. After the addition of xn+1 the

feasible region goes up in dimension. It still contains all of its original points

(where xn+1 = 0) but it may now also include more.

The optimal objective function value of this program gets smaller or stays

the same. Since there are more options in the feasible region, there may be one

that more effectively minimizes z. If the new variable is added to z (that is,

any positive value of that variable would make z larger), then that variable will

equal 0 at optimality.

Now, suppose that one component of the vector b, say bi, is increased by

one unit to bi +1. The feasible region gets smaller or stays the same. To see this

more clearly, let y symbolize the row vector of coefficients of the constraint to

which 1 was added. The new feasible region is everything from the old feasible

region except points that satisfy the constraint bi ≤ y ·x < bi +1. This is either

a positive number or zero, so therefore the feasible region gets smaller or stays

16

the same.

The optimal objective of this new program gets larger or stays the same. To

satisfy the new constraint, the variables in that constraint may have to increase

in value. This increase may in turn increase the value of the objective function.

In general, when changes are made in the program to increase the size of the

feasible region, the optimal objective value either stays the same, or becomes

more optimal (smaller for a minimization problem, or larger for a maximization

problem). This is because a larger feasible region presents more choices, one

of which may be better than the previous result. Conversely, when a feasible

region decreases in size, the optimal objective value either stays the same, or

becomes less optimal.

3 The Theory Behind Linear Programming

3.1 Definitions

Now that several examples, have been presented, it is time to explore the theory

behind linear programming more thoroughly. The climax of this chapter will

be the General Representation Theorem and to reach this end, more definitions

and theorems are necessary.

Definition 3.1. A hyperplane H in R
n is a set of the form {x : px = k}

where p is a nonzero vector in R
n and k is a scalar.

For example, {(x1, x2) : (1, 0) · (x1, x2) = 2} is a hyperplane in R
2. After

completing the dot product, it turns out that this is just the line x1 = 2 which

can be plotted on the x1x2-plane.

A hyperplane in three dimensions is a traditional plane, and in two dimen-

sions it is a line. The purpose of this definition is to generalize the idea of a

plane to more dimensions.

Definition 3.2. A halfspace is a collection of points of the form {x : px ≥ k}

or {x : px ≤ k}.

Consider the two-dimensional halfspace {(x1, x2) : (1, 0)·(x1, x2) ≤ 2}. After

completing the dot product, it is clear that this halfspace describes the region

where x1 ≤ 2. On the x1, x2 plane, this would be everything to the left of the

hyperplane x1 = 2.

A halfspace in R
2 is everything on one side of a line and, similarly, in R

3 a

halfspace is everything on one side of a a plane.

17

Definition 3.3. A polyhedral set is the intersection of a finite number of

halfspaces. It can be written in the form {x : Ax ≤ b} where A is an m × n

matrix (where m and n are integers).

Every polyhedral set is a convex set. See Figure 6 for an example of a polyhe-

dral set. A proper face of a polyhedral set X is a set of points that corresponds to

some nonempty set of binding defining hyperplanes of X. Therefore, the highest

dimension of a proper face of X is equal to dim(X)-1. An edge of a polyhedral

set is a one-dimensional face of X. Extreme points are zero-dimensional faces

of X, which basically summarizes the next big definition:

Figure 6: This “pup tent” is an example of a polyhedral set in R
3. Point A is

an extreme point because it is defined by three halfspaces: everything behind
the plane at the front of the tent, and everything below the two planes defining
the sides of the tent. The line segment from A to B is called an “edge” of the
polyhedral set. Set C is a set of points that forms a two-dimensional proper
face of the pup tent.

Definition 3.4. Let X ∈ R
n, where n is an integer. A point x̄ ∈ X is said to

be an extreme point of set X if x̄ lies on some n linearly independent defining

18

hyperplanes of X.

Earlier, an extreme point was said to be a “corner point” of a feasible region

in two dimensions. The previous definition states the definition of an extreme

point more formally and generalizes it for more than two dimensions.

All of the previous definitions are for the purpose of generalizing the idea

of a feasible region to more than two-dimensions. The feasible region will al-

ways be a polyhedral set, which, according to the definition, is a convex set

in n dimensions. The terminology presented in these definitions is used in the

statement and proof of the General Representation Theorem, which is covered

in the next section.

3.2 The General Representation Theorem

One of the most important (and difficult) theorems in linear programming is

the General Representation Theorem. This theorem not only provides a way to

represent any point in a polyhedral set, but its proof also lays the groundwork

for understanding the Simplex method, a basic tool for solving linear programs.

Theorem 3.1. The General Representation Theorem: Let X = {x :

Ax ≤ b, x ≥ 0} be a nonempty polyhedral set. Then the set of extreme points

is not empty and is finite, say {x1,x2, . . . ,xk}. Furthermore, the set of extreme

directions is empty if and only if X is bounded. If X is not bounded, then

the set of extreme directions is nonempty and is finite, say {d1,d2, . . . ,dl}.

Moreover, x̄ ∈ X if and only if it can be represented as a convex combination of

x1,x2, . . . ,xk plus a nonnegative linear combination of d1,d2, . . . ,dl, that is,

x̄ =

k
∑

j=1

λjxj +

l
∑

j=1

µjdj

k
∑

j=1

λj = 1,

λj ≥ 0, j = 1, 2, . . . , k

µj ≥ 0, j = 1, 2, . . . , l.

In sum, by visualizing an unbounded polyhedral set in two-dimensions, it is

clear that any point in between extreme points can be represented as a convex

combination of those extreme points. Any other point can be represented as

19

one of these convex combinations, plus a combination of multiples of extreme

directions.

This theorem is called “general” since it applies to either a bounded poly-

hedral set (in the case that µj = 0 for all j) or an unbounded polyhedral set.

4 An Outline of the Proof

The General Representation Theorem (GRT) has four main parts. First, it

states that the number of extreme points in X is nonempty and finite. Next, if

X is bounded then the set of extreme directions of X is empty. Further, if X is

not bounded, then the set of extreme directions is nonempty and finite. Finally,

the GRT states that x̄ ∈ X if and only if it can be represented as a convex

combination of extreme points of X and a nonnegative linear combination of

extreme directions of X. We will explore the proofs of these parts in sequence.

Since the last part of the GRT is a “if and only if” theorem, it must be

proven both ways. Proving that if a point x can be represented as a convex

combination of extreme points of a set X, plus a combination of multiples of

extreme directions of X, then x ∈ X (the “backward” proof), is simple. Before

we do that, however, we must prove the first two parts of the GRT:

• First, we want to prove that there are a finite number of extreme points in

the set X . We do this by moving along extreme directions until reaching a

point that has n linearly independent defining hyperplanes, where n is just

an integer. Thus there is at least 1 extreme point. Furthermore,
(

m+n
n

)

is

finite, so the number of extreme points is finite.

• Prove that there are a finite number of extreme directions in the set X .

The argument here is similar to proving that there are a finite number of

extreme points.

Next, the backwards proof:

• Given: X = {x : Ax ≤ bx ≥ 0} is a nonempty polyhedral set. The set

of extreme points of X is not empty and has a finite number of points,

say x1,x2, . . . ,xk. The set of extreme directions is either empty (if X is

bounded) or has a finite number of vectors, say d1,d2, . . . ,dl. There is a

point x̄ that can be written as in Equation GRT.

• Want to Prove: x̄ ∈ X .

20

– First, remember that Ax̄ ≤ b if x̄ ∈ X . From the assumptions:

Ax̄ =

k
∑

j=1

λjAxj +

l
∑

j=1

µjAdj .

It is clear that
∑k

j=1 Axj is less than b (since each xj is in X) and

therefore
∑k

j=1 λjAxj ≤ b since
∑k

j=1 λj = 1.

But what about
∑l

j=1 µjAdj? From the definition of extreme direc-

tions, d is a direction of set X if for each x in X , the ray {x + λd :

λ ≥ 0} also belongs to the set. From this definition, there are two

restrictions on d:

A(x + λd) ≤ b

x + λd ≥ 0
(1)

for each λ ≥ 0 and each x ∈ X . The first inequality must hold for

arbitrarily large λ, so therefore Ad must be less than or equal to

0. From the same reasoning, since x + λd can never be negative, no

matter how big λ gets, it follows that d ≥ 0 and d 6= 0 (since x could

have negative components). Therefore d > 0.

From this information, it is clear that
∑l

j=1 µjAdj is less than 0.

Therefore, Ax̄ is the sum of two sums, one of which is less than or

equal to b and one of which is less than 0. Therefore, Ax̄ ≤ b.

– Next, x̄ must be nonnegative. Since x̄ is the sum of the products of

all positive numbers, this must be true.

Therefore, if we can write x̄ in the form of the GRT then x̄ ∈ X .

The “forward” proof of the GRT states that, if x ∈ X, then a point x

can be represented as a convex combination of extreme points of a set X, plus a

combination of multiples of extreme directions of X. Since the proof of the GRT

in the forward direction is quite complicated, it will not be proven carefully. The

following outline provides a summary of the steps involved with the proof of the

forward direction:

• Define a bounded set that adds another constraint on to the original set

X .

• Show that x̄ can be written as a convex combination of extreme points in

that set.

21

• Define the extreme directions of X as the vectors created by subtracting

the old extreme points (of X) from the newly created extreme points (of

the new bounded set).

• Write a point in X in terms of the extreme directions and evaluate the

aforementioned convex combination in terms of this expression.

• The last step ends the proof by giving an expression that looks like the

result of the GRT.

Even though this outline is not rigorous proof by any means, it still helps

enhance understanding of the GRT. Figure 7 illustrates the GRT for a specific

polyhedral set. It is from [2].

5 Examples With Convex Sets and Extreme Points

From Bazaara et. al.

In the previous section, the General Representation Theorem concluded a theo-

retical overview of convex sets and their properties. Now it is time to apply this

knowledge to a few examples. Let’s see how a specific point in a specific convex

set can be represented as a convex combination of extreme points. We will con-

sider an example concerning the region X={(x1, x2) : x1 − x2 ≤ 3, 2x1 + x2 ≤

4, x1 ≥ −3} shown in Figure 8. We will find all the extreme points of X and

express x = (0, 1) as a convex combination of the extreme points.

There are 3 extreme points, which are the pairwise intersections of the con-

straints when they are binding. Two of these points are on the line x1 = −3 and

these points are (−3,−6) and (−3, 10). In Figure 8 these points are B and C

respectively. Point A,
(

7
3 ,− 2

3

)

, is found by solving x1−x2 = 3 and 2x1 +x2 = 4

simultaneously.

In order to express (1, 0) as a convex combination of extreme points, it is

necessary to solve for λ1 and λ2 such that

−3λ1 − 3λ2 +
7

3
(1 − λ1 − λ2) = 1

−6λ1 + 10λ2 −
2

3
(1 − λ1 − λ2) = 0.

This is simply a system of two linear equations with two unknowns and the

22

solution λ1 = − 11
56 and λ2 = − 29

56 . Therefore, the expression

2

7
A −

11

56
B −

29

56
C = (1, 0)

is a convex combination of the extreme points that equals (1, 0).

We can also use the GRT to show that the feasible region to a linear program

in standard form is convex. Consider the linear program:

Minimize cx = z

Subject to Ax = b

x ≥ 0

and let C be its feasible region. If y and z ∈ C and λ is a real number

∈ [0, 1], then we want to show that w = λy + (1− λ)z is greater than zero and

that Aw = b.

It is clear that w ≥ 0 since both terms of w are products of positive numbers.

To show the second condition, substitute in for w:

Aw = A(λy + (1 − λ)z)

= λAy + Az − λAz

= λb + b− λb

= b.

This result means that w ∈ C. Therefore, C is a convex set.

6 Tools for Solving Linear Programs

6.1 Important Precursors to the Simplex Method

Linear programming was developed in order to obtain the solutions to linear

programs. Almost always, finding a solution to a linear program is more im-

portant than the theory behind it. The most popular method of solving linear

programs is called the Simplex algorithm. This section builds the groundwork

for understanding the Simplex algorithm.

Definition 6.1. Given the system Ax= b and x ≥ 0 where A is an m×n matrix

23

and b is a column vector with m entries. Suppose that rank(A,b)=rank(A)=m.

After possibly rearranging the columns of A, let A = [B,N] where B is an

m × m invertible matrix and N is an m × (n − m) matrix. The solution x =
[

xB

xN

]

to the equations Ax = b where xB = B−1b and xN = 0 is called a

basic solution of the system. If xB ≥ 0 then x is called a basic feasible

solution of the system. Here B is called the basic matrix and N is called

the nonbasic matrix. The components of xB are called basic variables and

the components of xN are called nonbasic variables. If xB> 0 then x is a

nondegenerate basic solution, but if at least one component of xB is zero

then x is a degenerate basic solution [2].

This definition might be the most important one for understanding the Sim-

plex algorithm. The following theorems help tie together the linear algebra and

geometry of linear programming. All of these theorems refer to the system

Minimize cx

Subject to Ax = b

x ≥ 0.

Theorem 6.1. The collection of extreme points corresponds to the collection of

basic feasible solutions, and both are nonempty, provided that the feasible region

is not empty [2].

Theorem 6.2. If an optimal solution exists, then an optimal extreme point

exists [2].

Theorem 6.2 builds on the idea put forward in Theorem 6.1 except this time

it addresses optimal points and solutions specifically. In Theorem 6.3, a “basis”

refers to the set of basic variables.

Theorem 6.3. For every extreme point there corresponds a basis (not neces-

sarily unique), and, conversely, for every basis there corresponds a (unique)

extreme point. Moreover, if an extreme point has more than one basis repre-

senting it, then it is degenerate. Conversely, a degenerate extreme point has

more than one set of basic variables representing it if and only if the system

Ax=b itself does not imply that the degenerate basic variables corresponding to

an associated basis are identically zero [2].

All this theorem says is that a degenerate extreme point corresponds to

several bases, but each basis represents only one point.

24

With all of this information, we might think that the best way to solve a

linear programming problem is to find all the extreme points of a system and

see which one correctly minimizes (or maximizes) the problem. This is realistic

(though still tedious) for small problems. The number of extreme points is
(

n

m

)

, where m is the rank of A and n is the number of variables. This

number can be quite large. Also, this method does not indicate if the feasible

region is unbounded or empty without first going through the whole set of

extreme points. In short, this approach is not realistic. Instead, an ingenious

algorithm known as the Simplex method, is the most common way to solve linear

programs by hand, and is the basis for most computer software that solves linear

programs.

In upcoming sections, the Simplex algorithm will be covered, including a

discussion of how to manipulate programs with no starting basis. Then, sensi-

tivity analysis will be discussed with examples. Finally, a case study concerning

busing children to school will be presented and solved with computer software.

7 The Simplex Method In Practice

The Simplex algorithm remedies the shortcomings of the aforementioned “brute

force” approach. Instead of checking all of the extreme points in the region,

the Simplex algorithm selects an extreme point at which to start. Then, each

iteration of the algorithm takes the system to the adjacent extreme point with

the best objective function value. These iterations are repeated until there are

no more adjacent extreme points with better objective function values. That is

when the system is at optimality.

The best way to implement the Simplex algorithm by hand is through

tableau form. A linear program can be put in tableau format by creating a

matrix with a column for each variable, starting with z, the objective function

value, in the far left column. For a general linear program, of the form

Maximize cx

Subject to Ax ≤ b

x ≥ 0

the initial tableau would look like:

25

z −c 0

0 A b
.

The idea here is that z − cx = 0 and Ax= b so in this format all the

variables can be forgotten and represented only by columns. If we were actually

completing the Simplex algorithm for this program, we would be concerned with

the lack of an initial basis in the first tableau. If there is no initial basis in the

tableau (an mxm identity matrix), then we are not at an extreme point and the

program cannot possibly be at optimality (according to Theorem 6.1).

The first iteration of the Simplex algorithm selects the column containing

the most positive (in a minimization problem) coefficient in the first row (Row

0). Since Row 0 of the tableau corresponds to the objective function value z,

the entering basic variable should be one that would decrease the value of z

the fastest. This variable corresponds to the column with the most positive

objective function coefficient, say, column i.

After selecting this variable as the entering basic variable, perform the ratio

test. This test consists of dividing all the numbers on the right-hand side of

the tableau by their corresponding coefficients in column i. This test is not

performed in Row 0. If a number in column i is nonpositive, the ratio test

doesn’t apply for that row. The row j with the smallest positive ratio is selected.

If the ratio test is a tie, the row can be selected arbitrarily between rows with

the same valued (smallest) ratios. The ratio test is necessary because it ensures

that the right-hand side of the tableau (except perhaps Row 0) will stay positive

as the new basic variable enters the basis.

The new basic variable selected, say xi, enters the basis in row j. Therefore,

through elementary matrix row operations, column i must be transformed into

a column of the identity matrix, with the one in the jth row. Through these

operations, xi enters the basis and whichever basic variable was in row j leaves

the basis.

We repeat these steps until there are no longer positive numbers in Row 0

(for a minimization problem).

To help clarify these ideas, let’s look at an example from [3]:

First, let’s use the simplex algorithm to find the optimal solution of the

26

Table 1: The number with the * next to it is the entering basic variable, in this
case x1. The variable s1 is the leaving basic variable, since the one in the s1

column is in Row 1.
Row z x1 x2 s1 s2 RHS BV ratio
0 1 3 -8 0 0 0 z = 0 -
1 0 4∗ 2 1 0 12 s1 = 12 12

4 = 3
2 0 2 3 0 1 6 s2 = 6 6

2 = 3

following LP:

min z = −3x1 + 8x2

s.t. 4x1 + 2x2 ≤ 12

2x1 + 3x2 ≤ 6

x1, x2 ≥ 0

First this LP must be in standard form. We add slack variables to transform

our linear program to

min z = −3x1 + 8x2

s.t. 4x1 + 2x2 + s1 = 12

2x1 + 3x2 + s2 = 6

x1, x2, s1, s2 ≥ 0

The first tableau is shown in Table 1. The rows are labeled 0, 1, and 2. The

columns are labeled according to which variable they represent. The column

labeled “RHS” indicates the right-hand side of the equations. The column “BV”

indicates the values of basic variables in that tableau. In the “ratio” column,

we give the ratios used in the ratio test.

In Table 1 s1 and s2 are the initial basic variables, since their columns are

columns from the identity matrix. The number in Row 0 that is most positive

is the 3 in the x1 column. Therefore, x1 is the entering basic variable. The ratio

test (shown in the far right column of Table 1), yields a tie since both ratios are

3. Row 1 is chosen arbitrarily to be the row of the entering basic variable.

27

Table 2: This tableaux is optimal since all the values in Row 0 (except for the
z column) are nonpositive.

Row z x1 x2 s1 s2 RHS BV ratio
0 1 0 − 19

2 − 3
4 0 -9 z = −9 -

1 0 1 1
2

1
4 0 3 x1 = 3 -

2 0 0 2 − 1
2 1 0 s2 = 0 -

The next tableau is shown in Table 2. This table is obtained after dividing

Row 1 of Table 1 by 4, and then adding −3 times Row 1 to Row 0 and −2 times

Row 1 to Row 2.

The solution shown in Table 2 is optimal because all the numbers (except

for the number in the z column, of course) in Row 0 are negative, which means

z cannot be decreased anymore. The solution is x1 = 3, x2 = s1 = s2 = 0 and

z = −9.

Now that the basics of the Simplex algorithm have been covered, the next

section will explain what to do when the initial tableau does not contain an

identity matrix.

8 What if there is no initial basis in the Simplex

tableau?

After learning the basics of the Simplex algorithm, we explore the special cases

and exceptions. For example, what does one do when the initial tableau contains

no starting basis? That is, what happens if the initial tableau (for a program

where A is mxn) does not contain all the columns of an mxm identity matrix?

This problem occurs when the constraints are in either equality or “greater

than or equal to” form. In the case of an equality constraint, one cannot add a

slack or an excess variable and therefore there will be no initial basic variable

in that row. In the case of a “greater than or equal to” constraint, one must

add an excess variable, which gives a −1 in that row instead of a +1. Simply

multiplying through that row by −1 would not solve the problem, for then the

right-hand-side variable would be negative.

There are two main methods to dealing with this problem: the Two-Phase

Method and the Big-M Method. Both of these methods involve adding “artifi-

cial” variables that start out as basic variables but must eventually equal zero in

28

Table 3:
1 -2 1 -1 0 0 0
0 2 1 -2 0 1 8
0 4 -1 2 0 0 2
0 2 3 -1 -1 0 4

Table 4:
1 0 0 0 0 0 -1 -1 0
0 2 1 -2 0 1 0 0 8
0 4 -1 2 0 0 1 0 2
0 2 3 -1 -1 0 0 1 4

order for the original problem to be feasible. These two techniques are outlined

in the following sections.

8.1 The Two-Phase Method

Consider the following problem:

Maximize 2x1 − x2 + x3

Subject to 2x1 + x2 − 2x3 ≤ 8

4x1 − x2 + 2x3 = 2

2x1 + 3x2 − x3 ≥ 4

x1, x2, x3 ≥ 0.

To put this in standard form, all constraints must become equalities. Adding

a slack variable, s1, to the first constraint and subtracting an excess variable,

e3, from the third constraint gives the initial Simplex tableau shown in Table 3.

There is no initial basis in this tableau. To correct this, add two more vari-

ables, called “artificial variables,” a1 and a3, to constraints two and three. This

step alone however, will not solve the problem since these two extra variables

cannot be in the final basis. Therefore, in addition to adding two artificial vari-

ables, the initial objective function must be altered as well. To ensure that a1

and a3 are not in the final basis, the initial objective function must become

“minimize z = a1 − a3.” Therefore, the tableau shown in Table 3 becomes the

tableau shown in Table 4.

The last step before performing the Simplex algorithm as usual, is to add

rows 2 and 3 to Row 0. This gives the tableau shown in Table 5. The tableau

29

Table 5:
1 6 2 1 -1 0 0 0 6
0 2 1 -2 0 1 0 0 8
0 4 -1 2 0 0 1 0 2
0 2 3 -1 -1 0 0 1 4

Table 6:
1 0 0 .6 -.3 0 -.8 -1.4 .8
0 0 0 -2.6 .2 1 -.25 .2 6.4
0 1 0 .3 -.1 0 .2 .10 .8
0 0 1 -.8 -.4 0 -.2 .4 1.2

in Table 5 is better because I3 is in the body of the tableau.

The tableau shown in Table 5 is the initial tableau for Phase I of the Two-

Phase Method. Phase I will be complete when this tableau is optimal. To get

this tableau to optimality takes two steps. The final optimal tableau for Phase

I is shown in Table 6. In this tableau the variables a1 and a3 are zero and the

variables x1, x2 and s1 are basic.

For Phase II of the Two-Phase Method, replace the current objective func-

tion with the objective function from the original problem and make all entries

of Row 0 in the column of a basic variable equal to zero. Also, delete all columns

associated with artificial variables. After that, proceed with the Simplex algo-

rithm until optimality is reached. The first tableau for Phase II is shown in the

first part of Table 7. After multiplying Row 2 by two, Row 3 by negative one,

and adding both of the resultant rows to Row 0, the tableau becomes like the

second part of Table 7. After obtaining this tableau, proceed with the Simplex

algorithm as usual. Remember, now the objective function must be maximized.

The solution to this phase is the solution to the original problem.

In summary, the Two-Phase Method can be completed using the following

steps:

1. If there is no basis in the original tableau, add artificial variables to rows

in which there are no slack variables.

2. Set up a new objective function that minimizes these slack variables.

3. Modify the tableau so that the Row 0 coefficients of the artificial variables

are zero.

30

Table 7:
1 -2 1 -1 0 0 0
0 0 0 -2.6 .2 1 6.4
0 1 0 .3 -.1 0 .8
0 0 1 -.8 -.4 0 1.2

1 0 0 .4 .2 0 .4
0 0 0 -2.6 .2 1 6.4
0 1 0 .3 -.1 0 .8
0 0 1 -.8 -.4 0 1.2

4. Complete the Simplex algorithm as usual for a minimization problem.

5. At optimality, the artificial variables should be nonbasic variables, or basic

variables equal to zero. If not, the original problem was infeasible.

6. After reaching optimality, delete all rows associated with artificial vari-

ables. Also, replace the artificial objective function with the original ob-

jective function. This is the start of Phase II.

7. Modify the tableau so that the Row 0 coefficients of the basic variables

are zero.

8. Proceed with the Simplex algorithm as usual. The optimal solution to

this tableau will be the optimal solution to the original problem.

8.2 The Big-M Method

Another way to deal with no basis in the initial tableau is called the Big-M

Method. The following example from [2] will help illustrate this method:

Consider the problem

Minimize x1 − 2x2

Subject to x1 + x2 ≥ 2

−x1 + x2 ≥ 1

x2 ≤ 3

x1, x2 ≥ 0.

Wouldn’t it be nice to be able to solve this problem with artificial variables,

but without having to complete two phases? Well, the Big-M method makes

that possible.

31

Table 8:
1 -1 2 0 0 0 0
0 1 1 -1 0 0 2
0 -1 1 0 -1 0 1
0 0 1 0 0 1 3

Table 9:
1 -1 2 0 0 0 0 0 0
0 1 1 -1 0 0 1 0 2
0 -1 1 0 -1 0 0 1 1
0 0 1 0 0 1 0 0 3

1 -1 2 0 0 0 -M -M 0
0 1 1 -1 0 0 1 0 2
0 -1 1 0 -1 0 0 1 1
0 0 1 0 0 1 0 0 3

1 -1 2+2M -M -M 0 0 0 3M
0 1 1 -1 0 0 1 0 2
0 -1 1 0 -1 0 0 1 1
0 0 1 0 0 1 0 0 3

1 1+2M 0 -M 2+M 0 0 -2-2M -2+M
0 2 0 -1 1 0 1 -1 1
0 -1 1 0 -1 0 0 1 1
0 1 0 0 1 1 0 -1 2

1 -1 0 0 0 -2 -M -M -6
0 1 0 0 1 1 0 -1 2
0 0 1 0 0 1 0 0 3
0 -1 0 1 0 1 -1 0 1

First, the initial tableau of this problem is shown in Table 6. After adding

artificial variables a1 and a2 to rows 1 and 2, the tableau becomes the tableau

in the first part of Table 8. Since the artificial variables must go to zero at

optimality, there must be a way to force them to do so. By adding Ma1 + Ma2

to the objective function, where M is a really big number (near infinity!), it is

clear that this minimization problem will be optimal when a1 and a2 are zero.

For a maximization problem, adding −Ma1 − Ma2 to the objective function

produces the same effect. This step is shown in the second part of Table 9.

Next, the coefficients in Row 0 must be modified so that they are zero for all

basic variables. Therefore, multiply rows 1 and 2 by M and add them to Row

0. The resulting tableau is shown in the third part of Table 9.

32

The most positive coefficient in Row 0 is 2 + 2M . Therefore, this column is

selected for a pivot and the ratio test is performed as usual. Row 2 wins the

ratio test and the next tableau is shown in the fourth part of Table 9. The

term 1 + 2M is the most positive so that column is the pivot column. This

part of the Big-M Method is just like performing the Simplex Method as usual,

except with a variable M floating around. This particular problem continues

for a few more steps (two more pivots to be exact) before reaching optimality.

The optimal tableau is shown in the fifth part of Table 9, where the solution is

x2 = 3, x3 = 1, x4 = 2 and z = −6.

In this tableau, there is no M in the objective function value. Also, none of

the artificial variables are basic variables. If an artificial variable were a basic

variable in the optimal tableau, this would indicate that the the original problem

was infeasible. If there were an M in the objective function value, this would

indicate that the original problem was unbounded.

In summary, the Big-M Method can be completed using the following steps:

1. If there is no basis in the original tableau, add artificial variables to rows

in which there are no slack variables.

2. Depending on whether the problem is minimization or maximization, add

or subtract Mxa to the objective function where M is a really big number

and xa is a vector of the artificial variables.

3. Modify the tableau so that the Row 0 coefficients of the artificial variables

are zero.

4. Complete the Simplex algorithm as usual.

5. At optimality, the artificial variables should be nonbasic variables and the

objective function value should be finite.

9 Cycling

In the case of a degenerate problem, a rare phenomenon occurs when a Simplex

tableau iterates through several bases all representing the same solution, only to

arrive back at the original tableau. Geometrically, several linearly independent

hyperplanes define a certain extreme point, and the Simplex algorithm moves

with each pivot to another set of these hyperplanes that represent the same

basis, and finally comes back to the beginning set of these hyperplanes and

33

starts over again. Thus, the tableau “cycles” around an extreme point. This

phenomenon is aptly called “cycling.”

As mentioned before, this phenomenon is quite rare. The following example

in Table 10 is from [2]. At each iteration, the pivot is indicated with a ∗.

The two important things to note in this series of tableaux are that the

solution does not change even though the basis does change and that the last

tableau is the same as the first.

Cycling is undesirable because it prevents the Simplex algorithm from reach-

ing optimality. Therefore, even though cycling is so rare, there are several rules

that prevent its occurrence.

9.1 The Lexicographic Method

Given the problem

Minimize cx

Subject to Ax = b

x ≥ 0,

where A is an m × n matrix of rank m, suppose that there is a starting basis

such that the first m columns of A form the identity. The following steps, called

the lexicographic rule are guaranteed to prevent cycling.

1. Say that the nonbasic variable xk is chosen to enter the basis by normal

means (its coefficient is the most positive number in Row 0).

2. The index r of the leaving basic variable xr is in the set

I0 =

{

r :
b̄r

yrk

=
Minimum

1 ≤ i ≤ m

{

b̄i

yik

: yik > 0

}}

.

If I0 only contains one element r, then xr leaves the basis. If I0 contains

more than one element, that is, the ratio test is a tie, go to the next step.

3. Form the set I1 such that

I1 =

{

r :
yr1

yrk

=
Minimum

i ∈ I0

{

yi1

yik

: yik > 0

}}

.

If I1 contains only one element r, then xr leaves the basis. Otherwise, this

new ratio is a tie.

34

Table 10: An example of cycling.
1 0 0 0 .75 -20 .5 -6 0
0 1 0 0 .25∗ -8 -1 9 0
0 0 1 0 .5 -12 -.5 3 0
0 0 0 1 0 0 1 0 1

1 -3 0 0 0 4 7
2 -33 0

0 4 0 0 1 -32 -4 36 0
0 -2 1 0 0 4∗ 1.5 -15 0
0 0 0 1 0 0 1 0 1

1 -1 -1 0 0 0 2 -18 0
0 -12 8 0 1 0 8∗ -84 0
0 -.5 .25 0 0 1 3

8 - 15
14 0

0 0 0 1 0 0 1 0 1

1 2 -3 0 -.25 0 0 3 0
0 -1.5 1 0 .125 0 1 -10.5 0

0 - 1
16 -.125 0 - 3

64 1 0 3
16

∗

0
0 1.5 -1 1 -.125 0 0 10.2 1

1 1 -1 0 .5 -16 0 0 0
0 2∗ -6 0 -2.5 56 1 0 0
0 1

3 - 2
3 0 -.25 16

3 0 1 0
0 -2 6 1 2.5 -56 0 0 1

1 0 2 0 7
4 -44 -.5 0 0

0 1 -3 0 - 5
4 28 .5 0 0

0 0 1
3

∗

0 1
6 -4 - 1

6 1 0
0 0 0 1 0 0 1 0 1

1 0 0 0 .75 -20 .5 -6 0
0 1 0 0 .25∗ -8 -1 9 0
0 0 1 0 .5 -12 -.5 3 0
0 0 0 1 0 0 1 0 1

35

4. If I1 contains more than one element, form I2. The general form for Ij is

Ij =

{

r :
yrj

yrk

=
Minimum

i ∈ Ij−1

{

yij

yik

: yik > 0

}}

.

5. Keep forming Ijs until one of them contains only one element r. Then xr

leaves the basis.

The lexicographic method will alway converge (there will always be an Ij

that is a singleton) because otherwise the rows would be redundant.

Applying the lexicographic rule to the previous example prevents cycling.

Using the lexicographic rule, optimality occurs after only two pivots!

The proof that lexicographic method prevents cycling is moderately difficult

to understand, and going into its details is not especially illuminating. Instead

of presenting the whole proof, a brief outline will suffice. Before going into the

proof outline, however, a new definition is needed:

Definition 9.1. A vector x is called lexicographically positive (denoted x � 0)

if the following hold:

1. x is not identically zero

2. The first nonzero component of x is positive [2].

An outline of the proof that the lexicographic method prevents cycling is as

follows:

1. Prove that none of the bases generated by the simplex method repeat.

• Show that each row of the m × (m + 1) matrix (b̄,B
−1

) is lexico-

graphically positive at each iteration where b̄ = B−1b.

– For a typical row i where i 6= r where r is the pivot row.

– For the row i where i = r.

2. The bases developed by the Simplex algorithm are distinct (proof by con-

tradiction).

3. Since there are a finite number of bases, finite convergence occurs.

The lexicographic rule is complicated, but there are simpler rules to prevent

cycling. Bland’s rule, explained next, is more straightforward.

36

9.2 Bland’s Rule

Bland’s rule for selecting entering and leaving basic variables is simpler than the

lexicograpic method. First, the variables are ordered arbitrarily from x1 to xn

without loss of generality. Of all the nonbasic variables with positive coefficients

in Row 0, the one with the smallest index is chosen to enter. The leaving basic

variable is the variable with the smallest index of all the variables who tie in

the usual minimum ratio test.

Although this rule is much simpler than the lexicographic rule, it also usually

takes a lot longer for the Simplex algorithm to converge using this rule.

9.3 Theorem from [2]

This theorem concerns another rule to prevent cycling called Charnes’ method,

or the perturbation technique. Charnes’ method will be shown to be equivalent

to the lexicographic rule.

Theorem Consider the following problem.

Minimize cx

Subject to Ax = b

x ≥ 0

Assume that the first m columns of A form the identity and assume that

b ≥ 0. Given a basis B the corresponding feasible solution is nondegenerate if

B−1b > 0. Consider the following perturbation procedure of Charnes. Replace

b by b +
∑m

j=1 ajε
j where ε is a very small number. Now suppose that we have

a basis B , where B−1(b +
∑m

j=1 ajε
j) = b̄ +

∑m

j=1 yjε
j > 0. Suppose that xk

is chosen to enter the basis and the following minimum ratio test is made:

Minimum
1 ≤ i ≤ m

{

b̄i +
∑m

j=1 yijε
j

yik

: yik > 0

}

.

Show that this minimum ratio occurs at a unique r. Show that this method

is equivalent to the lexicographic rule.

Proof In the perturbation technique we take a degenerate extreme point

with m linearly independent defining hyperplanes and shift each of these hyper-

planes just a little bit. By doing so, this one extreme point will become several

extreme points, and each of these new extreme points will be nondegenerate.

To do this algebraically, Charnes came up with the idea of changing the

37

right-hand vector from b =













x1

x2

...

xn













to b′ =













x1 + ε

x2 + ε2

...

xn + εn













.

Let the pivot column be column k. Suppose in the original problem (before

perturbation), the minimum ratio was tied between two rows, row i and row l.

This means that b̄i/yik = b̄l/ylk.

The new minimum ratio test is equivalent to

b̄i + yi1ε + +yi2ε
2 + . . . + yitε

t

yik

where t is the number of variables in the system. Therefore, the next pivot row

is the minimum of
b̄i + yi1ε + yi2ε

2 + . . . + yitε
t

yik

and
b̄l + yl1ε + yl2ε

2 + . . . + yltε
t

ylk

.

At some point, two terms yir/yik and ylr/ylk will be different, or else the con-

straints are redundant and one of them can be eliminated altogether.

At the index r where the terms are different, the minimum of those terms

is the new pivot row. This is true because each successive term yi(r+1)/yik and

yl(r+1)/ylk is an order of magnitude smaller since is it multiplied by another ε,

and so it does not affect the sum significantly. Therefore, this minimum occurs

at a unique index r.

This method is equivalent to the lexicographic method since the lexico-

graphic method selects the pivot row in much the same way. Instead of involving

ε, the lexicographic method simply iterates. First, it defines

I0 =

{

r :
b̄r

yrk

=
Minimum

1 ≤ i ≤ m

{

b̄i

yik

: yik > 0

}}

.

If I0 is a singleton, then this ratio occurs at a unique index and that index

corresponds to the leaving basic variable. Otherwise,

Ij

{

r :
yrj

yrk

=
Minimum

i ∈ Ij−1

{

yij

yik

: yik > 0

}}

.

Eventually Ij must be a singleton for some j ≤ m or else the tied rows would

38

be repetitive and one could be eliminated. When a singleton occurs, this is

equivalent to the terms in the perturbed minimum ratio sum that are different.

The ratios are, in fact, only off by a factor of εr, which doesn’t matter since

both terms in the sum have it. Then the lexicographic method terminates, and

the rest of the terms in the perturbed minimum ratio sum are negligible since

they are orders of magnitude less than the ones before them.

9.4 Which Rule to Use?

When solving a linear programming problem with a computer, which no-cycling

rule is best? The answer, surprisingly, is none of them.

The lexicographic rule is computationally expensive to implement since it

requires many calculations. Bland’s rule is inefficient since the Simplex algo-

rithm takes a very long time to converge. Charnes’ method, or the perturbation

technique, causes problems in computer programs because the value of ε must

be predetermined. Using such a small number causes computer round-off errors.

From this information, it is clear that these rules for preventing cycling

are more interesting theoretically than practically. In applications of linear

programming, problems that are known to be degenerate are ignored or revised

until they are nondegenerate.

10 Sensitivity Analysis

Sensitivity analysis deals with the effect changing a parameter in a linear pro-

gram has on the linear program’s solution. For example, consider the simple

example of Leary Chemicals.

10.1 An Example

Leary Chemical produces three chemicals: A, B, and C. Only chemical A can be

sold and the other two are polluting byproducts. These chemicals are produced

via two production processes: 1 and 2. Running process 1 for an hour costs $4

and yields 3 units of A, 1 of B, and 1 of C. Running process 2 for an hour costs

$1 and produces 1 unit of A, and 1 of B. To meet customer demands, at least 10

units of A must be produced daily. Also, in order to comply with government

regulations, at most 5 units of B and 3 of C can be produced daily.

39

By assigning variables such that x1 is the number of hours per day running

process 1 and x2 is the number of hours per day running process 2, the linear

program becomes

Minimize 4x1 + x2 = z

Subject to 3x1 + x2 ≥ 10

x1 + x2 ≤ 5

x1 ≤ 3

x1, x2 ≥ 0.

Graphing the constraints and an isocost line for z = 12.5 results in Figure 9.

From this figure, it is clear that the solution to this problem is x2 = 2.5, x1 =

2.5.

Sensitivity analysis is concerned with questions such as “for what prices of

process 1 is this basis still optimal?” or “for what values of customer demand

of chemical A is this basis still optimal?”

10.1.1 Sensitivity Analysis for a cost coefficient

We can understand and answer these questions through graphical analysis. The

first question, concerning the price of process 1, deals with the coefficient c1 = 4.

Changing this coefficient changes the isocost line. An isocost line is a line of the

form:

x1 =
z

c1
−

x2

c1
.

Therefore, changing c1 will change both the slope and the x1-intercept of

the line. However, the question for what values of c1 does the current basis

remain optimal only concerns the slope. To understand this, remember that each

extreme point in the feasible region corresponds to another basis. Therefore,

what this question really asks is when the optimal solution is at another extreme

point.

Notice that as c1 decreases, the slope will become steeper. When c2 = 3 the

slope of the isocost line will be the same as the slope of the line corresponding

to the first constraint. As seen in Figure 10, once c2 becomes less than 3, the

isocost line goes through extreme point 2 with a lowest objective function value.

Therefore, the basis corresponding to extreme point 2 is the new basis of the

optimal solution. From this analysis, it is clear that c1 must be greater than 3

for the basis to remain at extreme point 1.

40

As c1 increases, the slope of the isocost line approaches zero, that is, it

becomes a horizontal line. This change will ensure that the original basis remains

the basis for all 3 < c1 < ∞. At c1 = 3 the set of optimal solutions contains

all points on the line segment defined by constraint 1 between extreme points

1 and 2. That is, the set of optimal solutions contains an infinite number of

points. Of course, c1 cannot realistically equal ∞. For all practical purposes,

the upper bound on c1 can be interpreted as just “a really big number.”

10.1.2 Sensitivity Analysis for a right-hand-side value

The second question “for what values of customer demand of chemical A is this

basis still optimal?” deals with the right-hand-side of constraint 1. From simple

analysis, it is clear that changing b1 moves this constraint parallel to itself. As

long as the point where the first and second constraints are binding is optimal,

the current basis is optimal.

When shifting the first constraint to the left, note that it defines the opti-

mal isocost line. When this constraint intersects the x2 axis at b1 = 5, three

constraints are binding: the first, the second and the nonnegativity constraint

on x2. For b1 < 5 the only the first constraint and the nonnegativity constraint

on x2 are binding. Therefore, for b1 < 5 the current basis is no longer optimal.

This can be seen in Figure 12.

When shifting the first constraint to the right, it still defines the isocost line

until b1 = 11. When b1 = 11, the first constraint intersects with the second and

the third constraints and the feasible region only contains one point (so that

point is optimal). As b1 gets bigger than 11 the feasible region becomes empty.

This shift is illustrated in Figure 13. Therefore, if b1 is between 5 and 11, the

current basis remains optimal.

11 Case Study: Busing Children to School

Now that we have learned how to solve and analyze linear programs quite thor-

oughly, it is time to apply these skills to a case study. The case study below

concerns how to most efficiently bus children from six areas to three schools.

We will use a software program called Lindo to solve this problem. Lindo

is a program specifically designed to solve linear programs. It not only outputs

an answer, but also a wide variety of sensitivity analysis information. This

information will be helpful later when analysing different options available to

41

Table 11:

Number Number Number Busing Cost per Student
No. of in 6th in 7th in 8th

Area Students Grade Grade Grade School 1 School 2 School 3
1 450 144 171 135 $300 0 $700
2 600 222 168 210 - $400 $500
3 550 165 176 209 $600 $300 $200
4 350 98 140 112 $200 $500 -
5 500 195 170 135 0 - $400
6 450 153 126 171 $500 $300 0

us after we solve the initial problem.

11.1 The Problem

The Springfield school board has made the decision to close one of its middle

schools (sixth, seventh and eighth grades) at the end of this school year and

reassign all of next year’s middle school students to the three remaining middle

schools. The school district provides for all middle school students who must

travel more than approximately a mile, so the school board wants a plan for

reassigning the students that will minimize the total busing cost. The annual

cost per student of busing from each of the six residential areas of the city

to each of the schools is shown in Table 11 (along with other basic data for

next year), where 0 indicates that busing is not needed and a dash indicates an

infeasible assignment.

The school board also has imposed the restriction that each grade must

constitute between 30 and 36 percent of each school’s population. The table

shows each area’s middle school population for next year.

We have been hired as an operations research consultant to assist the school

board in determining how many students in each area should be assigned to each

school. Our job is to formulate and solve a linear program for this problem.

11.2 The Solution

11.2.1 Variables

The first step to solving this problem is to assign decision variables. We can

choose variables in the following way:

42

xij − The number of students in sixth grade from area i assigned to school j

sij − The number of students in seventh grade from area i assigned to school j

eij − The number of students in eighth grade from area i assigned to school j

where i = 1, 2, . . . , 6 and j = 1, 2, 3. Since a dash in Table 1 indicates an

infeasible assignment, the variables x21, x52, x43, s21, s52, s43, e21, e52, and e43

don’t exist.

11.2.2 Objective Function

Now we must look at the objective function. Since this linear program should

minimize busing cost, the objective function is the sum of how much is costs to

bus each student. We can write this sum the following way:

minimize z = 300(x11 + s11 + e11) + 600(x31 + s31 + e31) + 200(x41 + s41 + e41) + 500(x61 +

s61 + e61) + 400(x22 + s22 + e22) + 300(x32 + s32 + e32) + 500(x42 + s42 + e42) +

300(x62 + s62 + e62) + 700(x13 + s13 + e13) + 500(x23 + s23 + e23) + 200(x33 +

s33 + e33) + 400(x53 + s53 + e53).

11.2.3 Constraints

There are three kinds of constraints in this linear program. One kind limits the

capacity of each school, so we will call them “capacity constraints.” “Grade

constraints” will state how many students in each area are in each grade. Fi-

nally, there will be several “percentage constraints” limiting the percentages of

students in each grade at each school.

Capacity constraints are easy to see. A school’s capacity can be limited by

summing over i for each school and for each variable. These constraints are:

43

x11 + x31 + x41 + x51 + x61 + s11 + s31 + s41 + s51 + s61 + e11 + e31 + e41 + e51 + e61 ≤ 900

x12 + x22 + x32 + x42 + x62 + s12 + s22 + s32 + s42 + s62 + e12 + e22 + e32 + e42 + e62 ≤ 110

x13 + x23 + x33 + x53 + x63 + s13 + s23 + s33 + s53 + s63 + e13 + e23 + e33 + e53 + e63 ≤ 1000.

The total number of students in each grade can also be easily read from

Table 11. For sixth grade students, these constraints are:

x11 + x12 + x13 = 144

x22 + x23 = 222

x31 + x32 + x33 = 165

x41 + x42 = 98

x51 + x53 = 195

x61 + x62 + x63 = 153.

For seventh grade students, these constraints are:

s11 + s12 + s13 = 171

s22 + s23 = 168

s31 + s32 + s33 = 176

s41 + s42 = 140

s51 + s53 = 170

s61 + s62 + s63 = 126.

For eighth grade students, these constraints are:

44

e11 + e12 + e13 = 135

e22 + e23 = 210

e31 + e32 + e33 = 209

e41 + e42 = 112

e51 + e53 = 135

e61 + e62 + e63 = 171.

Some of these constraints are shorter than others because of the infeasibility

of assigning students from area 2 to school 1, or students from area 4 to school

3, or students from area 5 to school 2.

The percentage constraints are probably the most difficult part of this prob-

lem. To give an example of how these are formulated, let’s consider the per-

centage of sixth graders at school 1. This number must be in between 30 and

36 percent. In rough form, this constraint is:

.3 ≤
x11 + x31 + x41 + x51 + x61

x11 + x31 + x41 + x51 + x61 + s11 + s31 + s41 + s51 + s61 + e11 + e31 + e41 + e51 + e61
≤ .36

After multiplying both sides by the denominator of the middle term, splitting

this inequality into its two parts, and subtracting until all variables are on one

side, this constraint is two constraints in standard form. These constraints are:

.64x11 + .64x31 + .64x41 + .64x51 + .63x61 − .36s11 − .36s31

−.36s41 − .36s51 − .36s61 − .36e11 − .36e31 − .36e41 − .36e51 − .36e61 ≤ 0

.7x11 + .7x31 + .7x41 + .7x51 + .7x61 − .3s11 − .3s31

−.3s41 − .3s51 − .3s61 − .3e11 − .3e31 − .3e41 − .3e51 − .3e61 ≥ 0.

Doing this for sixth graders at all schools, the percentage constraints are:

45

.64x11 + .64x31 + .64x41 + .64x51 + .63x61 − .36s11 − .36s31

−.36s41 − .36s51 − .36s61 − .36e11 − .36e31 − .36e41 − .36e51 − .36e61 ≤ 0

.7x11 + .7x31 + .7x41 + .7x51 + .7x61 − .3s11 − .3s31

−.3s41 − .3s51 − .3s61 − .3e11 − .3e31 − .3e41 − .3e51 − .3e61 ≥ 0.

.64x12 + .64x22 + .64x32 + .64x42 + .63x62 − .36s12 − .36s22 − .36s32

−.36s42 − .36s62 − .36e12 − .36e22 − .36e32 − .36e42 − .36e62 ≤ 0

.7x12 + .7x22 + .7x32 + .7x42 + .7x62 − .3s12 − .3s22 − .3s32

−.3s42 − .3s62 − .3e12 − .3e22 − .3e32 − .3e42 − .3e62 ≥ 0.

.64x13 + .64x23 + .64x33 + .64x53 + .64x63 − .36s13 − .36s23 − .36s33

−.36s53 − .36s63 − .36e13 − .36e23 − .36e33 − .36e53 − .36e63 ≤ 0

.7x13 + .7x23 + .7x33 + .7x53 + .7x63 − .3s13 − .3s23 − .3s33

−.3s53 − .3s63 − .3e13 − .3e23 − .3e33 − .3e53 − .3e63 ≥ 0.

For all seventh graders at all schools, the percentage constraints are:

.64s11 + .64s31 + .64s41 + .64s51 + .64s61 − .36x11 − .36x31

−.36x41 − .36x51 − .36x61 − .36e11 − .36e31 − .36e41 − .36e51 − .36e61 ≤ 0

.7s11 + .7s31 + .7s41 + .7s51 + .7s61 − .3x11 − .3x31

−.3x41 − .3x51 − .3x61 − .3e11 − .3e31 − .3e41 − .3e51 − .3e61 ≥ 0.

.64s12 + .64s22 + .64s32 + .64s42 + .64s62 − .36x12 − .36x22 − .36x32

−.36x42 − .36x62 − .36e12 − .36e22 − .36e32 − .36e42 − .36e62 ≤ 0

.7s12 + .7s22 + .7s32 + .7s42 + .7s62 − .3x12 − .3x22 − .3x32

−.3x42 − .3x62 − .3e12 − .3e22 − .3e32 − .3e42 − .3e62 ≥ 0.

.64s13 + .64s23 + .64s33 + .64s53 + .64s63 − .36x13 − .36x23 − .36x33

−.36x53 − .36x63 − .36e13 − .36e23 − .36e33 − .36e53 − .36e63 ≤ 0

.7s13 + .7s23 + .7s33 + .7s53 + .7s63 − .3x13 − .3x23 − .3x33

−.3x53 − .3x63 − .3e13 − .3e23 − .3e33 − .3e53 − .3e63 ≥ 0.

46

For all eighth graders at all schools, the percentage constraints are:

.64e11 + .64e31 + .64e41 + .64e51 + .64e61 − .36x11 − .36x31

−.36x41 − .36x51 − .36x61 − .36s11 − .36s31 − .36s41 − .36s51 − .36s61 ≤ 0

.7e11 + .7e31 + .7e41 + .7e51 + .7e61 − .3x11 − .3x31

−.3x41 − .3x51 − .3x61 − .3s11 − .3s31 − .3s41 − .3s51 − .3s61 ≥ 0.

.64e12 + .64e22 + .64e32 + .64e42 + .64e62 − .36x12 − .36x22 − .36x32

−.36x42 − .36x62 − .36s12 − .36s22 − .36s32 − .36s42 − .36s62 ≤ 0

.7e12 + .7e22 + .7e32 + .7e42 + .7e62 − .3x12 − .3x22 − .3x32

−.3x42 − .3x62 − .3s12 − .3s22 − .3s32 − .3s42 − .3s62 ≥ 0.

.64e13 + .64e23 + .64e33 + .64e53 + .64e63 − .36x13 − .36x23 − .36x33

−.36x53 − .36x63 − .36s13 − .36s23 − .36s33 − .36s53 − .36s63 ≤ 0

.7e13 + .7e23 + .7e33 + .7e53 + .7e63 − .3x13 − .3x23 − .3x33

−.3x53 − .3x63 − .3s13 − .3s23 − .3s33 − .3s53 − .3s63 ≥ 0.

11.3 The Complete Program

Putting all of these constraints together in standard form, the final linear pro-

gram is:

minimize

z = 300x11 + 300s11 + 300e11 + 600x31 + 600s31 + 600e31 + 200x41 + 200s41 + 200e41+

500x61 + 500s61 + 500e61 + 400x22 + 400s22 + 400e22 + 300x32 + 300s32 + 300e32+

500x42 + 500s42 + 500e42 + 300x62 + 300s62 + 300e62 + 700x13 + 700s13 + 700e13+

500x23 + 500s23 + 500e23 + 200x33 + 200s33 + 200e33 + 400x53 + 400s53 + 400e53

such that

x11 + x31 + x41 + x51 + x61 + s11 + s31 + s41 + s51 + s61 + e11 + e31 + e41 + e51 + e61 ≤ 900

x12 + x22 + x32 + x42 + x62 + s12 + s22 + s32 + s42 + s62 + e12 + e22 + e32 + e42 + e62 ≤ 110

x13 + x23 + x33 + x53 + x63 + s13 + s23 + s33 + s53 + s63 + e13 + e23 + e33 + e53 + e63 ≤ 1000

47

x11 + x12 + x13 = 144

x22 + x23 = 222

x31 + x32 + x33 = 165

x41 + x42 = 98

x51 + x53 = 195

x61 + x62 + x63 = 153

s11 + s12 + s13 = 171

s22 + s23 = 168

s31 + s32 + s33 = 176

s41 + s42 = 140

s51 + s53 = 170

s61 + s62 + s63 = 126

e11 + e12 + e13 = 135

e22 + e23 = 210

e31 + e32 + e33 = 209

e41 + e42 = 112

e51 + e53 = 135

e61 + e62 + e63 = 171

.64x11 + .64x31 + .64x41 + .64x51 + .63x61 − .36s11 − .36s31

−.36s41 − .36s51 − .36s61 − .36e11 − .36e31 − .36e41 − .36e51 − .36e61 ≤ 0

.7x11 + .7x31 + .7x41 + .7x51 + .7x61 − .3s11 − .3s31

−.3s41 − .3s51 − .3s61 − .3e11 − .3e31 − .3e41 − .3e51 − .3e61 ≥ 0.

.64x12 + .64x22 + .64x32 + .64x42 + .63x62 − .36s12 − .36s22 − .36s32

−.36s42 − .36s62 − .36e12 − .36e22 − .36e32 − .36e42 − .36e62 ≤ 0

.7x12 + .7x22 + .7x32 + .7x42 + .7x62 − .3s12 − .3s22 − .3s32

−.3s42 − .3s62 − .3e12 − .3e22 − .3e32 − .3e42 − .3e62 ≥ 0.

.64x13 + .64x23 + .64x33 + .64x53 + .64x63 − .36s13 − .36s23 − .36s33

−.36s53 − .36s63 − .36e13 − .36e23 − .36e33 − .36e53 − .36e63 ≤ 0

.7x13 + .7x23 + .7x33 + .7x53 + .7x63 − .3s13 − .3s23 − .3s33

−.3s53 − .3s63 − .3e13 − .3e23 − .3e33 − .3e53 − .3e63 ≥ 0.

.64s11 + .64s31 + .64s41 + .64s51 + .64s61 − .36x11 − .36x31

−.36x41 − .36x51 − .36x61 − .36e11 − .36e31 − .36e41 − .36e51 − .36e61 ≤ 0

.7s11 + .7s31 + .7s41 + .7s51 + .7s61 − .3x11 − .3x31

−.3x41 − .3x51 − .3x61 − .3e11 − .3e31 − .3e41 − .3e51 − .3e61 ≥ 0.

.64s12 + .64s22 + .64s32 + .64s42 + .64s62 − .36x12 − .36x22 − .36x32

−.36x42 − .36x62 − .36e12 − .36e22 − .36e32 − .36e42 − .36e62 ≤ 0

48

.7s12 + .7s22 + .7s32 + .7s42 + .7s62 − .3x12 − .3x22 − .3x32

−.3x42 − .3x62 − .3e12 − .3e22 − .3e32 − .3e42 − .3e62 ≥ 0.

.64s13 + .64s23 + .64s33 + .64s53 + .64s63 − .36x13 − .36x23 − .36x33

−.36x53 − .36x63 − .36e13 − .36e23 − .36e33 − .36e53 − .36e63 ≤ 0

.7s13 + .7s23 + .7s33 + .7s53 + .7s63 − .3x13 − .3x23 − .3x33

−.3x53 − .3x63 − .3e13 − .3e23 − .3e33 − .3e53 − .3e63 ≥ 0.

.64e11 + .64e31 + .64e41 + .64e51 + .64e61 − .36x11 − .36x31

−.36x41 − .36x51 − .36x61 − .36s11 − .36s31 − .36s41 − .36s51 − .36s61 ≤ 0

.7e11 + .7e31 + .7e41 + .7e51 + .7e61 − .3x11 − .3x31

−.3x41 − .3x51 − .3x61 − .3s11 − .3s31 − .3s41 − .3s51 − .3s61 ≥ 0.

.64e12 + .64e22 + .64e32 + .64e42 + .64e62 − .36x12 − .36x22 − .36x32

−.36x42 − .36x62 − .36s12 − .36s22 − .36s32 − .36s42 − .36s62 ≤ 0

.7e12 + .7e22 + .7e32 + .7e42 + .7e62 − .3x12 − .3x22 − .3x32

−.3x42 − .3x62 − .3s12 − .3s22 − .3s32 − .3s42 − .3s62 ≥ 0.

.64e13 + .64e23 + .64e33 + .64e53 + .64e63 − .36x13 − .36x23 − .36x33

−.36x53 − .36x63 − .36s13 − .36s23 − .36s33 − .36s53 − .36s63 ≤ 0

.7e13 + .7e23 + .7e33 + .7e53 + .7e63 − .3x13 − .3x23 − .3x33

−.3x53 − .3x63 − .3s13 − .3s23 − .3s33 − .3s53 − .3s63 ≥ 0.

After solving this program on Lindo software, we obtain the objective func-

tion value of $555555.60.

11.4 Road Construction and Portables

11.4.1 Construction

Reconsider the previous problem of busing students from 6 areas to 3 schools.

Now the school board is concerned about the ongoing road construction in area

6. The construction may increase busing costs for students in area 6 by up to

10 percent. Using the sensitivity report given by Lindo when we solved the

problem in the previous section, we can account for construction costs. This

report is shown in Table 12.

Since the construction will affect only the busing cost for students in area 6,

49

the relevant information in the sensitivity report in Table 14 concerns the allow-

able increase (AI) of the objective function coefficient for variables x61, x62 and

x63. The current cost coefficient of x61 is $500 and its AI is $33.33. Therefore,

if the cost of busing students in area 6 increased 10% ($50), this basis would not

remain optimal. The current cost coefficient of x62 is $300 and its AI is infinity.

Therefore, increasing the cost coefficient of x62 by 10% would not affect this

basis. The current cost coefficient of x63 is $0, and therefore increasing this

cost coefficient by any percentage would still yield $0. Therefore, the only area

6 cost coefficient that would change the basis if it were increased is the cost

coefficient of x61.

Solving the problem again, this time with the objective function coefficients

of x61 and x62 increased by 10%, we obtain a new optimal solution for the

school board. This new result is shown in Table 13. This adjustment increases

the objective function value by over $10,000. Also, some basic variables have

become nonbasic and vice versa.

11.4.2 Portable Classrooms

The next day the school board calls and says they can buy portable classrooms

for $2,500 per year, that hold 20 students each. Now it must be determined

whether or not increasing each school’s capacity by multiples of 20 (at a cost

of $2,500 for each multiple) would increase or decrease busing costs. What are

being changed here are the right-hand-side values of the capacity constraints.

Analyzing the shadow prices and AIs of these constraints would solve the prob-

lem, but it may actually be easier to make minor adjustments to the linear

program itself. Defining new variables p1, p2, and p3 to represent the number of

portables bought for schools 1, 2 and 3 respectively, everything about the pro-

gram stays the same except the capacity constraints and the objective function.

The objective function becomes:

minz = 300x11 + 600x31 + 200x41 + 500x61 + 400x22 + 300x32 + 500x42 +

300x62 + 700x13 + 500x23 + 200x33 + 400x53 + 2500p1 + 2500p2 + 2500p3.

The capacity constraints become:

50

Table 12:
* ORIGINAL OBJECTIVE FUNCTION VALUE: 555555.6
VARIABLE VALUE REDUCED COST

X11 0.000000 177.777771
X31 0.000000 11.111114
X41 350.000000 0.000000
X61 83.333336 0.000000
X22 422.222229 0.000000
X32 227.777771 0.000000
X42 0.000000 366.666656
X62 0.000000 200.000000
X13 0.000000 266.666687
X23 177.777771 0.000000
X33 322.222229 0.000000
X53 133.333328 0.000000
X51 366.666656 0.000000
X12 450.000000 0.000000
X63 366.666656 0.000000
X21 0.000000 0.000000
X43 0.000000 0.000000
X52 0.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES
2) 100.000000 0.000000
3) 0.000000 177.777771
4) 0.000000 144.444443
5) 0.000000 0.000000
6) 0.000000 0.000000
7) 0.000000 0.000000
8) 0.000000 -177.777771
9) 0.000000 -577.777771
10) 0.000000 -477.777771
11) 0.000000 -311.111115
12) 0.000000 55.555557
13) 0.000000 -277.777771
14) 29.333334 0.000000
15) 18.666666 0.000000
16) 38.555557 0.000000
17) 27.444445 0.000000
18) 39.111111 0.000000
19) 20.888889 0.000000
20) 48.000000 0.000000
21) 0.000000 2777.777832
22) 32.111111 0.000000
23) 33.888889 0.000000
24) 0.888889 0.000000
25) 59.111111 0.000000
26) 2.666667 0.000000
27) 45.333332 0.000000
28) 39.333332 0.000000
29) 26.666666 0.000000
30) 60.000000 0.000000
31) 0.000000 6666.666504

* NO. ITERATIONS= 13

51

Table 13: after changing the cost coefficients for x61 and x62

* OBJECTIVE FUNCTION VALUE: 567000.0
VARIABLE VALUE REDUCED COST

X11 0.000000 420.000000
X31 185.000000 0.000000
X41 350.000000 0.000000
X61 0.000000 70.000015
X22 600.000000 0.000000
X32 50.000000 0.000000
X42 0.000000 40.000000
X62 0.000000 350.000000
X13 0.000000 320.000000
X23 0.000000 20.000002
X33 315.000000 0.000000
X53 170.000000 0.000000
X51 330.000000 0.000000
X12 450.000000 0.000000
X63 450.000000 0.000000
X21 0.000000 0.000000
X43 0.000000 0.000000
X52 0.000000 0.000000

x11 + x31 + x41 + x51 + x61 − 20p1 ≤ 900

x12 + x22 + x32 + x42 + x62 − 20p2 ≤ 1100

x13 + x23 + x33 + x53 + x63 − 20p3 ≤ 1000.

Solving this linear program yields the solution shown below in Table 15.

This objective function value is almost a $2,000 improvement. Note that the

basis for this linear program is the same basis as in the original linear program.

This solution is clearly not realistic since the values of the variables are not

integers. In Lindo, this is easy enough to fix with one simple command, but the

theory behind the complexities of integer programming is beyond the scope of

this problem. However, in the next section, bit integer programming must be

used to solve a new problem with assigning students.

52

Table 14: RANGES IN WHICH THE BASIS IS UNCHANGED:
* OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE DECREASE

X11 300.000000 INFINITY 177.777786
X31 600.000000 INFINITY 11.111118
X41 200.000000 366.666656 INFINITY
X61 500.000000 33.333256 166.666672
X22 400.000000 34.210526 4.545444
X32 300.000000 4.545444 34.210526
X42 500.000000 INFINITY 366.666656
X62 300.000000 INFINITY 200.000000
X13 700.000000 INFINITY 266.666687
X23 500.000000 4.545444 34.210526
X33 200.000000 34.210526 7.692289
X53 400.000000 108.333328 16.666624
X51 0.000000 16.666624 108.333328
X12 0.000000 177.777786 INFINITY
X63 0.000000 166.666672 33.333256
X21 0.000000 INFINITY INFINITY
X43 0.000000 INFINITY INFINITY
X52 0.000000 INFINITY INFINITY

* RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE
2 900.000000 INFINITY 100.000000
3 1100.000000 36.363636 3.773585
4 1000.000000 42.105259 3.883495
5 0.000000 INFINITY 0.000000
6 0.000000 INFINITY 0.000000
7 0.000000 INFINITY 0.000000
8 450.000000 3.773585 36.363636
9 600.000000 3.773585 36.363636
10 550.000000 3.773585 36.363636
11 350.000000 72.727272 6.451613
12 500.000000 12.903226 145.454544
13 450.000000 3.225806 36.363636
14 0.000000 29.333334 INFINITY
15 0.000000 INFINITY 18.666666
16 0.000000 38.555557 INFINITY
17 0.000000 INFINITY 27.444445
18 0.000000 39.111111 INFINITY
19 0.000000 INFINITY 20.888889
20 0.000000 48.000000 INFINITY
21 0.000000 0.258065 2.909091
22 0.000000 32.111111 INFINITY
23 0.000000 INFINITY 33.888889
24 0.000000 0.888889 INFINITY
25 0.000000 INFINITY 59.111111
26 0.000000 2.666667 INFINITY
27 0.000000 INFINITY 45.333332
28 0.000000 39.333332 INFINITY
29 0.000000 INFINITY 26.666666
30 0.000000 60.000000 INFINITY
31 0.000000 5.333333 0.666667

53

Table 15:
* OBJECTIVE FUNCTION VALUE: 553636.4
VARIABLE VALUE REDUCED COST

X11 0.000000 243.750000
X31 0.000000 37.500004
X41 350.000000 0.000000
X61 95.454544 0.000000
X22 600.000000 0.000000
X32 86.363640 0.000000
X42 0.000000 287.500000
X62 0.000000 200.000000
X13 0.000000 295.454559
X23 0.000000 10.795456
X33 463.636353 0.000000
X53 181.818176 0.000000
P1 0.000000 2500.000000
P2 1.818182 0.000000
P3 0.000000 522.727295
X51 318.181824 0.000000
X12 450.000000 0.000000
X63 354.545441 0.000000
X21 0.000000 0.000000
X43 0.000000 0.000000
X52 0.000000 0.000000

54

11.5 Keeping Neighborhoods Together

Now the school board wants to prohibit the splitting of residential areas among

multiple schools. That is, each of the six areas must be assigned to a single

school. This problem can be solved with bit integer programming, a type of

linear programming in which the variables can only take on values of 0 or 1.

For this problem, we can define the variables bij as 1 if students from area i are

assigned to school j, 0 if they are not. In this problem, we can abandon the

percentage constraints. The objective function for this problem is:

minz = 135000b11 + 330000b31 + 70000b41 + 225000b61 + 240000b22 + 165000b32 + 175000b42

+135000b62 + 315000b13 + 3000000b23 + 110000b33 + 200000b53.

The school capacity constraints are:

450b11 + 550b31 + 350b41 + 500b51 + 450b61 < 900

450b12 + 550b22 + 350b32 + 500b42 + 450b62 < 1100

450b13 + 550b23 + 350b33 + 500b53 + 450b63 < 1000.

The next constraints ensure that each area is assigned to only school. They

are:

450b11 + 450b12 + 450b13 = 450

600b22 + 600b23 = 600

550b31 + 550b32 + 550b33 = 550

350b41 + 350b42 = 350

500b51 + 500b53 = 500

450b61 + 450b62 + 450b63 = 450.

The solution to this linear program is that students from areas 4 and 5 go to

school 1, students from areas 1 and 2 go to school 2, and students from areas 3

55

and 6 go to school 3. By inspecting the busing costs associated with each area

and school, this result seems reasonable.

11.6 The Case Revisited

Recall that the school board has the option of adding portable classrooms to

increase the capacity of one or more of the middle schools. Each portable

classrooms holds 20 students and costs $2,500 per year. The operations research

team must decide if any of the schools should have these portable classrooms,

and how many they should have.

Earlier, this was accomplished by adding a few new variables to the linear

program and resolving. Using the Lindo software, this procedure was actually

quite simple. The result was that 1.818 classrooms should be added to school 2

(or, p2 = 1.818), as seen in Table 15.

11.6.1 Shadow Prices

Now, the operations research team will verify this solution using something

called a shadow price.

Definition 11.1. In linear programming problem, the shadow price of the ith

constraint is the amount by which the optimal z-value is improved if the right-

hand side of the ith constraint is increased by 1 (assuming the current basis

remains optimal) [3].

For a minimization problem, the new z-value is given by:

znew = zold − SPi∆bi,

where SPi is the shadow price of the ith constraint and ∆bi is the amount by

which the right-hand side of the ith constraint changes.

This problem concerns the shadow prices of the capacity constraints of the

linear program. The school board would like to know how increasing these

constraints by multiples of twenty would affect the optimal z-value.

Shadow prices in the Lindo sensitivity analysis output screen are called “Dual

Prices.” For a “greater than or equal to” constraint, these values are nonposi-

tive, since increasing the right-hand side of this constraint will eliminate points

from the feasible region. Therefore, the new optimal solution can stay the same,

or get worse. Similar reasoning shows that a “less than or equal to” constraint

56

will have a nonnegative shadow price, and an equality constraint’s shadow price

can be either positive, negative, or zero [3].

11.6.2 The New Result

In this case, the operations research team is concerned only with the shadow

prices of the school capacity constraints. For the capacity constraints these

values are 0, 177.78, and 144.44 for schools 1, 2, and 3 respectively. Just from

looking at these shadow prices, it is clear that changing the capacity of school

1 will have no effect on the objective function. This school also is not filled to

capacity in the current basis, and therefore it is bad business sense to consider

increasing its capacity.

Since school 2 has a larger-valued shadow price, increasing the capacity

of school 2 seems favorable to increasing the capacity of school 3. Since the

solutions found last week are decimals and not integers, this solution should be

decimals as well for the sake of comparison.

Notice that the allowable increase of constraint 2 is 36.36. If we divide this

by 20, the result, 1.818, is the number of portable classrooms that can be added

at school 2. This is precisely the number obtained in Table 15 for the variable

p2. According to the equation in section 2, the new z-value is

555555.6− 177.78 · 36.36 = 548091.42.

This isn’t the same as the z-value found previously, because the price of the

portables hasn’t yet been added. Adding (2500 · 1.818) gives 553636.4, which is

our final answer shown in Table 15. Since this answer is less than then answer to

the original problem, we can conclude that adding portables is a viable solution.

12 Conclusion

As a next step, we reccommend studying integer programming. With this tool,

we could obtain more practical results. For example, in the case study, 1.818

portable classrooms is an unrelastic answer, but 2 portable classrooms would be

a better answer because 2 is an integer. Also, the theory of binary integer pro-

gramming would be helpful for understanding how we kept the neighborhoods

together in Section 11.5.

Now we have a solid background in linear programming. We are acquainted

with the theory behind linear programs and we know the basis tools used to

57

solve them. However, the field of linear programming is so large that we have

only touched the tip of the iceberg.

References

[1] E. F. Robertson J. J. O’Connor. George Dantzig. http://www-history.mcs.st-

andrews.ac.uk/Biographies/Dantzig George.html, University of St. Andrews,

2003.

[2] John J. Jarvis Mokhtar S. Bazaraa and Hanif D. Sherali. Linear Program-

ming and Network Flows. John Wiley & Sons, second edition, 1990.

[3] Wayne L. Winston. Operations Research: Applications and Algorithms.

Duxbury Press, fourth edition, 2003.

58

Figure 7: An illustration of the General Representation Theorem.

59

Figure 8: This figure shows the region from problem 2.

60

�
��� � �	��� ����� ��� � ��� � ��� � �����

�

�����

�����

�����

�����

Figure 9: This figure is for the original Leary chemical problem. The shaded
region is the feasible region: it satisfies all constraints on Leary Chemical’s
production.

61

Figure 10: The shaded region is the feasible region. The dashed line is an isocost
line for c1 = 2.5 and z = 8.5 and the dotted line is the isocost line for c1 = 3.5
and z = 11.25.

62

�
��� � �	��� ����� ��� � ��� � �� � ����

!

�����

�����

 ����

 ����

Figure 11: The shaded region is the feasible region. The dash-dotted line is an
isocost line for c1 = 15 and z = 40 and the dotted line is the isocost line for
c1 = 8 and z = 22.5.

63

"
$ % & ' (

)

#

$

%

&

Figure 12: The shaded region is the feasible region with b1 modified to equal 4.
The dash-dotted line is the original constraint 1 for b1 = 10. The dotted line is
the isocost line for z = 4.

64

*
+	, - +	, . /�, - /�,�. 0�,�-

1

/�,�-

/�,�.

0�,�-

0�,�.

Figure 13: The shaded region is the feasible region with b1 modified to equal
11. The dash-dotted line is the original constraint 1 for b1 = 10. The dotted
line is the isocost line for z = 14.

65

