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Introduction

As November approaches and the college football season nears an
end, the annual debate begins: Who deserves to play for the national
title? Who is number one? If each of the teams played each other,
then it would be fairly easy to determine the best team; we could
simply consider the team with the best record. However, the situation
in Division I college football is slightly more complicated.

In many sports, each of the teams in a league has the opportunity to
compete against each of the other teams (or at least a majority of the
teams). In a situation such as this, the win-loss record is a reasonable
method to rank the teams; the team with the highest winning percent-
age is said to be the best and the the team with the lowest winning
percentage is said to be the worst. But what happens if this is not the
case? What happens when each team only competes against a small
fraction of the other teams? If that is the situation, how is the best
team determined?

In baseball and basketball (and even professional football), some
form of a playoff system is in place. Typically each division cham-
pion receives an automatic playoff berth, followed by wild-card or ”at
large” bids, which are given out to the teams with the best records. A
playoff bracket is then set up and teams play each other until there is
one undisputed champion. In the case of Division I college football, a
playoff system has never been established.

For years, people have argued over how the national champion should
be crowned. Prior to 1992, the national rankings were determined pri-
marily by subjective methods such as the coach’s poll. When the major
conferences decided to establish the Bowl Championship Series (BCS)
in 1997, they created a new mathematical formula to rank the teams.
The ratings incorporated four different elements in the calculations:
the subjective polls of coaches and writers, the teams’ records, the av-
erage of three computer ratings (Jeff Sagarin of USA Today, Seattle
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Times, and New York Times), and the team’s strength of schedule (de-
termined by the records of a team’s opponents and their opponents’
opponents). Since its creation, the BCS ranking system has continued
to evolve by incorporating more computer ratings and polls into the
calculations. Despite this evolution of the rating system, there remains
controversy as to the accuracy of the rankings. [1]

The situation faced in college football is known as an incomplete
tournament. An incomplete tournament can be defined as a tourna-
ment in which a team plays games against only a subset of the other
teams in the league. There are 110 teams in Division I football, divided
amongst eleven different conferences (and independents). Yet during
the course of a season, each team plays only thirteen or fourteen games.
If each team plays only a small fraction of other teams in the league, is
the win-loss record still a valid way of comparing teams’ performances?
Would the teams with easier schedules not have an advantage over those
with more difficult schedules? This is where the method of ranking the
teams becomes much more complicated. It then becomes necessary to
take into account the strength of each team’s schedule. But what is
the best way to calculate the strength of a team’s schedule?

In this paper, we will examine a method of calculating schedule
strength put forth by Charles Redmond in his paper “A Natural Gen-
eralization of the Win-Loss Rating System.” We will then take the
method a step further by looking at a case study of the Big 12 Confer-
ence during the 2007 season. [5]

An Illustration

To illustrate the method, we will use an example by Charles Red-
mond. Let us consider a small tournament consisting of four teams (A,
B, C,and D) in which each team plays two games. The results of the
games are as follows:

Game Results

A vs. B 5 − 10
A vs. D 57 − 45
B vs. C 10 − 7
C vs. D 3 − 10.

The tournament results show that B has a record of 2-0, D has a
record of 1-1, A has a record of 1-1, and C has a record of 0-2. We
must now ask the question: “Do these records accurately represent the
tournament?” Here, Redmond chooses to define the “dominance” of
one team over another team as the point differential in the game played
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Table 1. Average 1st-Generation Point-Difference Dominance

Team Average Point-Difference Dominance

A 7/3 = 2.33
B 8/3 = 2.67
C −10/3 = −3.33
D −5/3 = −1.67

between the two teams. For example, in the game between A and B,
B beats A by 5 points. Thus we can say that B’s dominance over A
is 5, while A’s dominance over B is -5. Using the game results, we
can calculate the average dominance for each team. In addition to the
games actually played, we will include one imaginary game that each
team plays against itself that has a dominance of zero.

Now we have developed statistics that are slightly more descriptive
than the typical win-loss records. However, we still have not yet taken
into account the strength of a team’s schedule.

Here we can begin to look at how schedule strength can influence a
ranking system. Consider team B. Team B does not play team D in
the tournament, so we have do not have a direct way of comparing the
two teams. However, both teams B and D played team A. Thus we
can compare B and D based on how they did against team A. A beat
D by 13 points and B beat A by 5 points. The basic idea is to consider
an imaginary game in which B beats D by 13 + 5 = 18 points. In this
case we can say that D is a second-generation opponent of B. In Figure
1 we see a tree of all nine possible second-generation games for B.

Figure 1. Second Generation Games for Team B (with
B vs B game)

In the actual game between A and B, B beats A by 5 points. Note
that this score is preserved in the second-generations games. Also note
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Table 2. Average 2nd-Generation Point-Difference Dominance

Team Average 2nd Generation Dominance

A 3.44
B 3.22
C −4.11
D −2.56

that the score in the B vs C game is preserved as well. Additionally,
this generation of games includes the two possible “imaginary” games
between between B and D (B → C → D and B → A → D). Since each
of the games B vs A, B vs C, and B vs A appears twice in the second-
generation bracket, and all B vs B game have a point difference of zero,
the original relationships between the teams are preserved. Notice that
if we had included the imaginary BvsB game, we would have lost the
information about the first generation games as seen in Figure 2.

Figure 2. Second Generation Games for Team B (with-
out B vs B game

To determine the second-generation dominance, we average the scores
of the nine second-generation games. After updating our rankings to
include second-generation dominance, in Figure 2 we see that by taking
into account schedule strength, team A is now at the top.

The mathematical formulation for computing these second and third
generation ratings becomes fairly interesting. Let us consider the dia-
gram in Figure 3:

This diagram represents the tournament that has been played. Each
line connecting the teams represents a game in which those two team
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Figure 3. Connections Between Teams

competed. Note that no line connects B and D or A and C, and that
there is a line that connects each team to itself. Now let’s examine a
4 x 4 matrix M that represents the games played between each of the
teams, where A corresponds to the first row and column, B corresponds
to the second row and column, etc

M =









1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1









.

In this matrix, a 1 represents a game played between the team of
row i and column j and a 0 means that no game was played between
these two teams. Now let’s look at the matrix M 2,

M2 =









3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3









.

It turns out that every entry in row i and column j is the number
of distinct paths that can be drawn from team i to team j of length
2. Consider teams A and C. A and C never played each other directly,
thus a zeros appeared in entries (1, 3) and (3, 1) of matrix M . However,
we can say that C is a second generation of A. If we examine Figure 3,
we can see that A can be linked to C in two distinct ways: (A → D → C
and A → B → C). Looking in entries (1, 3) and (3, 1) of matrix M 2

we find the number 2, representing these two distinct paths. Other
powers of the matrix M exhibit these same properties, where in the
entry (i, j) of matrix Mn is the number of times that team j appears
as a nth-generation opponent of team i. Next, let us define the vector
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S, where the coordinates of S represent the net point difference of each
team (the first entry represents A, the second entry represents B, etc.).

S =









7
8

−10
−5









We can calculate our first-generation ratings by multiplying S by
the identity matrix M 0 and dividing by the total number of games
played by each team (three games including the game played against
themselves).

1

3
M0 · S =

1

3









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









·









7
8

−10
−5









=









2.33
2.67
−3.33
−1.67









These are our first-generation ratings. Now assume we want to cal-
culate the second-generation ratings. Let’s first look at our tree for the
second-generation opponents of B. To find the second generation rating
for B, we add up the net points for B for all nine second-generation
games and divide by nine.

(5 + 0) + (5 − 5) + (5 + 12) + (0 + 5) + (0 + 0) + (0 + 3) + (3 − 3) + (3 + 0) + (3 − 7)

9

=
31

9
= 3.22

Let’s take another look at the scores above. If we regroup the terms,
we get:

5 − 0 + 3

3
+

(−5 + 5 + 12 + 0 + 0 − 3 + 3 + 0 + 3 − 7)

9

= 2.67 + 0.55 = 3.22

Notice that 2.67 is the first-generating rating for team B. If we also
look at the second-generation scores for the other teams, we see that
they can also be regrouped in the same fashion. It turns out that this
second number (0.55) is the first coordinate in the vector resulting from
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the multiplication of M 1 and S.

1

9

[

1 1 1 0
]

·









7
8

−10
−5









= 0.55

By repeating this process for each of the teams, we see that the ratings
also come stem from the multiplication of M 1 and S. Thus we can
use our first-generation matrix M 1 and the point difference vector S to
calculate our second generation ratings. We can say that the second-
generation ratings are equal to

1

3
M0 · S +

1

32
M1 · S.

Similarly, we can write the nth-generation ratings as

n
∑

j=1

1

3

(

M

3

)j−1

.

Now the question is, does this sum approach a limit? If we calculate
the third-generation rating for B, we find that the third term ( 1

27
M2 ·S)

has a value of .296. This is smaller than either of the first two terms
(2.67 and .55), which leads us to believe that a limit could exist.

Using a proof of the Spectral Theorem for Symmetric Matrices (see
Appendix) and a proof involving the eigenvalues of Markov matrices
(see Appendix), we can show that a limit does indeed exist.

Our proof of the Spectral Theorem shows that any real symmetric
matrix can be rewritten in terms of its eigenvalues. Since every tour-
nament matrix is symmetric (we must look at the tournament matrix
and convince ourselves of this point), we can find its eigenvalues and
corresponding eigenvectors. Consider the first generation matrix M
from our example.

M

3
=

1

3









1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1









=









1
3

1
3

0 1
3

1
3

1
3

1
3

0
0 1

3
1
3

1
3

1
3

0 1
3

1
3









.

Notice that M has been normalized (divided by the number of games
played). This ensures that the eigenvalues will all be less than or
equal to one (see Markov Matrices in the Appendix). Solving for the
characteristic equation of M

3
, we find that the eigenvalues are 1, 1/3,
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1/3, and -1/3 (we can see that 1/3 has a multiplicity of 2). Because M
3

is symmetric, we can then use these eigenvalues to find corresponding
eigenvectors that form an linearly independent orthonormal set. Doing
this, we find the following set of orthonormal eigenvectors:

−→v0 =









1
2
1
2
1
2
1
2









,−→v1 =









− 1√
2

0
1√
2

0









,−→v2 =









0
− 1√

2

0
1√
2









, and −→v3 =









−1
2
1
2

−1
2
1
2









.

The vectors −→v0 ,
−→v1 ,

−→v2 , and −→v3 correspond to the eigenvalues 1, 1/3, 1/3,
and −1/3, respectively. Because these eigenvectors are linearly inde-
pendent, they form a basis. This allows us to express S as a linear
combination of −→v0 ,

−→v1 ,
−→v2 , and −→v3 . To find the coefficients for the vec-

tors in this linear combination, we can compute the scalar product S ·−→si

for i = 0, 1, 2, 3. This will give us the coefficient for each of the vectors.

S =









7
8

−10
−5









= (S · −→v0)
−→v0 + (S · −→v1)

−→v1 + (S · −→v2)
−→v2 + (S · −→v3)

−→v3

= 0









1
2
1
2
1
2
1
2









− 17√
2









− 1√
2

0
1√
2

0









− 13√
2









0
− 1√

2

0
1√
2









+ 3









−1
2
1
2

−1
2
1
2









=









17
2
0

−17
2
0









+









0
13
2
0

−13
2









+









−3
2
3
2

−3
2
3
2









Notice that these three vectors are still eigenvectors of M
3

correspond-
ing to eigenvalues of 1/3, 1/3, and -1/3 respectively. We will name
these new vectors −→s1 ,

−→s2 , and −→s3 . These new vectors also remain eigen-

vectors for
(

M
3

)j
corresponding to eigenvalues

(

1
3

)j
,
(

1
3

)j
, and

(

−1
3

)j

respectively, when j is a positive integer. We can then write the series
∑n

j=1
1
3

(

M
3

)j−1 · S and use the properties of series to break it up into
three different series.
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lim
n→∞

n
∑

j=1

1

3

(

M

3

)j−1

· S =
1

3
lim

n→∞

n
∑

j=1

(

M

3

)j−1

· (−→s1 ,
−→s2 ,

−→s3 )

=
1

3
lim

n→∞

n−1
∑

j=0

[

(

1

3

)j
−→s1 +

(

1

3

)j
−→s2 +

(

−1

3

)j
−→s3

]

=
1

3

∞
∑

j=0

(

1

3

)j
−→s1 +

1

3

∞
∑

j=0

(

1

3

)j
−→s2 +

1

3

∞
∑

j=0

(

−1

3

)j
−→s3

Note that we now have three separate geometric series. Here we can
use a property of geometric series to find the limit as n goes to infinity:
limn→∞

∑n

j=0 arj = a
1−r

, whenever |r| < 1. Thus,

lim
n→∞

n
∑

j=1

1

3

(

M

3

)j−1

· S =
1

3

(

1

1 − 1
3

)

−→s1 +
1

3

(

1

1 − 1
3

)

−→s2 +
1

3

(

1

1 + 1
3

)

−→s3

=
1

2
−→s1 +

1

2
−→s2 +

1

4
−→s3

=
1

2









17
2
0

−17
2

0









+
1

2









0
13
2
0

−13
2









+
1

4









−3
2

3
2
−3

2
3
2









=









3.875
3.625
−4.625
−2.875









Thus we can see that our ratings do indeed approach a limit as all n-
generation games are taken into consideration when n increases without
bound.

Various Methods

Before we discuss an application of our system, we will first exam-
ine some of the different ways by which we can approach schedule
strength. The three different methods that we will use to look at in-
volving schedule strength are the Point-Difference (this method was
used in the illustration), Point-Ratio, and Number of Wins. To ex-
plain these concepts, we will use the results of the 4-team tournament
we have already discussed.
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Wins. We begin by looking at by far the simplest method. This ap-
proach looks only at the number of victories of each team and does not
take into account the point difference or point ratio of any game in the
tournament. To determine the overall dominance of a team, we must
adjust each teams number of wins such that the total number of wins
is zero. To do this, we subtract one half of the total number of games
each team plays. For example, if a team wins 7 of the 10 games they
play, then their dominance is 7 − 5 = 2. As another example, let us
determine the dominance for each team in our 4-team illustration:

Teams # of Wins Adjusted # of Wins
A 1 0
B 2 1
C 0 −1
D 1 0

.

Notice that the relations between the teams remain the same and that
the average number of wins has been shifted. Also note that this
method only affects the ratings after schedule calculation is taken into
account, which we will explore later.

Point-Difference. Next we will look at a more familiar method: the
Point-Difference Method. This is the approach used in the 4-team tour-
nament that we examined previously. When using the Point-Difference
Method, we used the point-difference in a game to determine one team’s
dominance over the other. For example, if team B beats team A by a
score of 10-5, then we can say that the dominance of team B over team
A is 5. Similarly, we can say that the dominance of team A over team
B is -5. The individual game dominances of each team are then added
together to determine a team’s overall dominance.

Like every method, the Point-Difference Method has its advantages
and disadvantages. While this approach is a simple way to determine
who has the best offensive/defensive statistics, it focuses entirely on
the number of points a team scores. This system neglects to consider
whether the points were scored against a strong team or a weak team,
or whether a game resulted in a victory or a loss. Thus it gives an
advantage to those teams who have a large margin of victory in one or
two games, while giving those who win every game by a small margin a
disadvantage. Due to these weaknesses in the system, a team can lose
most of their games by one or two points and win one game by fifty
points and still be considered a good team.

Point-Ratio. In an attempt to correct some of the weaknesses of the
Point-Difference Method, the final method we will examine involves
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the ratio of two teams’ scores. In the Point-Ratio Method, we look at
the number of points a team scores with respect to the total number
of points scored in a game. Consider the game in which team B beats
team A by a score of 10-5. To determine the dominance of B over A,
we take the number of points B scored (10 pts) and divide it by the
total number of points scored in the game (15 pts). We then subtract
0.5 so that the sum of the dominances adds to zero.

Team B: 10 pts Total: 15 pts ⇒ 10

15
− 0.5 = 0.1667

Thus the dominance of team B over team A is 0.1667 and the dom-
inance of team A over team B is -0.1667. Similarly to the Point-
Difference Method, all of the dominances of each team are added to-
gether to determine a team’s overall dominance.

While this method still does not take into account whether a team
obtained a victory, it does address some of the weaknesses of the Point-
Difference Method. Notice that this approach has a maximum domi-
nance that can be achieved (0.5). This makes the games that have a
large point differential much less influential in the final ratings than
with the Point-Difference Method, but more influential in the final
rankings than with the Win Method.

Another aspect of this method that must be considered is the higher
importance that is placed on scoring in a low-scoring game. Since the
dominance calculation depends on the total number of points scored
in a game, a touchdown is more valuable in low-scoring games. This
calculation translates logically to a real game situation. For example,
it is apparently much more difficult to score a touchdown in a low-
scoring defensive game than in a high-scoring offensive game. Thus we
can logically conclude that a touchdown in a low-scoring game is much
more valuable than a touchdown in a high-scoring game.

An Application

Having determined that schedule strength rankings do approach a
limit, and having examined the different ways that we can rate the
teams, we can now apply our system to a real life situation. In this
section, we will apply the concepts that have been discussed to the Big
12 Conference results from the 2007 regular season.[2]

Consider Table 3. Each row shows the individual game results for
the team corresponding to that row. In each of these entries, the score
of the team corresponding to that row appears first and the score of
their opponent second. Note that each team does not play each of the
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Table 3. Big 12 Results

Mis Kan Col KanSt Neb IowaSt Okl Tex OklSt TexTech TexA&M Bay

Missouri 0 36-28 55-10 49-32 41-6 42-28 31-41 - - 41-10 40-26 -

Kansas 28-36 0 19-14 30-24 76-39 45-7 - - 43-28 - 19-11 58-10

Colorado 10-55 14-19 0 20-47 65-51 28-31 27-24 - - 31-26 - 43-23

Kansas St 32-49 24-30 47-20 0 31-73 20-31 - 41-21 39-41 - - 51-13

Nebraska 6-41 39-76 51-65 73-31 0 35-17 - 25-28 14-45 - 14-36 -

Iowa St 28-42 7-45 31-28 31-20 17-35 0 7-17 3-56 - 17-42 - -

Oklahoma 41-31 - 24-27 - - 17-7 0 28-21 49-17 27-34 42-14 52-21

Texas - - - 21-41 28-25 56-3 21-28 0 38-35 59-43 30-38 31-10

Oklahoma St - 28-43 - 41-39 45-14 - 17-49 35-38 0 49-45 23-24 45-14

Texas Tech 10-41 - 26-31 - - 42-17 34-27 43-59 45-49 0 35-7 38-7

Texas A&M 26-40 11-19 - - 36-14 - 14-42 38-30 24-23 7-35 0 34-10

Baylor - 10-58 23-43 13-51 - - 21-52 10-31 14-45 7-38 10-34 0
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other teams, and that a score of zero appears in the game where the
team plays itself.

Wins Application. First we will use the Wins method to calculate
the schedule strength ratings for the Big 12 Conference. Let us examine
Table 4.

Table 4. Schedule Strength: Wins

Record Wins-4 Ranking SS Rating SS Ranking
Missouri 7-1 3 1 3.4323 1
Kansas 7-1 3 1 2.7344 2
Oklahoma 6-2 2 3 2.0351 3
Texas 5-3 1 4 0.3202 4
Oklahoma St 4-4 0 5 -0.2018 8
Colorado 4-4 0 5 -0.0487 7
Texas Tech 4-4 0 5 0.0351 6
Texas A&M 4-4 0 5 0.3202 4
Kansas St 3-5 -1 9 -1.2656 9
Nebraska 2-6 -2 10 -1.7846 11
Iowa St 2-6 -2 10 -1.5677 10
Baylor 0-8 -4 12 -4.0089 12

In this table, we have ranked the teams based on their win-loss
records; tiebreakers were not used for teams with equal records. Here,
each team plays a total of eight games. Thus, in order to make the
overall number of wins equal to zero, we must subtract 8

2
= 4 from

each team’s win total (see “Wins-4” in Table 4). Since the net number
of wins now equals zero, we can use “Wins-4” as the point vector S
from our 4-team example and calculate the schedule strength ratings
for this method (see “SS Rating” in Table 4).

Notice that the schedule strength ratings have broken the ties be-
tween teams with equal records. Let us look at an example: Colorado
has a record of 4-4, including notable victories over Texas Tech and Ok-
lahoma. Oklahoma State also has a record of 4-4; however, of the four
victories, only one was against a team with a record of 4-4 or better.
We can see that the relative difficulties of these schedules are reflected
in the final ratings; Colorado has a higher rating than Oklahoma State.
Additionally, Colorado’s 4-4 performance with a difficult schedule gives
Colorado a schedule strength rating equal to that of Texas, who has
a record of 5-3. In examining Table 4, we can see that the schedule
strength calculation broke the ties between other teams with the same
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records as well. Thus the final ratings are determined not only by a
team’s record, but by a team’s record with respect to records of its
opponents (e.g. the strength of its schedule).

Point-Difference Application. Now we will apply the Point-Difference
method to the Big 12 Conference. In Table 5, each entry represents the
point-difference in the game played between the teams corresponding
to that row and column. A positive entry signifies a victory for the
team corresponding to that row, and a negative entry signifies a loss
for that team.

Each of the entries in Table 5 represents one team’s dominance over
another team. For example, the first entry in the row corresponding
to Nebraska has the number −35, implying that Nebraska lost to Mis-
souri (the corresponding column) by 35 points. Thus Nebraska has a
dominance of −35 over Missouri and Missouri has a dominance of 35
over Nebraska. By adding up the entries in each row, we can find the
overall dominance for each team. These results appear in the “Point-
Difference” column of Table 6.

Having calculated the overall dominance for each team, we can cal-
culate the schedule strength ratings; these ratings appear in the “SS
Rating” column of Table 6. For this case study, the schedule only
changes the the rankings of Kansas State and Texas A & M.

First let us consider Kansas State and Texas A&M. While the initial
dominances have Kansas State ahead by a 30-point margin, the sched-
ule strength ratings place Texas A & M ahead by nearly a 3-point
margin. This result implies that the teams performed at similar levels
with respect to their schedules despite the initial point discrepancy. A
similar result can be seen with the ratings for Texas and Texas Tech.

Next let us examine the dominances of Missouri and Kansas in order
to gain a deeper understanding of why the ratings change in the man-
ner that they do. From the initial ratings, the two teams appear to
perform at similar levels. However, the schedule strength calculation
puts Missouri far ahead of Kansas. Why is this?

First, consider the schedule of Missouri. Missouri had notable victo-
ries over Kansas (8pts), Texas Tech (31pts), and Kansas State (17pts).
Furthermore, each Missouri victory (with the exception of the victory
over Kansas) was by a margin of at least 14 points, including games
with a margin of victory of over 30 points. On the other hand, Kansas
played only one game against a top-5 team: an 8-point loss to Mis-
souri. Although Kansas did win their remaining games, 123 of their
149 points in their overall dominance can be accounted for in the games
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Table 5. Big 12 Game Results: Point-Difference

Mis Kan Col KanSt Neb IowaSt Okl Tex OklSt TexTech TexA&M Bay

Missouri 0 8 45 17 35 14 -10 - - 31 14 -

Kansas -8 0 5 6 37 38 - - 15 - 8 48

Colorado -45 -5 0 -27 14 -3 3 - - 5 - 20

Kansas St -17 -6 27 0 -38 -11 - 20 -2 - - 38

Nebraska -35 -37 -14 42 0 18 - -3 -31 - -22 -

Iowa St -14 -38 3 11 -18 0 -10 -53 - -25 - -

Oklahoma 10 - -3 - - 10 0 7 32 -7 28 31

Texas - - - -20 3 53 -7 0 3 16 -8 21

Oklahoma St - -15 - 2 31 - -32 -3 0 4 -1 31

Texas Tech -31 - -5 - - 25 7 -16 -4 0 28 31

Texas A&M -14 -8 - - 22 - -28 8 1 -28 0 24

Baylor - -48 -20 -38 - - -31 -21 -31 -31 -24 0
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Table 6. Strength of Schedule: Point-Difference

Point-Difference Ranking SOS Rating SOS Ranking
Missouri 154 1 175.64 1
Kansas 149 2 130.86 2
Oklahoma 108 3 101.60 3
Texas 61 4 31.54 4
Texas Tech 35 5 28.60 5
Oklahoma St 17 6 15.23 6
Kansas St 7 7 -7.14 8
Texas A&M -23 8 -4.46 7
Colorado -38 9 -42.87 9
Nebraska -80 10 -67.63 10
Iowa St -144 11 -118.36 11
Baylor -244 12 -243.02 12

played against the three worst teams in the league (see Table 5). Addi-
tionally, three of their four other victories were by margins of less than
ten points.

Upon closer examination, we can see that although the performances
of the two teams appear similar in the initial dominance ratings, the
performances are actually quite different. The difference in perfor-
mance between Kansas and Missouri, with respect to the strength of
their schedules, is the reason that Missouri has a schedule strength
rating of 175.64 and Kansas has a schedule strength rating of 130.86.
This same reasoning explains why the schedule strength ratings appear
as they do in Table 6.

Point-Ratio Application. Let us now apply the Point-Ratio Method
to the Big 12 Conference. The primary reason behind using a point-
ratio rather than a point-difference is to minimize the effect of “land-
slide” victories on the ratings. The term “landslide” describes games
in which one team wins by a very large margin. For example, we can
call the 58-10 victory of Kansas over Baylor a “landslide” victory. This
method minimizes these effects by creating a maximum dominance that
can be earned from a single game.

A secondary reason to use this method is to give increased value
to points scored in a low-scoring game. Consider the game in which
Kansas defeats Texas A&M 19-11. In this game, it was apparently
much more difficult to score a touchdown than in the 65-51 Colorado
victory over Nebraska; thus a touchdown should be perceived as more
valuable.
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Table 7 shows the individual game dominances using the Point-Ratio
Method. Take a moment to compare some of the values of Table 7 with
those of the Point-Difference Method in Table 5 and with the game
results in Table 3. Note how some games have similar point-ratio dom-
inances, while their corresponding point-difference dominances vary
greatly. Also note how some games with similar point-ratio dominances
have much different game scores.

Using these game results we can calculate the overall dominance
for each team and the corresponding schedule strength rating. These
values appear in Table 8.

Unlike the application of schedule strength to the Point-Difference
Method, the application of schedule strength to the Point-Ratio Method
changed the rankings of several teams. The initial sixth and sev-
enth ranked teams (Kansas State and Oklahoma State respectively)
switched rankings, the fourth and fifth ranked teams (Texas and Texas
Tech respectively) switched rankings, and Oklahoma overtook Kansas
for the number two ranking.

Let us first consider the change in rankings between Texas and Texas
Tech. Recall that the schedule strength calculation for the Point-
Difference Method placed these two teams within a few points of each
other. With this method, the Point-Ratio ratings of the two teams are
initially very close; however, the schedule strength calculation places
Texas Tech ahead of Texas by a notable margin of .1557. An exami-
nation of the Point-Difference results for Texas in Table 5 shows that
a majority of their point-difference dominance was achieved in their
53-point victory of Iowa State and their 16-pt victory in a high-scoring
game against Texas Tech. The limit that the Point-Ratio Method
places on the dominance a team can earn from a single game (0.5) hurt
Texas in their game against Iowa State, while a point-ratio instead of
a point-difference hurt their ratings in the game against Texas Tech.
However, Texas Tech had two large victories in two relatively low-
scoring games and lost two games by five point or less, which helped
them surpass Texas in the schedule strength rankings.

We now look at the situation between Kansas and Oklahoma. Re-
call that Kansas had an initial point-difference dominance of 149 and
that Oklahoma had an initial point-difference dominance of 108; the
two teams were separated by 41 points. However, looking at the ini-
tial point-ratio dominances we can see that Kansas and Oklahoma
are separated by a much smaller margin: Kansas (1.1867), Oklahoma
(1.0996). This observation shows that Oklahoma is already benefit-
ing from the use of the Point-Ratio Method. Now let us examine the
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Table 7. Big 12 Game Results: Point-Ratio

Mis Kan Col KanSt Neb IowaSt Okl Tex OklSt TexTech TexA&M Bay

Missouri 0 .0625 .3462 .1049 .3723 .1000 .0694 - - .3039 .1061 -

Kansas -.0625 0 .0758 .0556 .1609 .3654 - - .1056 - .1333 .3529

Colorado -.3462 -.0758 0 -.2015 .0603 -.0254 .0294 - - .0439 - .1515

Kansas St -.1049 -.0556 .2015 0 -.2019 -.1078 - .1613 -.0125 - - .2969

Nebraska -.3723 -.1609 -.0603 .2019 0 .1731 - -.0283 -.2627 - -.2200 -

Iowa St -.1000 -.3654 .0254 .1078 -.1731 0 -.2083 -.4492 - -.2119 - -

Oklahoma .0694 - -.0294 - - .2083 0 .0714 .3750 -.0574 .2500 .2123

Texas - - - -.1613 .0283 .4492 -.0714 0 .0205 .0784 -.0588 .2561

Oklahoma St - -.1056 - .0125 .2627 - -.3750 -.0205 0 .0213 -.0106 .2627

Texas Tech -.3039 - -.0439 - - .2119 .0574 -.0784 -.0213 0 .3333 .3444

Texas A&M -.1061 -.1333 - - .2200 - -.25 .0588 .0106 -.3333 0 .2727

Baylor - -.3529 -.1515 -.2969 - - -.2132 -.2561 -.2627 -.3444 -.2727 0
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Table 8. Strength of Schedule: Point Ratio

Ratio Difference Ranking SOS Rating SOS Ranking
Missouri 1.3265 1 1.5226 1
Kansas 1.1867 2 0.9834 3
Oklahoma 1.0996 3 1.062 2
Texas 0.541 4 0.3062 5
Texas Tech 0.4995 5 0.4619 4
Kansas St 0.1770 6 0.018 7
Oklahoma St 0.0475 7 0.048 6
Texas A&M -0.2606 8 -0.0929 8
Colorado -0.3638 9 -0.3928 9
Nebraska -0.7292 10 -0.6631 10
Iowa St -1.3747 11 -1.1343 11
Baylor -2.1495 12 -2.119 12

schedule strength ratings. While the schedule strength calculation ap-
pears to hurt both teams’ ratings, Kansas is hurt far worse. Despite
similar performances by Kansas and Oklahoma against their respective
opponents, the ’weak’ schedule of Kansas allows Oklahoma to move to
number two. Had Kansas played one or two of the other top-5 teams
and performed slightly worse, it is likely that their schedule strength
rating would be significantly higher. Fortunately for Oklahoma, their
schedule included games against Missouri, Texas, and Texas Tech.

As noted in the beginning of the section, the ratings of teams with
“landslide” victories were heavily influenced by the Point-Ratio Method.
Additionally, teams that had a large margin of victory in a high-scoring
games were affected. Lastly it is important to note that a team’s sched-
ule strength ranking is influenced by the performances of the teams it
plays; these performances have a greater influence in the Point-Ratio
Method.

Conclusion

While Redmond’s method is a good, basic model for schedule strength,
there are several factors that limit its application. The most prominent
of these factors is the necessity that the tournament be connected. A
connected tournament implies that each team can eventually be linked
to every other team in the league when the nth-generation games are
taken into account. If a tournament is not connected, there is no way
to link and compare two non-connected teams, and our method does
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not work. However, most professional sports tend to be connected
tournaments.

The second limiting factor is that each team must play the same num-
ber of games. If the teams do not all play the same number of games, it
becomes extremely difficult to calculate the schedule strength ratings
and our calculation method must be altered. Not only do these cal-
culations become difficult, but they also become skewed as the ratings
of the teams that play less games are focused on the performances of
fewer teams. However, Redmond proposes a solution to this problem.
Consider a tournament in which team A plays four games and team B
plays five games. In order for both teams to play the same number of
games, we will assume that team A plays itself twice instead of once
when establishing the schedule strength matrix. Thus it is still possible
to calculate the schedule strength ratings for a tournament in which
teams play a varying number of games.

The last and possibly most prominent weakness that we will note
is the model’s inability to distinguish a team’s performance against
other specific teams. In this model, only a team’s overall dominance
and the other teams with which that team competes influence the final
ratings. It is not important if team A defeats the best team in the
league by 20 points and loses to the worst team in the league by 5
points; it only matters that team A scored a total of 15 more points
than its opponents. In this sense, points that are scored against good
teams are weighted equally with those scored against weak teams. Thus
a team that does play the most competitive teams and yet performs
well, such as Kansas in our application, suffers in the final schedule
strength ratings.

While every sports fanatic and statistician nationwide has a distinct
method of ranking college football teams, none of them seems simple.
Some of them include complex formulas, others consider factors such as
home-field advantage and when losses and victories occur. The method
that we have examined in this paper focuses solely on a team’s overall
performance and the performances of the teams it played. Although
Redmond’s model for schedule strength chooses to disregard ”extra”
factors and is conceptually simple, its application provides a logical
manner in which to rank the teams. This simplicity also provides those
less knowledgeable in the field of sports the opportunity to grasp the
idea of schedule strength. While our method for calculating schedule
strength may only change one or two final rankings, when a national
title is on the line, that change can make all of the difference.
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Appendix

Definitions

In this section, we will define some terms necessary to prove the
Spectral Decomposition Theorem For Symmetric Matrices (Theorem
8) and the eigenvalue proof regarding Markov matrices (Theorem 9).
The following definitions are taken from Lay’s book on linear algebra.
[4]

Definition 1 (Probability Vector). A vector with nonnegative entries
that add up to one is called a probability vector.

Example:





.1

.3

.6





Definition 2 (Unit Vector). A vector v =





v1
...
vn



 such that v2
1 + · · ·+

v2
n = 1.

Definition 3 (Dot Product).

u · v = uTv =
[

u1 u2 · · · un

]









1

v2
...
vn









= v1u1 + v2u2 + · · ·+ unvn

Definition 4 (Real Matrix). A matrix with all real number entries.

Definition 5 (Stochastic Matrix). A stochastic matrix is a square ma-
trix whose columns are probability vectors.

Example:





.1 .5 .2

.3 .4 .4

.6 .1 .4





Definition 6 (Regular Stochastic Matrix). A stochastic matrix P is
called regular if some power of P , P k, contains only strictly positive
entries.

Definition 7 (Steady-state Vector). If P is a stochastic matrix, then
a steady-state vector for P is a probability vector q such that

Pq = q.
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Definition 8 (Markov Chain). A Markov chain is a sequence of prob-
ability vectors x0, x1, x2, ... together with a stochastic matrix P, such
that

x1 = Px0, x2 = Px1, x3 = Px2, ...

Thus the Markov chain is described by the equation xk+1 = Pxk for
k = 0, 1, 2, ... When a Markov chain of vectors in R

n describes a
system or sequence of experiments, the entries in xk list the probabilities
that the system is in each of n possible states, or the probabilities that
the outcome of the experiment is one of the n possible outcomes. For
this reason, xk is often called a state vector.

Definition 9 (Orthogonality). Two vectors u and v are orthogonal to
each other if u · v = 0.

Definition 10 (Orthogonal Complement). If a vector z is orthogonal
to every vector in a subspace W of R

n, then z is said to be orthogonal
to W . The set of all vectors z that are orthogonal to W is called the
orthogonal complement of W and is denoted by W⊥.

Definition 11 (Span{v1, .....vp}). If v1, .....vp are in R
n, then the set

of all linear combinations of v1, ...,vp is denoted by Span{v1, ...,vp} and
is called the subset of R

n spanned by v1, ...vp. That is, Span{v1, ...,vp}
is the collection of all vectors that can be written in the form

c1v1 + c2v2 + ... + cpvp

with c1, ..., cp scalars.

Definition 12 (Orthogonal Set). A set S is an orthogonal set if each
vector in S is orthogonal to each of the other vectors in S.

Definition 13 (Orthonormal Set). A set u1, ...,up is an orthonormal
set if it is an orthogonal set of unit vectors.

Definition 14 (Orthonormal Basis). If W is the subspace of R
n spanned

by an orthonormal set u1, ...,up, then u1, ...,up is also an orthonormal
basis for W because the set is automatically linearly independent by the
theorem for orthogonal bases.

Definition 15 (Orthogonal Matrix). An orthogonal matrix is a square
invertible matrix U such that U−1 = UT .

Definition 16 (Symmetric Matrix). A symmetric matrix is a matrix
A such that AT = A. Such a matrix is necessarily square.
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Example: Symmetric →





1 −3 0
−3 5 6

0 6 7





Non symmetric →





7 9 −6
1 −2 1
2 4 −5





Theorems

In this section, we will identify some basic theorems necessary to
prove the Spectral Decomposition Theorem For Symmetric Matrices
(Theorem 8) and the eigenvalue proof regarding Markov matrices (The-
orem 9). The following theorems are cited and proved in Lay’s book
on linear algebra. [4]

Theorem 1. If P is an n × n regular stochastic matrix, then P has
a unique steady-state vector q. Further, if x0 is any initial state and
xk+1 = Pxk for k = 1, 2, ..., then the Markov chain xk converges to q

as k → ∞.

Theorem 2 (The Basis Theorem). Let H be a p-dimensional subspace
of R

n. Any linearly independent set of exactly p elements in H is a
basis for H. Also, any set of p elements of H that spans H is a basis
for H.

Theorem 3 (Orthogonal Basis). If S = {u1, ...,up} is an orthogonal
set of nonzero vectors in R

n, then S is linearly independent and hence
a basis for the subspace spanned by S.

Theorem 4 (Square Orthogonal Matrix). A square matrix with or-
thonormal columns is an orthogonal matrix. Such a matrix also has
orthonormal rows.

Theorem 5 (Orthogonal Decomposition Theorem). Let W be a sub-
space of R

n. Then each y in R
n can be written uniquely in the form

y = ŷ + z

where ŷ is in W and z is in W⊥. In fact, if u1, ...,up is any orthogonal
basis of W , then

ŷ =
y · u1

u1 · u1
u1 + ... +

y · up

up · up

up

and z = y− ŷ. Here the vector ŷ is called the orthogonal projection of
y onto W and is often denoted as projWy.
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Theorem 6. If / u1, ...,up / is an orthonormal basis for a subspace
W of R

n, then

projWy = (y · u1)u1 + (y · u2)u2 + ... + (y · up).

If U = [u1 u2 ... up], then projWy = UUT y for all y in R
n.

Theorem 7. If A is symmetric, then any two eigenvectors from dif-
ferent eigenspaces have a dot product equal to zero.

The Spectral Decomposition Theorem for Symmetric

Matrices

The following proof was written with the guidance of Patrick Keef.
[3]

Theorem 8 (The Spectral Decomposition Theorem for Symmetric
Matrices). Given a symmetric n × n matrix S with real coefficients,
there exists an orthonormal matrix U such that UT SU is a diagonal
matrix.

We will proceed using the methods of induction. In Lemma 1 we
will prove the base cases n = 1 and n = 2.

Lemma 1. Any symmetric 1× 1 or 2× 2 matrix is orthogonally diag-
onalizable.

Proof. We begin with the 1 × 1 case. Let S = [x], and let U be the
orthogonal matrix U = [1]. Then UT SU = [1][x][1] = [x]. Since [x] is a
diagonal matrix, UT SU is also a diagonal matrix.

Next we consider the 2 × 2 case. Let S be a symmetric matrix

S =

[

x y
y x

]

. To show that S is orthogonally diagonalizable, we begin

by solving for the eigenvectors of S by subtracting λ times the identity
matrix from the matrix S,

S − λI =

[

x − λ y
y x − λ

]

.

We find that the characteristic equation of S is λ2 − 2xλ + (x2 − y2) =
0. Using the quadratic formula, we discover that the eigenvalues are
λ = x±y. Using these eigenvalues, we find the corresponding eigenvec-

tors

[

1
1

]

and

[

−1
1

]

for eigenvalues λ = x+ y and λ = x− y respec-

tively. We can now create an orthogonal matrix, U , by normalizing the
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eigenvectors. Then U =

[ 1√
2

1√
2

− 1√
2

1√
2

]

and UT =

[ 1√
2

− 1√
2

1√
2

1√
2

]

. We

can now show that UT SU is a diagonal matrix:

UT SU =

[ 1√
2

− 1√
2

1√
2

1√
2

] [

x y
y x

] [ 1√
2

1√
2

− 1√
2

1√
2

]

=

[ 1√
2
(x − y) 1√

2
(y − x)

1√
2
(x + y) 1√

2
(x + y)

] [ 1√
2

1√
2

− 1√
2

1√
2

]

=

[

1
2
(2x − 2y) 0

0 1
2
(2x + 2y)

]

=

[

x − y 0
0 x + y

]

The resulting matrix is indeed a diagonal. Thus any 2 × 2 symmetric
matrix S is orthogonally diagonalizable. �

We will now assume that n > 2. The following steps will use the
knowledge that any 1×1 or 2×2 symmetric matrix can be orthogonally
diagonalized to prove that any symmetric n × n matrix can indeed be
orthogonally diagonalized as well.

Definition 1. A function f is self-adjoint if for all column vectors
v, w ∈ Rn, f(v) · w = v · f(w).

Lemma 2. If S is a symmetric matrix and x is a column vector, the
function f(x)=Sx is self-adjoint.

Proof. Let v and w be column vectors in Rn. Then

f(v) · w = Sv · w
= (Sv)Tw

= vT ST w

= vT Sw

= v · Sw

= v · f(w)

Thus we have shown that if f(v) = Sv where S is symmetric, then
f is “self-adjoint”. �

Definition 2. A subspace V is called f -invariant if for all v ∈ V, f(v) ∈
V .

For Lemma 3, suppose f(x) = Sx for some n × n symmetric matrix
S.
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Lemma 3. If V is f -invariant, then V ⊥ = {w ∈ Rn : v ·w = 0 for all
v ∈ V }, is an f -invariant subspace of Rn.

Proof. Suppose w ∈ V ⊥ and v ∈ V . Then v ·f(w) = f(v) ·w = u ·w for
some u ∈ V . Since u · w = 0 for all u ∈ V , it follows that v · f(w) = 0
and f(w) ∈ V ⊥. �

Using the same notation used in Lemma 3, suppose v1, v2, ..., vj is
an orthonormal basis for V , and w1, w2, ..., wk is an orthonormal basis
for V ⊥. Then v1, v2, ..., vj, w1, w2, ..., wk is an orthonormal basis for Rn.
Without loss of generality, and because it is an orthonormal change of
basis, we can assume that S looks like:

S =

[

S1 0
0 S2

]

,

where S1 and S2 are the symmetric matrices corresponding to V and
V ⊥ respectively.

By showing that S is orthogonally diagonalizable, we can reduce our
original proposition (given a symmetric n × n matrix S, then there is
an orthonormal matrix U such that UT SU is a diagonal) to the propo-
sition that if n > 2, then there is an f -invariant subspace V ⊆ Rn such
that 0 < dimV < n.

Let us define polynomial P (x) as

P (x) = amxm + am−1x
m−1 + · · · + a1x + a0,

where x is an arbitrary variable. It then follows that

P (S) = amSm + am−1S
m−1 + · · · + a1S + a0I,

where S is a symmetric matrix.

Lemma 4. There exists a non-zero polynomial P (S) with coefficients
not all zero such that P (S) = 0.

Proof. Since S is a symmetric n × n matrix, it follows that P (S) is
also an n × n matrix. Let us now define Mn as the set of all n × n

matrices. Note that if ei,j = [αr,s] where αr,s =

{

1 if r = i, s = j
0 otherwise

,

then {ei,j} is a basis for Mn. For example, if n = 4, i = 2, and j = 3,

then ei,j =









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









. Because there are n rows and n columns

in each matrix, there are n2 different elements αr,s, implying that the
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dimension of the basis of Mn is n2. Given that the dimension of the
vector space is n2, the set Sn2+1, Sn2

, ..., S, I is not linearly independent.
Thus we can find a0, a1, ..., an2+1 not all zero such that

P (S) = an2+1S
n2+1 + an2Sn2

+ · · · + a1S + a0I = 0.

�

Lemma 5. There exists a non-zero vector v ∈ Rn and an irreducible
polynomial r(x) such that r(S)v = 0.

Proof. Now let P (x) = r1(x) · · · rl(x) be the factorization of the polyno-
mial P (x) from Lemma 4 into irreducible polynomials. Therefore, each
ri(x) has a degree of at most 2. Previously, we showed that there does
exist some polynomial P (S) = amSm +am−1S

m−1 + · · ·+a1S +a0 = 0,
where am, am−1, ..., a0 are not all zero. Let w be an arbitrary non-zero
vector in Rn. Consider the sequence

w,

r1(S)w,

r2(S)r1(S)w,

r3(S)r2(S)r1(S)w, ...

and let v = ri(S)ri−1(S) · · · r1(S)w be the last vector that is non-
zero. Since P (S)w = 0w = 0, this sequence will have a last nonzero
factor. Then let 0 = ri+1(S)· = v, and we have shown that there is a
polynomial r(x) such that r(S)v = 0. �

Lemma 6. If the degree of r(x) is 1, then V = span{v} is f -invariant
for f(v) = Sv.

Proof. Suppose that r(x) = a1x + a0. Knowing that v is a nonzero
vector, that S is a symmetric matrix, and that r(S)v = 0, we can write

r(S)v = 0 = (a1S + a0I)v

= a1Sv + a0Iv

= a1Sv + a0v

Using this equation, we can solve for Sv in terms of v:

0 = a1Sv + a0v

a1Sv = −a0v

Sv = −a0

a1

v.
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Let w, then w = ρv for some constant ρ. Then,

f(w) = Sw = ρSv = ρ

(

−a0

a1

)

v = −ρ

(

a0

a1

)

v ∈ V.

Because w ∈ V implies that f(w) ∈ V , we can conclude that V =

span{v} is f -invariant and that v is also an eigenvector for λ = −
(

a0

a1

)

.

�

Now consider r(x) of degree 2.

Lemma 7. If the degree of r(x) is 2, then V = span{v, sV } is f -
invariant for f(v) = Sv.

Proof. If r(x) is of degree 2, then r(x) = a2x
2 + a1x + a0 and

0 = r(S)v =
(

a2S
2 + a1S + a0

)

v

= a2S
2v + a1Sv + a0v.

It follows that S2v = −a1

a2

Sv− a0

a2

v. Now suppose that w = αv+βSv ∈
span{v, Sv} where α and β are constants, then

Sw = αSv + βS2v

= αSv + β(−a1

a2
Sv − a0

a2
v)

= (α − β
a1

a2
)Sv + (−β

a0

a2
)v

Since α − β a1

a2

and −β a0

a2

are constants, Sw ∈ span{v, Sv} and V =

span{v, Sv} is f -invariant. �

Here we have shown that if the degree of factor r(S) is 1, then
V = span{v} is f -invariant. We also showed that if the degree of r(S)
is 2, then V = span{v, Sv} is f -invariant. Since r(S) has at most
degree 2, the polynomial can be represented by a vector space of at
most dimension 2. It follows that P (S) must also have an f -invariant
vector space V where 0 < dimV ≤ 2. Thus if n > 2, there exists an
f -invariant subspace V ∈ Rn such that 0 < dimV < n.

Proof. If j, k < n for V and V ⊥, then by induction it is possible to
orthogonally diagonalize symmetric matrices S1 and S2. Let U1 de-
note the matrix of orthonormal vectors v1, v2, ..., vj and let UT

1 be
its transpose. Also let U2 denote the matrix of orthonormal vectors
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w1, w2, ..., wj and let UT
2 be its transpose. Now we can write the ma-

trices U and UT in the same form as we did for S:

U =

[

U1 0
0 U2

]

→ UT =

[

UT
1 0
0 UT

2

]

We can now write UT SU as represented by these matrices and show
that the resulting matrix is a diagonal, showing that symmetric matrix
S is orthogonally diagonalizable.

UT SU =

[

UT
1 0
0 UT

2

] [

S1 0
0 S2

] [

U1 0
0 U2

]

=

[

UT
1 S1 0
0 UT

2 S2

] [

U1 0
0 U2

]

=

[

UT
1 S1U1 0

0 UT
2 S2U2

]

Because S1 and S2 are symmetric, we know that UT
1 S1U1 = D1 and

UT
2 S2U2 = D2 where D1 and D2 are diagonals. Thus

[

UT
1 S1U1 0

0 UT
2 S2U2

]

=

[

D1 0
0 D2

]

= D.

Since D is a diagonal, then S is orthogonally diagonalizable. �

Markov Matrices

For our calculations for schedule strength to be feasible, the tour-
nament matrix S must have eigenvalues λ such that |λ| < 1. The
following proof was written with the guidance of Patrick Keef. [3]

Theorem 9 (Markov Matrices). If S is a real symmetric stochastic
matrix with all positive entries and eigenvalues λ, then |λ| < 1.

Suppose that S is a real symmetric stochastic matrix. Then each
entry αij is equal to entry αji. Additionally, the entries of each row
and each column add to one. We will now define vector spaces P, P ′,
and P 0 :

• P := {(x1, x2, ..., xn)T ; x1 + · · ·+ xn = 1, where x1, x2, ..., xn ≥
0}

• P ′ := {x1, x2, ...xn)T ∈ P ; xi = 0 for some i}
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• P 0 := {(x1, x2, ..., xn)T ∈ P ; where x1, x2, ..., xn > 0}.
We look at P as the entire region, P ′ as the boundary of that region,

and P 0 as everything inside that boundary. Let f(v) = Sv. In Lemma
1, we will show that f(P ) ⊆ P , and that if all of the entries of S are
positive, then f(P ) = f(P 0) ⊆ P .

Lemma 1. f(P ) ⊆ P and if all of the entries of S are positive, then
f(P ) ⊆ f(P 0) ⊆ P 0.

Proof. Let S =





α11 · · · α1n

...
. . .

...
α1n · · · αnn



 and choose p =





x1
...

xn



 ∈ P . Then,

f(p) = Sp =





α11 · · · α1n

...
. . .

...
α1n · · · αnn









x1
...

xn





=









∑n

i=1 α1ixi
∑n

i=1 α2ixi

...
∑n

i=1 αnixi









By our definition of P , f(p) ∈ P if the components of f(p) add to
one. The summation of the components of f(P )is equal to:

n
∑

j=1

n
∑

i=1

αjixi =

n
∑

i=1

[

n
∑

j=1

αji

]

xi =

n
∑

i=1

(1)xi = 1.

Because S and P are defined as having all non-negative entries, then
Sp must have all non-negative entries. Since all of the entries of Sp
also add up to one, f(p) = Sp ∈ P . Thus f(P ) ⊆ P . Further, if all
entries of S are positive, then all entries of Sp will also be positive, and
f(P 0) ∈ P 0. �

Next we will show that the column vector

c =

(

1

n
,
1

n
, · · · ,

1

n

)T

is an eigenvector corresponding to the eigenvalue 1 by showing that
f(c) = Sc = c.

Lemma 2. The column vector

c =

(

1

n
,
1

n
, · · · ,

1

n

)T
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is an eigenvector of S corresponding to the eigenvalue 1.

Proof. We can write f(c) as follows:

f(c) = Sc =





α11 · · · α1n

...
. . .

...
αn1 · · · αnn









1
n
...
1
n





=





∑n

j=1 α1j · 1
n

· · ·
∑n

j=1 αnj · 1
n





=





1 · 1
n

...
1 · 1

n





=





1
n
...
1
n





Because S is symmetric, we know that the sum of the entries of each
row,

∑n

j=1 αij, must equal one. Thus the multiplication of Sc gives us
the vector c itself. This shows that c is indeed an eigenvector for the
eigenvalue 1. �

Next we will define a set Q := {p − c : p ∈ P}.

Lemma 3. Q ⊆ {c}⊥.

Proof. Let q ∈ Q. Since Q := {p − c} for some p ∈ P ,

q = p − c =









x1

x2
...

xn









−









1
n
1
n
...
1
n









=









x1 − 1
n

x2 − 1
n

...
xn − 1

n









.

To show that Q ⊆ {c}⊥, we show that the dot product of q and c is
equal to zero:
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q · c = [p − c] · [c]

=









x1 − 1
n

x2 − 1
n

...
xn − 1

n









·









1
n
1
n
...
1
n









=
[

x1 − 1
n

x2 − 1
n

· · · xn − 1
n

]









1
n
1
n
...
1
n









=
n
∑

i=1

1

n

(

xi −
1

n

)

=
1

n

n
∑

i=1

(

xi −
1

n

)

=
1

n

(

n
∑

i=1

xi − n

(

1

n

)

)

=
1

n
(1 − 1)

= 0.

Since the dot product is equal to zero, Q ⊆ {c}⊥. �

Note : Notice that in the process of showing that Q ⊆ {c}⊥, we also
showed that the sum of all of the components of q,

∑n

i=1

(

xi − 1
n

)

, is
equal to zero. Additionally, we can show that each component of q is
greater than or equal to − 1

n
. From our definition of p, we know that

the components p add up to one and that each of these components is
non-negative. Since each component of q is equal to xi − 1

n
and xi is

non-negative, the smallest value of xi − 1
n

is obtained when xi = 0; this

value is − 1
n
. Thus each component of q is greater than or equal to − 1

n
.

Now let us define Q′ := {p′−c : p′ ∈ P ′} and Q0 := {p0−c : p0 ∈ P 0}.

Lemma 4. f(Q) ⊆ Q.

Proof. Let q ∈ Q. Then q = p − c for some p. We can then write f(q)
as

f(q) = f(p − c) = f(p) − f(c).
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We previously determined that f(c) = c and that f(p) ∈ P . Thus it
follows that f(q) = f(p) − f(c) = f(p) − c and f(Q) ⊆ Q. �

Similarly, we find that for q0 ∈ Q0, q0 = p0 − c for some p0 ∈ P 0 and

f(q0) = f(p0 − c) = f(p0) − f(c) = f(p0) − c.

Since f(P 0) ⊆ P , it follows that f(q0) ∈ Q0.

Lemma 5. If v is a non-zero vector in {c}⊥, then there exist positive
numbers ρ and σ such that

αv ∈ Q iff − ρ ≤ α ≤ σ;(1)

αv ∈ Q0 iff − ρ < α < σ;(2)

αv ∈ Q′ iff α = −ρ or α = σ.(3)

Let a be the smallest component in the vector v and let b be the
largest component; note that a < 0 and b > 0. Additionally, let ρ = 1

bn

and σ = − 1
an

. We will begin by proving case 1.

Case 1 :

Proof. Assume that αv ∈ Q, thus each component of v must be greater
than or equal to − 1

n
. Then

− 1
n
≤ bα, which implies − 1

nb
≤ α , and − 1

n
≤ aα, which

implies − 1
an

≥ α.

In the second inequality, the inequality switches because we divide by
a, which is a negative number. Putting these two inequalities together
we arrive at

− 1

bn
≤ α ≤ − 1

an
, implying that −ρ ≤ α ≤ σ.. �

Case 1 Converse :

Proof. We will assume that −ρ ≤ α ≤ σ, with ρ and σ as defined
above. If −ρ ≤ α ≤ σ, then αa ≥ − 1

n
and αb ≥ − 1

n
. It follows that

for any component of vi between a and b, αvi ≥ − 1
n
. Therefore, if

−ρ ≤ α ≤ σ, then αv ∈ Q. �

We can use this same argument, but with strict inequalities, to prove
case 2:

Case 2 :

Proof. If αv ∈ Q0, then
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− 1
n

< bα, which implies − 1
nb

< α, and − 1
n

< aα, implying that

− 1
an

> α.

Thus −ρ < α < σ. �

Case 2 Converse :

Proof. We assume that −ρ < α < σ. If −ρ < α < σ, then αa >
− 1

n
and αb > − 1

n
. It follows that for any element vi between

a and b, αvi > − 1
n
. Thus, if −ρ < α < σ, then αv ∈ Q′. �

Having proved cases 1 and 2, it follows that case 3 must be true as
well.

Lemma 6. Suppose that v is an eigenvector for the matrix S corre-
sponding to the eigenvalue λ. Using ρ and σ as defined previously, we
can show that ρλ, σλ ∈ [−ρ, σ].

Proof. We previously determined that if v ∈ Q, then f(v) = λv ∈ Q.
In Lemma 5 we showed that −ρv ∈ Q and that σv ∈ Q. It follows that
f(−ρpv) = −λρv and f(σv) = λσv are also in the set Q. Therefore,
−ρ ≤ −λρ ≤ σ and −ρ ≤ λσ ≤ σ. �

We can also use this information to show that |λ| ≤ 1. If λ > 0, then
0 ≤ λ ≤ 1 because λv is still in Q, thus mapping the interval [−ρ, σ]
to itself. If λ < 0, then we need to look at two cases:

Case 1 : First we will consider the case where σ ≤ ρ.

Proof. If we rewrite the interval −ρ ≤ −λρ ≤ σ we arrive at −1 ≤
−λ ≤ σ

ρ
. Since σ ≤ ρ, it follows that σ

ρ
≤ 1 and −1 ≤ −λ ≤ 1. �

Case 2 : The second case we must consider is the case where σ ≥ ρ.

Proof. If we rewrite the interval −ρ ≤ λσ ≤ σ, we arrive at −1 ≤
−λ ≤ ρ

σ
. Since σ ≥ ρ, it follows that ρ

σ
≤ 1 and −1 ≤ −λ ≤ 1 �

Thus if v is an eigenvector of S, then the corresponding eigenvalue
λ has an absolute value that is less than or equal to one. For the case
where all of the coefficients of S are positive, we can use this same
method to show that the absolute value of λ is strictly less than 1. To
do that, would only need to make the inequalities strict inequalities.
Thus when all of the entries of S have positive coefficients, |λ| < 1.

Now let us suppose that there exists some power of the matrix S,
say Sk, such that each of its entries is positive. (Note that for our
purposes, the significance that each entry is positive signifies that when
the kth-generation games are taken into account, every team in the
tournament can be linked to every other team. We say the tournament
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is connected.) It follows from Lemma 6 that all of the eigenvalues of
the matrix Sk have an an absolute value strictly less than 1. We can
show that this also implies that all eigenvalues of the matrix S have an
absolute value strictly less than 1 as well. If we let the eigenvalues for
S be represented by λ, then the eigenvalues of Sk can be represented
by λk.

Lemma 7. |λ| < 1 if and only if |λk| < 1.

Proof. First we will assume that |λk| < 1. If |λk| < 1, then

|k
√

λk| < k
√

1 and |λ| < 1.

Next we will assume that |λ| < 1. If |λ| < 1, then

|λk| < 1k and |λk| < 1.
Thus when the matrix Sk has all positive entries (implying that the
tournament is connected), the matrix S has eigenvalues λ such that

|λ| < 1.
�
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