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Abstract. The Lanczos derivative is attributed to Hungarian

mathematician Cornelius Lanczos who developed it in the 1950s.

It is an integral based derivative derived from the least squares

model. The Lanczos derivative is set apart from other forms of

differentiation such as the symmetric and traditional derivatives

because it exists for functions where the other derivatives do not.

1. The Definition of the Lanczos Derivative

1.1. Overview of the Least Squares Model. Since the earliest

times, humans have been making and recording observations of the

world around them. As this process of data collection became more so-

phisticated, the demand for an accurate mathematical representation

of this data also increased. One of the major problems mathematicians

faced was the problem of error in physical observations mainly due to

human and instrumental imperfections. In the beginning of the 19th

century, Carl Friedrich Gauss came up with a “fix” to this problem by

using the argument that greater and smaller errors are equally possible

in all equations. His process, which became known as the “method of

least squares,” found the parameters at which the sum of the squares

of the errors was minimized. Today, the method remains an important

statistical tool used in many fields such as business, engineering, and

marketing.

Assume we have a set of discrete data: y1, y2, ..., yn. The least squares

method finds the function f(k) such that

n
∑

k=1

(f(k) − yk)
2

1
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is a minimum. In this section we will look at how the mathematician

Cornelius Lanczos used this least squares model to derive a method of

differentiation.

1.2. Finding the Derivative. A simple way to approximate the slope

between consecutive data points would be to take the change in y and

divide it by the change in x. Unfortunately, any kind of error in y

would greatly skew the result. Thus, it would be advantageous to use

more points, the idea being that the slope changes little over the span

of consecutive points. Although one can look at any number of points

at a time, we will start by looking at five points y−2, y−1, y0, y1, and

y2, and assume they lie closely to a parabola. Therefore, let’s use the

formula

f(k) = a + bk + ck2,

where a, b, c are coefficients which can be adjusted for our data. Using

the least squares method, we set up the function

2
∑

k=−2

(f(k) − yk)
2
.

By minimizing the sum of these squares with respect to a, b, c, we will

find the best fit parabola. Thus, the function we want to minimize

looks like

(1)

2
∑

k=−2

[

(a + bk + ck2) − yk

]2
.

Since we are trying to find the value of the derivative of at x = 0,

we can differentiate f(k) = a + bk + ck2 and get f ′(0) = b. Hence it

is the constant b we are interested in. The condition of minimum with

respect to b gives us

0 = −4(a − 2b + 4c − y−2) − 2(a − b + c − y−1)

+ 2(a + b + c − y1) + 4(a + 2b + 4c − y2).



THE LANCZOS DERIVATIVE 3

All the constants except for b cancel out resulting in

b =
−2y−2 − y−1 + y1 + 2y2

10
.

So far we have worked under the assumption that we have five data

points. Let’s assume instead that the number of data points is 2n + 1,

which would therefore give us a more general equation for approxi-

mating the derivative. The sum in (1) is the function which we then

differentiated in terms of b and set equal to 0. By doing this, we found

our approximate derivative b. By doing this same process, only with

2n + 1 data points instead of five, we get

n
∑

k=−n

2k
[

(a + bk + ck2) − yk

]

= 0.

Since again, the coefficients a and c drop out, our equation becomes

0 =

n
∑

k=−n

2k(bk − yk)

n
∑

k=−n

2k2b =
n

∑

k=−n

2kyk

b =

n
∑

k=−n

kyk

2
n

∑

k=1

k2

.

Here we have assumed that our interval between consecutive obser-

vations is one. If we make that interval instead h, we must divide our

derivative by the length h and the formula of differentiation for our

empirical function becomes

(2) b =

n
∑

k=−n

kf(x + kh)

2
n

∑

k=1

k2h

.
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Thus far we have looked only at functions with discrete variables.

Let’s assume that we have a dense group of observations, each observa-

tion very close to the next. Since we are looking at a very dense group

of observations, our sum becomes an integral. We can then rewrite b

as

b =

∫

ε

−ε
tf(x + t)dt

2ε3

3

=
3

2ε3

∫

ε

−ε

tf(x + t)dt,

where ε is sufficiently small. From here, Lanczos derived the formula

for differentiation

(3) f ′

L
(x) = lim

ε→0

3

2ε3

∫

ε

−ε

tf(x + t)dt.

This is the definition of the Lanczos derivative.[2]

1.3. Illustration of the Derivative. Let’s do an example and find

the Lanczos derivative of f(x) = x3. Using the formula, we get

f ′

L
(x) = lim

ε→0

3

2ε3

∫

ε

−ε

t(x + t)3dt

= lim
ε→0

3

2ε3

( 1

2
t2x3 + x2t3 +

3

4
xt4 +

1

5
t5

)

∣

∣

∣

∣

ε

−ε

= lim
ε→0

(

3x2 +
3

5
ε2

)

= 3x2

which is, as we should expect, the traditional derivative of x3.

2. The Accuracy of the Lanczos Derivative

Looking at the error of the Lanczos derivative sheds light on both

the basic uses and the limitations of the derivative.

2.1. The Lanczos Derivative and the Taylor Series. Let’s assume

we can use the Taylor series to represent the function in the Lanczos

formula f(x + t). Recall that the Taylor series representation of f(x)

centered at x = a is

f(x) = f(a) +
f ′(a)(x − a)

1!
+

f ′′(a)(x − a)2

2!
+

f (3)(a)(x − a)3

3!
+ · · · .
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Let’s choose x as the center of f(x + t) where x is fixed and t varies.

Therefore, the Taylor series representation looks like

f(x + t) = f(x) +
t

1!
f ′(x) +

t2

2!
f ′′(x) +

t3

3!
f (3)(x) + · · · .

We can then find the Lanczos derivative using this sum

f ′

L(x) = lim
ε→0

3

2ε3

∫

ε

−ε

tf(x + t)dt

= lim
ε→0

3

2ε3

(

1

2
· t2f(x) +

1

3
·
t3

1!
f ′(x) +

1

4
·
t4

2!
f ′′(x) + · · ·

)
∣

∣

∣

∣

ε

−ε

.

Looking at the Lanczos derivative as an infinite sum can give us some

interesting insight into how the Lanczos derivative behaves. If we look

at this integral, we can see that all the even powers of t are going to

cancel each other out when we substitute ±ε in for t while our odd

powers of t double. Therefore, our derivative becomes

f ′

L
(x) = lim

ε→0

(

f ′(x) +
1

10
ε2f (3)(x) + · · ·

)

.

Thus, the Lanczos derivative does in fact equal f ′(x) with an error of

the order ε2. In Lanczos’ Applied Analysis, he talks about how this

error, which he calls “noise,” typically destroys the analytical nature

of f(x).[2] Yet Lanczos argues that this error is greatly diminished by

the randomness of the errors, which through summation, balances itself

out.

2.2. A closer look at the Error of the Lanczos Derivative.

In Lanczos’ Generalized Derivative,[3] C. W. Groetsch analyzes more

closely the error of the Lanczos derivative. Small errors in the function

values are magnified by a factor of 3
2ε

. This, Groetsch states, “is not

a deficiency in the method, but rather a manifestation of the inherent

instability of the differentiation process itself.”[3] To look at this more

closely, let us allow fh(t) to be some bounded integrable perturbation

of f where |f(t) − fh(t)| ≤ h and h is a known error bound. If we let
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f ′

L
(t) be the Lanczos derivative, then

|
(

fh
)

′

L
(x) − f ′(x)| ≤ |f ′

L
(x) − f ′(x)| + |

(

fh
)

′

L
(x) − f ′

L
(x)|.

Earlier we found that the error of the Lanczos derivative was ε2

10
f (3)(x)

by using the Taylor series representation. Let us assume f (3) exists and

is bounded by M . Then we can say

|f ′

L
(x) − f ′(x)| ≤

M

10
ε2.

We can also see that
∣

∣

∣

(

fh
)

′

L
(x) − f ′

L
(x)

∣

∣

∣
=

∣

∣

∣

∣

3

2ε3

∫

ε

−ε

tfh(x + t) − tf(x + t)dt

∣

∣

∣

∣

≤
3

2ε3

∫

ε

−ε

|t| hdt =
3h

2ε
.

We can then find our total error by adding these two together, and we

get
∣

∣

∣

(

fh
)

′

L
(x) − f ′(x)

∣

∣

∣
≤

M

10
ε2 +

3h

2ε
.

Groetsch calls the first error the truncation error because it goes to

zero as ε → 0. The second error is called the stability error; it blows

up as ε → 0. Therefore, it’s necessary to find a balance between the

two errors to stay between ‘the two numerical hazards.’

3. The Traditional and Symmetric Derivatives

Before we go further into our analysis of the Lanczos derivative,

it makes sense to compare it to other forms of differentiation with

which we are probably more familiar. In this section we will look at

the traditional and symmetric derivatives and see how their properties

compare to the Lanczos derivative.

3.1. The Traditional Derivative. The traditional derivative finds

the slope by looking at the ordered pairs (x, f(x)) and (x+h, f(x+h))

and finding the rise over run between these points as h → 0:

(4) f ′(x) = lim
h→0

f(x + h) − f(x)

h
.
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A function is differentiable at a point x if the limit exists. Otherwise,

the function is not differentiable.

3.2. The Symmetric Derivative. The symmetric derivative is simi-

lar to the traditional derivative. The difference between the two is that

the symmetric derivative

(5) f ′

s
(x) = lim

h→0

f(x + h) − f(x − h)

2h

uses the points (x − h, f(x − h)) and (x + h, f(x + h)) which lie on

either side of (x, f(x)) while the traditional derivative uses the point

(x, f(x)) as one of its two points of interest.

3.3. Comparison of the Traditional and Symmetric Deriva-

tives.

Theorem 3.1. If f ′(x) exists, then f ′

s(x) exists.

Proof. Let f(x) be differentiable at x = a. Therefore,

f ′(a) = lim
h→0

f(a + h) − f(a)

h

exists. The symmetric derivative can be rewritten as

f ′

s(a) = lim
h→0

f(a + h) − f(a − h)

2h

= lim
h→0

(

f(a + h) − f(a)

2h
+

f(a) − f(a − h)

2h

)

.

Since f ′(a) exists, then

1

2
·
f(a + h) − f(a)

h
+

1

2
·
f(a + (−h)) − f(a)

(−h)

has a limit of f ′(a) as h → 0. Therefore, f ′

s
(a) = f ′(a) also exists. �

It’s important to note that if f ′

s
(x) exists, f ′(x) need not exist.[4]

One example of this is the derivative of f(x) = |x| at x = 0. With the

traditional derivative, we come to a problem:

f ′(0) = lim
h→0

|0 + h| − |0|

h
= lim

h→0

|h|

h



8 LIZZY WASHBURN

The limit does not exist, and therefore the function is not differentiable

at x = 0. Under f ′

s
(x), we get a different outcome:

f ′

s
(0) = lim

h→0

|0 + h| − |0 − h|

2h
= lim

h→0

0

2h
= 0.

Therefore, the derivative under this method exists and equals 0. The

symmetric derivative gives us another method to compute the slope

when the traditional one does not work.

3.4. Comparison of the Symmetric and Lanczos Derivatives.

When we were constructing the Lanczos derivative, we computed for-

mula (2)

k
∑

n=−k

nf(x + nh)

2
k

∑

n=1

n2h

.

We were able to obtain the Lanczos derivative from (2) by assuming

that our interval h became infinitely small as our number of points n

became infinitely dense. If we look at (2) when n = 1, our function

looks surprisingly familiar. We obtain

−f(x − h) + f(x + h)

2h
.

Letting h → 0, we get the exact definition of the symmetric derivative.

If we let n = 2, our new equation becomes

−2f(x − 2h) − f(x − h) + f(x + h) + 2f(x + 2h)

10h
.

With a little mathematical manipulation, we can rewrite this as

4

5
·
f(x + 2h) − f(x − 2h)

4h
+

1

5
·
f(x + h) − f(x − h)

2h
=

4

5
f ′

s
+

1

5
f ′

s
= f ′

s
.
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This trend continues. If we were to continue to compute the slope

for varying values of n, we would see that

k
∑

n=−k

nf(x + nh)

2

k
∑

n=1

n2h

=
12

k
∑

n=1

n2

f ′

s
+

22

k
∑

n=1

n2

f ′

s
+ · · ·+

k2

k
∑

n=1

n2

f ′

s
= f ′

s
.

This sheds a new light on the Lanczos derivative. The symmetric

derivative looks at this tiny interval on each side of x and averages the

slope of each side. Lanczos uses the same idea, but uses an infinite num-

ber of these minute intervals to measure the gradient. His end outcome

is that he uses integration to find its opposite process: differentiation.

This seems strange initially, but when we gain an understanding of

what we are actually computing, it makes complete sense. The sym-

metric derivative works by finding the slope over an interval and then

letting the interval shrink to 0 whereas the Lanczos derivative works

by finding the slope over many intervals, and then shrinking each of

these intervals.

Theorem 3.2. If f ′

S
(x) exists, then f ′

L
(x) exists.

Proof. Recall that the definition of the Lanczos derivative is

f ′

L(x) = lim
ε→0

3

2
·

∫

ε

−ε
tf(x + t)dt

ε3
.

This is of the 0
0

indeterminate form as ε → 0, so if we assume that

f is continuous, we can apply L’Hospital’s Rule and the Fundamental

Theorem of Calculus to the limit to get

f ′

L(x) = lim
ε→0

3

2
·
εf(x + ε) − εf(x − ε)

3ε2
= lim

ε→0

f(x + ε) − f(x − ε)

2ε
= f ′

s(x).

�

Therefore, if f is continuous, the limit of the Lanczos derivative

equals the symmetric derivative and therefore the Lanczos derivative

exists everywhere the symmetric derivative does.
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Figure 1. The the graph of y = f(x) is a sequence of

isosceles triangles which grow as x → ∞

3.5. The Relationship of the Derivatives.

Conjecture 3.1. Let TD, SD, and LD denote the class of continu-

ous functions with a traditional derivative, symmetric derivative, and

Lanczos derivative respectively. Then

TD ⊆ SD ⊆ LD

We have already shown that if the traditional derivative exists, then

so too do the symmetric and therefore the Lanczos derivatives. We also

saw that if the symmetric derivative exists, so does the Lanczos deriv-

ative. This is not a two way relationship, though. We have looked at

an example where the symmetric derivative exists, but the traditional

derivative does not. Is there an example where the Lanczos derivative

exists, but the symmetric derivative (and hence also the traditional

derivative) does not exist? This example is more difficult to construct

and is considered in the next section.

4. A Function with solely a Lanczos Derivative

The function f(x) shown in Figure 1 equals 0 when x < 0 and is

comprised of isosceles triangles when x ≥ 0. Two corners of each
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triangle lie on the x-axis and we’ll label these points: r = 1
n

and

l = 1
n+1

. The upper point of the triangle lies on the line y = x at the

point (c, c) where c is the average of r and l. As x → 0, the triangles get

infinitely small and the number of triangles approaches infinity. The

equation of our function is

f(x) = −
c

c − l
|x − c| + c for l ≤ x < r.

For x > 0 and x not lying on any corner of a triangle, we can

fairly easily find the traditional derivative f ′(x). We can simply treat

the function like a piece-wise function and find the derivative of the

linear equation over the interval containing the point of interest. The

symmetric derivative would also exist for these points x, as well as

the points at the triangle corners, the derivative in this case being

the average slope of either side of the point. Therefore, the symmetric

derivative exists for each point x > 0. At x = 0, though, the symmetric

derivative no longer exists. Imagine a line going through the upper

corner of each of the triangles. The equation of this line is y = x and

therefore has a slope of 1. A line going through the lower corners of

each of the triangles has a slope of 0. These contrasting values mean

that the limit of the symmetric derivative does not exist.

We do not run into this same problem with the Lanczos derivative.

We can set up the Lanczos derivative with

f ′

L(0) = lim
k→∞

3k3

2

∞
∑

n=k

∫

r

l

t

[

−
c

c − l
|t − c| + c

]

dt

where r = 1
n
, l = 1

n+1
, and c = 2n+1

2n(n+1)
. Our equation within the

integral is f(x + t) when x = 0. Above, we have integrated over the

interval of one triangle, and then found the sum for the infinite number

of triangles, starting at x = 1
k

and letting k → ∞. Since in this case,

ε = 1
n
, we have to make the proper adjustments to our equation.
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We can evaluate the integral by changing our intervals so the absolute

value can be removed:
∫

r

l

t

[

−
c

c − u
|t − c| + c

]

dt =

∫

r

c

t

[

−
c

c − u
(t − c) + c

]

dt

+

∫

c

l

t

[

c

c − u
(t − c) + c

]

dt.

Then, we can rewrite the Lanczos derivative in terms of n to get

lim
k→∞

3k3

2

∞
∑

n=k

[

∫ 1
n

2n+1
2n(n+1)

t

[

−(2n + 1)

(

t −
2n + 1

2n(n + 1)

)

+
2n + 1

2n(n + 1)

]

dt

+

∫ 2n+1
2n(n+1)

1
n+1

t

[

(2n + 1)

(

t −
2n + 1

2n(n + 1)

)

+
2n + 1

2n(n + 1)

]

dt

]

.

By evaluating the integrals, we obtain

f ′

L
(0) = lim

k→∞

3k3

2

∞
∑

n=k

(2n + 1)2

8n3(n + 1)3
.

In order to evaluate
∑

∞

n=k

(2n+1)2

8n3(n+1)3
, let us compare the sum and the

integral of (2x+1)2

8x3(x+1)3
. Since y = (2x+1)2

8x3(x+1)3
is a decreasing function when

x > 0,

3k3

2

∫

∞

k

(2x + 1)2

8x3(x + 1)3
dx <

3k3

2

∞
∑

n=k

(2n + 1)2

8n3(n + 1)3
.

Also, the fact that y is a decreasing function means that

3k3

2

∞
∑

n=k+1

(2n + 1)2

8n3(n + 1)3
<

3k3

2

∫

∞

k

(2x + 1)2

8x3(x + 1)3
dx

or

3k3

2

∞
∑

n=k

(2n + 1)2

8n3(n + 1)3
<

3k3

2

[

(2k + 1)2

8k3(k + 1)3
+

∫

∞

k

(2x + 1)2

8x3(x + 1)3
dx

]

Evaluating the integrals, we obtain

1

4
<

3k3

2

∞
∑

n=k

(2n + 1)2

8n3(n + 1)3
<

3(2k + 1)2

16(k + 1)3
+

1

4
.
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Taking the limit as k → ∞ of this inequality, we get

1

4
≤ lim

k→∞

3k3

2

∞
∑

n=k

(2n + 1)2

8n3(n + 1)3
≤

1

4
.

Now we can use the Squeeze Theorem to find the limit of the sum.

Theorem 4.1 (Squeeze Theorem). If f(x) ≤ g(x) ≤ h(x) when x is

near a (except possibly at a) and

lim
x→a

f(x) = lim
x→a

h(x) = L

then

lim
x→a

g(x) = L

Therefore, from the Squeeze Theorem

lim
k→∞

3k3

2

∞
∑

n=k

(2n + 1)2

8n3(n + 1)3
=

1

4
= lim

k→∞

3k3

2

∫

∞

k

(2x + 1)2

8x3(x + 1)3
dx.

We can now find the limit of the Lanczos derivative through the

integral test and L’Hospital’s rule:

f ′

L
(0) = lim

x→∞

3

2
·

∫

∞

x

(2t+1)2

8t3(t+1)3
dt

1
x3

= lim
x→∞

3

2
·

−(2x+1)2

8x3(x+1)3

−3
x4

= lim
x→∞

3

2
·
(2x + 1)2x

24(x + 1)3
=

1

4
.

Therefore, the Lanczos method can find a derivative of our function

of 1
4
, while the symmetric and traditional derivatives do not exist. The

value 1
4

comes from the process of measuring the average derivative

from, in this case, 0 to ε, over a dense number of intervals and then

letting ε → 0.

5. Conclusion

Although Lanczos’ formula is a more tedious method for finding the

derivative than the other more common definitions of differentiation,
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the Lanczos derivative does carry some advantages over the other for-

mulas. As we saw with the function of triangles, there are circum-

stances where other derivatives do not exist, but the Lanczos derivative

does. This allows us to compute a ‘pseudo-derivative’ at places that

are not differentiable under the traditional derivative.

Overall, though, the significance is not in the ability of the derivative

to compute a pseudo-derivative, but rather in the properties the deriv-

ative shares with other mathematical subjects. We looked at how the

Lanczos derivative compares to other derivatives and the least squares

method. Other topics that can be looked at in relation to the Lanczos

derivative are higher order derivatives and Legendre polynomials. For

example, we can use the least squares method to look at the Lanczos

derivative function f(x + t). The equation
∫

ε

−ε

(f(x + t) − g(x))2
dt

where g(x) = anxn +an−1x
n−1 + · · ·+a1x

1 +a0 can be minimized, simi-

lar to the least squares process. The result we obtain by differentiating

in terms of the highest order coefficient ends up being very similar to

the nth order Legendre polynomial. There is much more that can be re-

searched in this area that might explain why and how this phenomenon

occurs.
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