
TRIANGLES IN HYPERBOLIC GEOMETRY

LAURA VALAAS

APRIL 8, 2006

Abstract. This paper derives the Law of Cosines, Law of Sines, and the
Pythagorean Theorem for triangles in Hyperbolic Geometry. The Poincaré
model for Hyperbolic Geometry is used. In order to accomplish this the paper
reviews Inversion in Hyperbolic Geometry, Radical Axes and Powers of circles
and expressions for hyperbolic cosine, hyperbolic sine, and hyperbolic tangent.
A brief history of the development of Non-Euclidean Geometry is also given
in order to understand the importance of Euclid’s Parallel Postulate and how
changing it results in different geometries.

1. Introduction

Geometry aids in our perception of the world. We can use it to deconstruct
our view of objects into lines and circles, planes and spheres. For example, some
properties of triangles that we know are that it consists of three straight lines and
three angles that sum to π. Can we imagine other geometries that do not give these
familiar results? The Euclidean geometry that we are familiar with depends on the
hypothesis that, given a line and a point not on that line, there exists one and only
one line through the point parallel to the line. This is one way of stating Euclid’s
parallel postulate. Since it is a postulate and not a theorem, it is assumed to be
true without proof. If we alter that postulate, new geometries emerge.

This paper explores one model of that Non-Euclidean Geometry-the Poincaré
model of Hyperbolic Geometry. We will explore the Poincaré model, based on a
system of orthogonal circles (circles which interesect each other at right angles),
and learn about some of its basic aspects. Then we will study the characteristics
of triangles in this geometry through discovering relationships between parts of
triangles and deriving hyperbolic forms of the Pythagorean Theorem and the Laws
of Sines and Cosines. While doing so we will also come across the concepts of
Inversion and Radical Axes. First, however, we will have a brief review of the
history leading up to the development of the Poincaré model.

2. Development of Non-Euclidean Geometry

In the early third century B.C.E., Euclid gathered the existing knowledge about
geometry and combined it with his new work to form a comprehensive textbook of
geometry. He began with definitions and postulates (the fifth of which is the parallel
postulate) and includes many theorems and propositions. The Elements, consisting
of 13 books, is the oldest geometry book that has survived to modernity. This is
partly because the Elements was comprehensive for the time, so few other geometry
texts were needed or used. Consitent with his interest in spreading knowledge
through teaching, Euclid also founded and taught at a school in Alexandria.
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Although originally written in Greek, a translation (by Thomas Heath) of Eu-
clid’s five postulates is as follows [7].

Definition 2.1 (Postulate 1). A straight line segment can be drawn by joining any

two points.

Definition 2.2 (Postulate 2). A straight line segment can be extended indefinitely

in a straight line.

Definition 2.3 (Postulate 3). Given a straight line segment, a circle can be drawn

using the segment as radius and one endpoint as center.

Definition 2.4 (Postulate 4). All right angles equal one another.

Definition 2.5 (Postulate 5, the Parallel Postulate). That, if a straight line falling

on two straight lines makes the interior angles on the same side less than two right

angles, the two straight lines, if produced indefinitely, meet on that side on which

are the angles less than the two right angles.

A modern statement of this, along with a statement of the form of the parallel
postulate used in Hyperbolic Geometry will be presented in the next section.

Mathematicians strove for 2,000 years to prove Euclid’s parallel postulate from
the first four postulates, but were unsuccessful. They attempted to prove it because
they believed that the parallel postulate was not a postulate, but a theorem and
thus could be proved. It was not until the 19th century that people began to accept
that the parallel postulate could not be proved [2].

According to some dated letters, Karl Friedrich Gauss (1777-1855) began to
develop a Non-Euclidean geometry around 1792. He first had to overcome his
prejudices against a Non-Euclidean geometry and learn to accept a system of ge-
ometry that went against his intuition. Gauss eventually convinced himself of the
validity of Non-Euclidean geometry and called the new geometry a series of names,
Anti-Euclidean, Astral-Euclidean and finally, Non-Euclidean. He, however, did not
publish any of his work in this area fearing ridicule and disbelief [2]. Already a
prominent mathematician, he stood to lose his peers’ respect for publishing contro-
versial results.

Ferdinand Karl Schweikart (1780-1859) also developed a Non-Euclidean geom-
etry and in 1818 sent a memorandum on his geometry to Gauss requesting his
opinion. Gauss agreed with Schweikart’s work and acknowledged that he had been
working in that area for a long time. Schweikart’s memorandum stated that there
were two kinds of geometry, Euclidean and Astral and that in Astral Geometry the
sum of the three angles in a triangle is less than two right angles. He also did not
publish [2].

James Bolyai (1802-1860) also developed a Non-Euclidean geometry. Unlike
Schweikart and Gauss, Bolyai took the brave step of publishing his findings. Al-
though he was aware of the magnitude of Non-Euclidean Geometry, saying “out of
nothing I have created a strange new universe,” and held his work in high esteem,
it received little acclaim and Bolyai grew depressed [2].

The man who published the first influential work on Non-Euclidean geometry was
Nicolai Lobachevsky (1793-1856). He studied and later taught at the University of
Kasan in Russia. In 1823-1825 he started developing a geometry independently of
Euclid and published a paper in 1829 which showed that a Non-Euclidean geometry
was logically consistent. He later published several books: New Foundations of
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Geometry in 1838, Geometrical Investigations on the Theory of Parallels in 1840
and Pangeometry in 1855 [6]. Lobachevsky used the horocycle, a circle of infinite
radius, for the lines and the horosphere, a sphere of infinite radius, for the plane
[2].

It took a long time for people to accept the existence of a Non-Euclidean ge-
ometry, particularly because of the strong belief in Kantian philosophy in the late
18th and early 19th century. Immanuel Kant (1724-1804) believed that geometry,
because it existed in space, was an absolute science. He believed that the axioms of
geometry were true a priori. Therefore, the idea that different geometries could ex-
ist challenged Kantian philosophy. Finally people were convinced, mostly through
Lobachevsky because he had the confidence and courage to publish his ideas, that
a Non-Euclidean Geometry was logical.

The model of Non-Euclidean Geometry that we will be using was named after
Jules Henri Poincaré (1854-1912). Poincaré was a French philosopher and mathe-
matician. His work foreshadowed chaotic deterministic systems and algebraic topol-
ogy. Poincaré developed his model of Non-Euclidean geometry in part to aid his
work on solar systems.

3. Poincaré Model of Non-Euclidean Geometry

Once mathematicians and philosophers began accepting the validity of Non-
Euclidean Geometries, more people began exploring and working on those geome-
tries. Three different versions of the parallel postulate are possible, each leading to
one or more unique geometries.

We will use the Poincaré model to consider Hyperbolic Geometry. The Poincaré
model results in slightly different definitions for lines, distance and area. A useful
tool when working in the Poincaré model is the transformation of inversion and its
effects on objects in the Hyperbolic plane.

3.1. Alternatives to Euclid’s Parallel Postulate. Depending on what axioms
are used, different geometries can be developed. The geometry that can be proved
using only the first four of Euclid’s axioms is called Absolute Geometry. Other
geometries rely on the parallel postulate. Different versions of the parallel postulate
lead to different geometries as listed below.

Parallel Postulate 1. If a point and a line not passing through it are given, there

exists one and only one line which passes through the given point parallel to the

given line.

This axiom is equivalent to Euclid’s original axiom and creates the Euclidean
Geometry, also known as Parabolic Geometry, with which we are most familiar.

Parallel Postulate 2. If a point and a line not passing through it are given, there

exists no line passing through the given point parallel to the given line.

It follows that every pair of lines intersect at two points. This axiom leads to an
Elliptic Geometry. Spherical Geometry, which considers figures on the surface of a
sphere and where lines are great circles, is a type of this geometry.

Parallel Postulate 3. If a point and a line not passing through it are given, there

exists at least two lines which pass through the given point parallel to the given line.

Using this version leads to Hyperbolic Geometry, which the Poincaré model
describes.
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3.2. The Poincaré Geometry. To develop the Poincaré model, consider a fixed
circle, ω, in the Euclidean plane. The “plane” of this geometry is contained within
ω. Points and lines are defined below.

Definition 3.1 (Orthogonal). Two curves are orthogonal if, at every point of in-

tersection, the tangent lines to the curves at that point are perpendicular.

Definition 3.2 (Points). Points are Euclidean points inside ω.

This model of Hyperbolic Geometry is represented by orthogonal circles. The
plane of this geometry is restricted to the interior of a circle, ω. Points may lie
anywhere inside ω but not on the boundary of ω. All lines in this geometry must
be sections of circles orthogonal to ω.

Definition 3.3 (Lines). Lines are either the arc that is inside ω of a circle orthog-

onal to ω or a diameter of ω.

Definition 3.4 (Distance). Let A and B be two points in ω. Then A and B lie on

a unique line. Let that line intersect ω at points M and N such that A lies between

M and B. Then the “distance” is given by:

ÃB =

∣∣∣∣log
AM · BN

AN · BM

∣∣∣∣ = | log[AB, MN ]|

if A 6= B and zero if A = B. Furthermore, ÃB = B̃A.

We can prove that A and B lie on a unique line by finding it. We will not review
that proof here because it is only an exercise in algebra once we make use of the
following lemma.

Lemma 1. The circle given by the equation x2 +y2 = r2 is orthogonal to the circle

given by the equation

(1) x2 + y2 + ax + by + c = 0

if and only if c = r2.

Proof. Express x2 + y2 + ax + by + c = 0 in standard form. By completing the
square.

(
x2 + ax +

(a

2

)2)
−

(a

2

)2

+
(
y2 + by +

( b

2

)2)
−

( b

2

)2

+ c = 0

(
x2 +

a

2

)2

+
(
y2 +

b

2

)2

+ c −
a2

4
−

b2

4
= 0

So this circle has center
(

−a
2 , −b

2

)
and radius r =

√
a2

4 + b2

4 − c. From the basic

properties of orthogonal circles we know that if and only if two circles are orthogonal

with radii of r1 and r2 and centers at O1 and O2, then r2
1 + r2

2 = O1O2
2

since the
radii intersect at a right angle. Since the first circle has center (0, 0) and radius r,
the distance

AB =

√(
−

a

2
− 0

)2

+
(
−

b

2
− 0

)2

=

√
a2 + b2

4

So

r2 +
a2 + b2 − 4c

4
=

a2 + b2

4
r2 = c
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Since all of these steps are reversible, we can prove the converse the same way. �

We could then use this to solve the original problem by choosing any two points,
[x1, y1] and [x2, y2] and making the circle given by equation (1) pass through those
two points. Also note that this definition of distance satisfies the requirements of
Euclidean distance. Letting x, y, and z be points in the plane, and using D(x, y)
to represent the distance between the points x and y, the requirements are:

• D(x, y) ≥ 0.
• D(x, x) = 0. Furthermore, if D(x, y) = 0, then x = y.
• D(x, y) = D(y, x).
• D(x, y) ≤ D(x, z) + D(z, y).

It is particularly easy to see, using the definition that ÃB = B̃A and that if A 6= B,

then ÃB > 0.
Consider the areas of polygons in the Poincaré model. Since any polygon can

be made up of triangles and the sum of the area of the triangles that make up the
polygon equals the area of the polygon we will only consider the area of a triangle
[1].

Definition 3.5 (Defect). The defect of a triangle is the difference between the

sum of its angles and π.

Definition 3.6 (Area). The area of a triangle is equal to its defect.

The area of any triangle is less than π. As the vertices approach the boundary
of the fundamental circle, the length of the edges approaches infinity and the area
of the triangle approaches π. It will never equal π since the boundary of the
fundamental circle is not actually a part of the geometry so the vertices can never
lie on the circumference. Interestingly, though the area of a triangle is bounded,
the area of a polygon is unbounded as the number of sides approaches infinity and
it grows to cover the entire circle ω, the entire plane of the geometry.

In Figure 1 the vertices are close to the boundary, therefore the angles get small
and the area gets closer to π. In Figure 2 we look at a triangle with vertices further
from the boundary of ω. This makes the angles larger and the area smaller.

3.3. Inversion and Radical Axes. Inversion is a technique used to move objects,
such as lines and points, to a different space in the plane without changing some of
the properties of the object. It allows for two dimensional rotation and translation
with no distortion of objects. In the Poincaré model, moving an object, such as
a triangle, makes it appear different in our Euclidean representation of it but we
will claim that most of its properties, such as angle measure and area, are invariant
under inversion.

Let the inversion transformation of point P be T (P ) and let P be a point such
that P 6= O and let O be the center of the circle [O, r]. See Figure 3, for an example
of a point and its inverse point.

Definition 3.7 (Inversion). Each point P has a unique inverse point with respect

to a circle [O, r], P ′ = T (P ) on the line OP such that,

OP ′ =
r2

OP
.
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Figure 1. The triangle formed here has area of 2.83.
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Figure 2. The triangle formed has area of 1.26.

Therefore, P and P ′ are inverse points. The inverse of point P lies on the ex-

tended line determined by the vector
−−→
OP as seen in Figure 3. To help us understand

inversion we will consider two situations, one when P gets close to the origin and
also when P gets close to the boundary of ω. When P approaches O, the distance
OP approaches zero, therefore, from our formula in the definition, the length OP ′
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Figure 3. P ′ and P are inverse points on the circle of inversion [O, r].
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Figure 4. Another example of inversion for the points P and Q.

approaches infinity and therefore P ′ becomes infinitely far away from P . On the
other hand, as P approaches the boundary of ω, the distance OP approaches r and

therefore OP ′ = r2

r
= r. So P and P ′ become very close to each other, merely on

opposite sides of the boundary of ω.

Definition 3.8. The circle C, given by [O, r], is the circle of inversion with

center of inversion O and radius of inversion r.

Definition 3.9. A circle that does not contain its center point is a Punctured

Circle.

Definition 3.10. If O is a point in a Euclidean plane, E, the set E − O is a

punctured plane.

Since we will use inversion later, here are some properties of inversion:

• If P ∈ C, then T (P ) = P ′ = P .
• If OP < r, then OP ′ > r and conversely.
• For every P , T (T (P )) = P .

Furthermore, for inversions across a line that is an orthogonal circle to the circle
of inversion. That is, inversions across a line in the Poincaré geometry.

• Inversion preserves points.
• Inversion preserves the non-Euclidean distances between points.
• Inversion preserves lines in the Poincaré geometry.
• Inversion is conformal.
• Inversion preserve betweenness.
• Inversion preserves segments.
• Inversion preserves convexity.

We only touched on inversion at the end of our research so we will not prove
that these properties are true. It is an area for future study.
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Figure 5. The line l is the radical axis of each of the two circles.
In each case the line l is perpendicular to the line formed by AB.
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Figure 6. The power of point P . P can lie either inside the circle
or outside.

The radical axes and powers of circles can be a useful tool in dealing with or-
thogonal circles. First we will describe radical axes and powers and then we will
see how they relate to each other and to orthogonal circles.

Radical Axis 1. The locus of points whose power with respect to two non-concentric

circles are equal is a line perpendicular to the line of centers of the two circles. That

line is the radical axis and contains the common chord of the two circles if they in-

tersect and the common tangent if they touch.

For the four examples in Figure 5, line l is the radical axis of the two circles.

Power 1. Let PO is the Euclidean distance between the point P and the center

of the circle, O. For any point, P , in the plane and any circle [0, r], the number

PO2 − r2 is the power of P with respect to the given circle.

Power 2. Let the points A and B be on the circumference of the circle [O, r] and

PA and PB be the Euclidean distances between P and A and P and B, respectively.

For any point, P , in the plane and any circle [O, r], the number PA · PB is the

power of P with respect to the given circle.

Some things to note about the power of a point, P:
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Figure 7. Radii drawn in from centers to point of intersection, P.

• If P is in the exterior of a circle, the power is positive.
• If P is on the circumference of a circle, the power is zero.
• If P is in the interior of a circle, the power is negative.

From a previous theorem the power is also the product of PA and PB The line
AB is any line interesecting the circle and point P . This can be expressed as:
Power = PO2 − r2 = PA · PB. See Figure 6.

The following theorem is from Wolfe, page 234 [8] and connects the orthogonality
of two circles with the power of each center with respect to the other circle.

Orthogonality of two Circles 1. If two circles are orthogonal, the square of the

radius of each is the power of its center with regard to the other. Conversely, if the

square of the radius of one circle is the power of its center with regard to another,

the two circles are orthogonal.

We will use the notation in Figure 7, where we have a circle with center O1

and radius r1 and a circle with center O2 and radius r2 intersecting at point P , to
restate the theorem and prove the theorem.

Orthogonality of two Circles 2. Two circles are orthogonal if and only if

O1O2
2
− r2

1 = r2
2

O1O2
2
− r2

2 = r2
1 .

Proof. Let

O1O2
2
− r2

1 = r2
2

O1O2
2
− r2

2 = r2
1

Then

O1O2
2

= r2
1 + r2

2

Let the two radii be drawn to point P as in Figure 7. Then ∠O1PO2 is a right
angle and hence the two circles are orthogonal.

For the converse proof:
Let the two circles be orthogonal then

O1O2
2

= r2
1 + r2

2
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and hence

O1O2
2
− r2

1 = r2
2

and

O1O2
2
− r2

2 = r2
1

�

Since the radical axes and powers have interesting results when applied to or-
thogonal circles, we can use them to help us use the Poincaré model.

4. Triangle Geometry

Now we will consider some properties of triangles in Hyperbolic Geometry using
the Poincaré model. We will first find some laws of right triangles and then use
those to derive results for any generic triangle in Hyperbolic Geometry.

4.1. Hyperbolic Sine, Hyperbolic Cosine, and Hyperbolic Tangent. The
hyperbolic sine, hyperbolic cosine, and hyperbolic tangent are comparable to the
sine, cosine, and tangent in Parabolic (Euclidean) Geometry; hence the ”hyper-
bolic” in front of each term. So we will be using them extensively in our treatment
of triangles. We will also need to use them to relate Hyperbolic distance to Eu-
clidean distance. Recall that hyperbolic sine, hyperbolic cosine, and hyperbolic
tangent are defined by the following,

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
ex − e−x

ex + e−x
.

First we note some of the basic properties of hyperbolic sines and hyperbolic
cosines that can easily be proved using their definitions,

cosh2(x) − sinh2(x) = 1

1 − tanh2(x) =
1

cosh2(x)

coth2(x) − 1 =
1

sinh2(x)

sinh(x ± y) = sinh x cosh y ± coshx sinh y

cosh(x ± y) = coshx cosh y ± sinh x sinh y.

Since cosh2(x) − sinh2(x) = 1 is used later on in the paper we will prove it
explicitly.

Hyperbolic Trigonometry Identity 1.

(2) cosh2(x) − sinh2(x) = 1
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.
.

.

.

N

M

O

X

Figure 8. ON = r and OX = a.

Proof.

cosh2(x) − sinh2(x) =

(
ex + e−x

2

)2

−

(
ex − e−x

2

)2

=
(e2x + 2 + e−2x) − (e2x − 2 + e−2x)

4
= 1

�

The other identities are proved in a similar manner using the definitions.
Consider point X on a diameter of our fundamental circle, ω with radius r and

center O so that OM = ON = r, as shown in Figure 8.

For simplicity, let a = OX and a′ = ÕX . So

a′ = ÕX = ln

(
OM · XN

ON · XM

)
= ln

(
r · (r + OX)

r · (r − OX)

)
= ln

(
r + a

r − a

)

Then

ea′

=
r + a

r − a
and

e−a′

=
r − a

r + a
Therefore

sinh(a′) =

(
r+a
r−a

− r−a
r+a

)

2
=

2ra

r2 − a2

cosh(a′) =

(
r+a
r−a

+ r−a
r+a

)

2
=

r2 + a2

r2 − a2

tanh(a′) =

(
r+a
r−a

− r−a
r+a

)

(
r+a
r−a

+ r−a
r+a

) =
2ra

r2 + a2

Now we know how to find the hyperbolic trig functions for points on a diameter of
the fundamental circle. This will be useful when we look at right triangles because
we will use inversion to move two sides of a right triangle so that they are portions
of diameters of ω.
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Figure 9. Any right triangle ABC with right angle at vertex C,
inverted so that its vertex A is at the center of the circle.

4.2. Properties of Right Triangles in Hyperbolic Geometry. In order to
derive a version of the Pythagorean Theorem for right triangles in Hyperbolic Ge-
ometry, we will consider the right triangle ABC in Figure 9. Because inversion
maintains angle measure and length, we can move any right triangle so that one of
its vertices lies at the center of the fundamental circle by inverting one point over
a line chosen so that its inverse point lies on the center of the circle. This makes
two of the edges lie on diameters of the circle and therefore appear to us as straight
lines. Use the following notation:

a = B̃C, b = ÃC, c = ÃB

A = ∠̃A B = ∠̃B C = ∠̃C = π/2.

The Non-Euclidean line B̃C is part of a circle, ω1, that has its center on the
line defined by AC and has a radius of r1. Since AC is perpendicular to ω1, it is a
diameter of ω1. The chord MN is part of the radical axis of the two circles, ω and
ω1. Therefore ω1 can be considered as a circle of inversion and (X, X ′′), (B, B′′),
and (C, C ′′) are inverse pairs with respect to ω. Therefore,

OX ′′ =
r2

OX
, OB′′ =

r2

OB
, OC ′′ =

r2

OC
.

Let X ′, B′, and C ′ lie on the chord MN and therefore on the radical axis of ω
and ω1. Therefore,

OB′2 − r2 = O1B
′2 − r2

1 = BB′ · B′B′′(3)

OC ′2 − r2 = O1C
′2 − r2

1 = CC ′ · C ′C ′′(4)

OX ′2 − r2 = O1X
′2 − r2

1 = XX ′ · X ′X ′′.
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Using equation (3) we can find an expression for OB′:

OB′2 − r2 = BB′ · B′B′′

= (OB − OB′)(OB′′ − OB′)

= (OB − OB′)(
r2

OB
− OB′)

= r2 − OB · OB′ − OB′ ·
r2

OB
+ OB′2

OB′

(
OB +

r2

OB

)
= 2r2

OB′ =
2r2

OB2+r2

OB

=
2r2OB

OB2 + r2

= r · tanh(OB)

= r · tanh(c).

The same procedure can be used on equation (4) to find

OC ′ = r · tanh(b)

.
Now we will find expressions for BB′′ and CC ′′.

BB′′ = OB′′ − OB

=
r2

OB
− OB

=
r2 − OB2

OB

=
2r

sinh(c)

CC ′′ = OC ′′ − OC

=
r2

OC
− OC

=
r2 − OC2

OC

=
2r

sinh(b)
.

Since b and c are straight lines, we can use Euclidean trigonometry to find

(5) cos(A) =
b

c
=

OC ′

OB′
=

tanh(b)

tanh(c)
.

Now note from Figure 9, based on basic properties of chords of circles and Eu-
clidean angle properties and noting that BG is tangent to ω1 at B that

∠BO1B
′′ = 2∠BC ′′B′′ = 2∠GBB′′ = 2∠̃ABC = 2B.
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So B = 1
2∠BO1B

′′. We can then find an expression for sin(B) in hyperbolic
trigonometric functions,

(6) sin(B) = sin

(
∠BO1B

′′

2

)
=

BB′′

2O1C
=

BB′′

CC ′′
=

sinh(b)

sinh(c)
.

Similarly, we can use the same procedures as in equations (5) and (6) to find
that

cos(B) =
tanh(a)

tanh(c)

and

sin(A) =
sinh(a)

sinh(c)
.

Now we will obtain the equivalent of the Pythagorean theorem for hyperbolic
geometry.

From the Parabolic trigonometric identity cos2(A) + sin2(A) = 1 we find

tanh2(b)

tanh2(c)
+

sinh2(a)

sinh2(c)
= 1

tanh2(b)

tanh2(c)
· sinh2(c) + sinh2(a) = sinh2(c)

1 + sinh2(c) = cosh2(c) · tanh2(b) + 1 + sinh2(a)

cosh2(c) = cosh2(c)

(
sinh2(b)

cosh2(b)

)
+ cosh2(a).

Taking equation (2) and multiplying through by cosh2(b) and simplifying gives the
following.

cosh2(c) · cosh2(b) = cosh2(c) · sinh2(b) + cosh2(a) · cosh2(b)

cosh2(c)(cosh2(b) − sinh2(b)) = cosh2(a) · cosh2(b)

cosh2(c) = cosh2(a) · cosh2(b)

cosh(c) = cosh(a) · cosh(b).(7)

Like the Pythagorean theorem in Euclidean geometry, Equation 7 relates all of
the sides of a right triangle to each other. Note that side c is the hypotenuse.
Finally, we can use Equation 7 to find an expression for the tangent of a vertex.

tan(A) =
sinh(a)

sinh(c)
·
tanh(c)

tanh(b)

=
sinh(a)

sinh(c)
·

sinh(c)
cosh(c)

sinh(b)
cosh(b)

=
sinh(a) · sinh(c) · cosh(b)

sinh(c) · cosh(a) cosh(b) · sinh(b)

=
sinh(a)

cosh(a) sinh(b)

=
tanh(a)

sinh(b)
.
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Figure 10. We will use triangle ABC with the altitude of h to
prove the hyperbolic laws of sines and cosines.

Now we have expressions relating the various parts of a right triangle in hyper-
bolic trigonometry.

4.3. Generic Triangles in Hyperbolic Geometry. Now that we have some
results for right triangles, we can divide any generic triangle into two right triangles
by drawing in an altitude from one vertex to the opposite side so that it meets that
side at a right angle. We will now derive the hyperbolic law of sines and the
hyperbolic law of cosines. For the proofs of the hyperbolic laws of sine and cosine
for a general triangle, 4ABC, we will want to use the relationships between the
sides of the right triangles, 4ABD and 4BCD in Figure 10. Triangle ABC has
an altitude of h. Let A, B, and C denote the angle measure at the vertex as well
as name the vertex, while a, b1, b2,and c represent the side lengths and h is an
altitude. Let b be the distance b1 + b2.

Theorem 4.1. The hyperbolic law of sines is the following relationships:

(8)
sinh a

sin A
=

sinh b

sin B
=

sinh c

sin C
.

Proof. Using hyperbolic trig identities, we can rewrite the terms of Equation 8 as
follows, where h is the altitude of the triangle in Figure 10.

sinh a

sin A
= sinha

sinh c

sinh h
=

sinh c
sinh h
sinh a

=
sinh c

sin C
.

Similarly, draw an altitude j in Figure 10 that starts at vertex A and intersects
side a at a right angle. Now,
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sinh c

sin C
=

sinh c
sinh j

sinh b

=
sinh b
sinh j

sinh c

=
sinh b

sin B
.

Therefore,
sinh a

sin A
=

sinh c

sin C
=

sinh b

sin B
.

�

Theorem 4.2. The hyperbolic law of cosines relates the side lengths of a generic

triangle 4ABC, with side lengths a, b, and c in hyperbolic geometry. The equation

of the hyperbolic law of cosines is the following,

(9) cosha = cosh b cosh c − sinh b sinh c cosA.

Proof. Refering to Figure 10 and using our results on right triangles we can see
that

cosha = cosh b2 coshh

= cosh(b − b1) cosh h

= (cosh b cosh b1 − sinh b sinh b1) coshh

= cosh b(cosh b1 coshh) − sinh b sinh b1 coshh

= cosh b cosh c − sinh b sinh b1

(
cosh c

cosh b1

)

= cosh b cosh c − sinh b sinh c

(
sinh b1 cosh c

cosh b1 sinh c

)

= cosh b cosh c − sinh b sinh c

(
tanh b1

tanh c

)

= cosh b cosh c − sinh b sinh c cosA.

So we have proved Equation 9, the hyperbolic Law of Cosines.
�

Therefore, we can see that the Hyperbolic Law of Sines and Hyperbolic Law of
Cosines also exist in Non-Euclidean geometry.

5. Conclusion

Hyperbolic geometry is a useful tool in mathematics and physics. Einstein used
it to help develop his theory of relativity; it is also a useful model for astrophysics.
Hyperbolic geometry is also an interesting topic from a theoretical view. The
Poincaré model of hyperbolic geometry provides a new way to consider geometry;
we can see where Euclidean and Hyperbolic geometry parallel each other and how
they differ.

This paper explored some of the attributes of Hyperbolic geometry using the
Poincaré model, particularly the properties of triangles. Most important is the
understanding of how Euclidean relations, such as the Law of Cosines, Law of
Sines, and the Pythagorean Theorem, translate into relationships between sides
and angles of triangles in Hyperbolic Geometry.

There are many more interesting specifics in this topic that could be pursued
further. The radical axis and powers of orthogonal circles have the potential to
provide many more interesting results. The families of orthogonal circles, or coaxial
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systems, in addition to being aesthetically pleasing, might reveal more interesting
results. In conclusion, it is fascinating to explore Non-Euclidean geometries and
see how familiar, Euclidean properties change to work in a Non-Euclidean space.
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