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1. Introduction

Many problems in mathematics, specifically in combinatorics, can be
simplified by a simple change of perspective. Often a difficult counting
problem can be solved when the sets are counted in different ways [3].
One tool for proving difficult theorems is the Möbius Inversion Formula,
as shown below.

To begin, we’ll review some important definitions and theorems from
Set Theory. These are used in the definition and proof of the Princi-
ple of Inclusion and Exclusion (or PIE). The PIE is fairly commonly
used, most obviously in problems such as that in Section 3.1.1, where,
given the number of people in a room with certain characteristics, we
use the PIE to compute the number of people who don’t share those
characteristics.

The PIE can be proved by induction using oly the Set Theory ex-
plained in Section 2. Alternatively, the Möbius Inversion Formula gives
a more elegant proof. In sections 5 through 8, we’ll focus on the Möbius
Inversion Formula and Möbius Functions in general.

Möbius Functions are piecewise functions defined on any set, par-
tially ordered by some relation. We’ll derive Möbius Functions for a
set consisting of sets ordered by inclusion, a set of arborescences or-
dered, and the set of integers ordered by division. We’ll then examine
the Upside-Down Möbius Function, where the relation is defined back-
wards; that is, if x ≤ y, we would say y ≤∗ x. Finally, we’ll prove the
Möbius Inversion Formula by induction.

The Möbius Inversion Formula states that given any function f(x),
if we define g(x) as follows:

g(x) =
∑

z≤x

f(z),

then
f(x) =

∑

z≤x

g(z)µ(z, x).
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Figure 1. A “union” B, A ∪ B

By appropriately defining f(x), we can use the Möbius Inversion For-
mula to prove the Principle of Inclusion and Exclusion.

2. Very Basic Review

2.1. Definitions. A set is a collection of objects. These objects can
be anything from numbers to letters to chickens. The number of objects
within a set is the size of the set. If some object x is a member of the
set A, we write x ∈ A. The size of the set A is denoted |A|. Some
sets, such as the set of whole numbers, are infinite; however, the sets
used in this paper are finite. The set with size 0, or the empty set, is
denoted ∅.

Set Theory requires its own set of operations to define how sets
interact.

In Figures 1-5, we denote the elements in sets A and B by the points
inside the circles labeled A and B respectively.

The set consisting of all the elements that are members of A, B, or
both is called the union of the two sets A and B, or “A union B”, and
is denoted A ∪ B. In Figure 1, A ∪ B consists of the shaded region.
This operation can be generalized to more sets. The union of n sets
A1, A2, ..., An, denoted A1 ∪ A2 ∪ · · · ∪ An is the set consisting of all
elements x where x ∈ Ai for at least one i ≤ n.

The set of all the elements that are members of both A and B is
called the intersection of A and B, or “A intersect B” and is denoted
A ∩ B. The shaded region in Figure 2 is the intersection between the
sets. Intersection can also be generalized to more sets. The intersection
of n sets A1, A2, ..., An, denoted A1∩A2 ∩· · ·∩An is the set consisting
of all elements that are in every Ai.

We say a set A is a subset of another set B, or A ⊆ B, if every
element in A is also a member of B. In Figure 3 the set A is a subset
of the set B, since A is completely contained within B.
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Figure 2. A “intersect” B, A ∩ B

Figure 3. A is a subset of B, A ⊆ B

Two sets A and B are equal (A = B) if they have all the same
elements. This implies that every element of A is also an element of
B, and every element of B is also an element of A; that is, both sets
are subsets of each other.

Where A is a subset of some other set S, the complement of set A,
denoted A′, is the set of all points in S that are not in A. A′ is shown as
the shaded section in Figure 4. The set of elements that are in A but
not in B, shown as the shaded section in Figure 5, is the difference of
the two sets A and B, denoted A − B. A − B is also the intersection
of the sets A and B′, denoted A ∩ B′.

Consider A and B to be subsets of the set S={1,2,3,...,10} with
A={1,2,3,4} and B={2,4,6,8}.
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Figure 4. “Compliment” of A, A′

Figure 5. A − B, A ∩ B′

Then A ⊆ S,

A ∪ B = {1, 2, 3, 4, 6, 8},
A ∩ B = {2, 4},

A′ = {5, 6, 7, 8, 9, 10},
S − A = {5, 6, 7, 8, 9, 10}, and

A′ = S − A.

2.2. Laws. When dealing with operations on the real numbers, there
are some basic laws that we take for granted, such as the Associative
Law, which states that for any real numbers x, y, and z, we have
(x + y) + z = x + (y + z). Two important laws for operations on sets
are the Associative and Distributive Laws.

Associative Law for Union. The order in which unions are calcu-
lated doesn’t affect the final result.

(A ∪ B) ∪ C = A ∪ (B ∪ C).
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Proof

In order to prove that two sets are equal, we need to show that each
set is a subset of the other. If some element x is a member of the first
set, it must also be a member of the second, and vice versa.

First, assume that
x ∈ (A ∪ B) ∪ C.

From the definition of the union, either x ∈ A ∪ B or x ∈ C. If the
former is true, then either x ∈ A or x ∈ B. This means x is a member
of at least one of the sets A, B, or C.

Suppose x ∈ B or x ∈ C. Then x ∈ B ∪ C, since this set consists
of every element that is a member of B, C, or both. Since x ∈ B ∪ C,
then x ∈ A ∪ (B ∪ C).

Suppose x ∈ A, then x ∈ A ∪ (B ∪ C).
Thus, x ∈ (A∪B)∪C implies x ∈ A∪ (B ∪C), and we have shown

(A ∪ B) ∪ C ⊆ A ∪ (B ∪ C).

Now, assume y ∈ A ∪ (B ∪ C). Thus, either y ∈ A or y ∈ B ∪ C.
Suppose y ∈ B ∪ C. Then either y ∈ B or y ∈ C. So once again, we

have that y is a member of at least one of the sets A, B, or C.
If y is in A or B, then it will be a member of A ∪ B, and therefore

a member of (A ∪ B) ∪ C. If y ∈ C, then we know y ∈ (A ∪ B) ∪ C.
Thus, y ∈ A ∪ (B ∪ C) implies y ∈ (A ∪ B) ∪ C, and

A ∪ (B ∪ C) ⊆ (A ∪ B) ∪ C.

Since the two sets are subsets of each other, they must be equal.
Therefore,

A ∪ (B ∪ C) = (A ∪ B) ∪ C.

Since the order in which we compute unions doesn’t affect the final
result, the notation A1 ∪ A2 ∪ · · · ∪ An is not ambiguous.

Associative Law for Intersection. The order in which intersections
are computed doesn’t affect the final set; that is,

(A ∩ B) ∩ C = A ∩ (B ∩ C).

Proof

We’ll proceed by the same method for this law.
First, assume

x ∈ (A ∩ B) ∩ C.

Since this is an intersection, this means x is a member of both A ∩ B

and C. Since x is a member of A ∩ B, it must be a member of both A

and B as well. So the following are all true:

x ∈ A,
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x ∈ B, and

x ∈ C.

Since x is a member of both B and C, we have x ∈ B ∩ C. Since it’s
a member of A as well, x ∈ A ∩ (B ∩ C). Therefore, any x that is a
member of the first set is also a member of the second set, and

(A ∩ B) ∩ C ⊆ A ∩ (B ∩ C).

Now suppose that y is a member of A∩(B∩C). Thus, y is a member
of both A and B∩C. Since y is a member of B∩C, it must be a member
of both B and C. So, we have that y is a member of all three sets A,
B, and C. Since y is a member of both A and B, y ∈ A ∩ B. Since
y ∈ C as well, y ∈ (A ∩ B) ∩ C. Therefore, any y that is a member of
the second set is also a member of the first set, and

A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C.

The two sets are subsets of each other, and

(A ∩ B) ∩ C = A ∩ (B ∩ C).

The Distributive Law for algebra states that x(y + z) = xy + xz.
The Distributive Law for sets uses “intersection” and “union” instead
of multiplication and addition, but the result is similar.

Distributive Law. Given any sets A, B, and C,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof

First, suppose that
x ∈ A ∩ (B ∪ C).

So, x ∈ A and x ∈ B ∪ C. Since x ∈ B ∪ C, either x ∈ B or x ∈ C. If
x ∈ B, then x is a member of both sets A and B, and x ∈ A ∩ B. If x

is a member of C, then it is a member of A ∩ C. So, either x ∈ A ∩ B

or x ∈ A ∩ C. Thus, x ∈ (A ∩ B) ∪ (A ∩ C). Therefore,

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).

Now, suppose that

y ∈ (A ∩ B) ∪ (A ∩ C).

Either y ∈ A ∩ B or y ∈ A ∩ C. If y ∈ A ∩ B, then y is in A and y is
in B. If y ∈ A ∩ C, then y ∈ A and y ∈ C. So y is definitely in the
set A, and either y ∈ B or y ∈ C. Since y is in either B or C, we have
y ∈ B ∪ C. Since it’s in both A and B ∪ C, thus y ∈ A ∩ (B ∪ C).
Therefore,

(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).
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Figure 6. |A ∪ B|

Since these two sets are subsets of each other, they must be equal.
Therefore,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

3. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is used to calculate
the size of the union of finite sets. We will use the notation PIEn to
denote the Principle of Inclusion and Exclusion on n sets.

3.1. PIE2: The Principle of Inclusion and Exclusion for two

sets. In a very simple example, we examine the union of two sets A

and B. We can’t calculate the size of the union by simply adding the
sizes of the two sets, since they may have elements in common. In
Figure 6, if we were to add the sizes of the two sets, the lightly shaded
sections would each be counted once. However, the darker section
would be counted twice, once as a part of each set. Thus, to ensure
that the repeated terms are only counted once, the PIE2 states that
given finite sets A and B,

|A ∪ B| = |A| + |B| − |A ∩ B|.

The following example, which demonstrates an application of the
PIE2, comes from Introduction to Discrete Mathematics [1].

3.1.1. Example. There are 100 people in a room. In this group, 60 are
men, 30 are young, and 10 are young men. How many are old women?

Let P be the set of people in the room: |P | = 100. Let M be the
set of all men in the room, |M | = 60, and let Y be the set of all young
people in the room,|Y | = 30. Then the set of young men will be the set
M ∩Y , and |M ∩Y | = 10. We want to know the size of M ′∩Y ′, or the
set of all people who are both not young and not men. Thus, we could
either count the set of all old women, or we could count the number of
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people who are either men or young, and subtract that from the total
number of people. This is the same as calculating |P | − |M ∪ Y |.

By the Principle of Inclusion and Exclusion,

|M ∪ Y | = |M | + |Y | − |M ∩ Y |,

So,

|S| − |M ∪ Y | = |S| − |M | − |Y | + |M ∩ Y |
= 100 − 60 − 30 + 10
= 20

There are 20 old women in the room.

3.2. PIE3. The proof for the Principle of Inclusion and Exclusion with
three sets introduces the principles used to prove the general case of
the PIE (PIEn).

Principle of Inclusion-Exclusion for 3 sets. Given finite sets A,
B, and C

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B ∩C|+ |A∩B∩C|

Proof Suppose we want to calculate the size of the union of three
sets A, B, and C. By the Associative Law, we can calculate the union
of three sets in any order we wish, so A∪B ∪C = A∪ (B ∪C). Thus,

|A ∪ B ∪ C| = |A ∪ (B ∪ C)|.

The PIE2 gives the size of the union of any two sets, so

|A ∪ (B ∪ C)| = |A| + |B ∪ C| − |A ∩ (B ∪ C)|

We can use the PIE2 to find the size of B ∪ C, and we can use the
Distributive Law to expand A ∩ (B ∪ C).

|A ∪ (B ∪ C)| = |A| + |B| + |C| − |B ∩ C| − |(A ∩ B) ∪ (A ∩ C)|.

This last term is another instance of a union between two sets, so we
can use the PIE2 once again.

|(A ∩ B) ∪ (A ∩ C)| = |A ∩ B| + |A ∩ C| − |(A ∩ B) ∩ (A ∩ C)|.

By the Distributive Law, the very last term is equal to A ∩ B ∩ C.
Therefore, we can reorganize to find

|A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|A∩C|−|B∩C|+ |A∩B∩C|.
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3.3. PIEn. We can prove the generalized Principle of Inclusion and
Exclusion using induction. We’ve already proved the base case, for
PIE2.

To begin, assume that the PIE holds true for n finite sets.

Principle of Inclusion-Exclusion for n sets. Given any n sets B1,
B2, ..., Bn, we assume by induction that

|B1 ∪ B2 ∪ · · · ∪ Bn| = |B1| + |B2| + · · · |Bn|
−(|B1 ∩ B2| + |B1 ∩ B3| + · · · + |Bn−1 ∩ Bn|)
+ |B1 ∩ B2 ∩ B3| + · · ·+ |Bn−2 ∩ Bn−1 ∩ Bn|
...
+(−1)n−1|B1 ∩ B2 ∩ · · · ∩ Bn|.

We want to show that the PIE will also be true for n + 1 finite sets;
that is, given A1, A2,..., An+1,

|A1 ∪ · · · ∪ An ∪ An+1| = |A1| + |A2| + · · · |An| + |An+1|
−(|A1 ∩ A2| + |A1 ∩ A3| + · · · + |An ∩ An+1|)
+ |A1 ∩ A2 ∩ A3| + · · · |An−1 ∩ An ∩ An+1|
...
+(−1)n|A1 ∩ A2 ∩ · · · ∩ An ∩ An+1|.

By the Associative Law,

A1 ∪ A2 ∪ · · · ∪ An+1 = (A1 ∪ A2 ∪ · · · ∪ An) ∪ An+1.

If we consider A1 ∪ A2 ∪ · · · ∪ An to be one set and An+1 another,
then

|(A1∪A2∪· · ·An)∪An+1| = |A1∪A2∪· · ·∪An|+|An+1|−|(A1∪A2∪· · ·∪An)∩An+1|.

To expand the last term, we can use the Distributive Law repeatedly.

(A1∪A2∪· · ·∪An)∩An+1 = (A1∩An+1)∪(A2∩An+1)∪· · ·∪(An∩An+1)

We define Bi to be the intersection of Ai and An+1;

B1 = A1 ∩ An+1

B2 = A2 ∩ An+1

...
Bn = An ∩ An+1.

Therefore,

(A1 ∪ A2 ∪ · · · ∪ An) ∩ An+1 = B1 ∪ B2 ∪ · · · ∪ Bn.
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Since the union of all the sets Bi is the union of n sets, we have
assumed

|B1 ∪ B2 ∪ · · · ∪ Bn| = |B1| + |B2| + · · · |Bn|
−(|B1 ∩ B2| + |B1 ∩ B3| + · · · + |Bn−1 ∩ Bn|)
+ |B1 ∩ B2 ∩ B3| + |B1 ∩ B2 ∩ B4| + · · · |Bn−2 ∩ Bn−1 ∩ Bn|
...
+(−1)n−1|B1 ∩ B2 ∩ · · · ∩ Bn|.

Thus,

|A1 ∪ A2 ∪ · · · ∪ An+1| = |A1| + |A2| + · · · |An| + |An+1|
−(|A1 ∩ A2| + |A1 ∩ A3| + · · ·+ |An−1 ∩ An|)
+ |A1 ∩ A2 ∩ A3| + · · · |An−2 ∩ An−1 ∩ An|
...
+(−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|
+ |B1| + |B2| + · · · |Bn|
−(|B1 ∩ B2| + |B1 ∩ B3| + · · ·+ |Bn−1 ∩ Bn|)
+ |B1 ∩ B2 ∩ B3| + · · · |Bn−2 ∩ Bn−1 ∩ Bn|
...
+(−1)n−1|B1 ∩ B2 ∩ · · · ∩ Bn|.

If we substitute Ai ∩ An+1 back in for Bi and reorganize, we’re left
with

|A1 ∪ A2 ∪ · · · ∪ An ∪ An+1| = |A1| + |A2| + · · · |An| + |An+1|
−(|A1 ∩ A2| + |A1 ∩ A3| + · · ·+ |An ∩ An+1|)
+ |A1 ∩ A2 ∩ A3| + · · ·+ |An−1 ∩ An ∩ An+1|
...
+(−1)n|A1 ∩ A2 ∩ · · · ∩ An ∩ An+1|.

Since the PIEn+1 holds true when we assume PIEn, we’ve proven the
generalized Principle of Inclusion and Exclusion for n sets by induction.

The following example from Lovász shows how the PIE can be used
to solve more complicated problems [2].

3.3.1. Example. Find a formula for φ(n), the number of integers be-
tween 1 and n coprime to n.

Any number n can be written as the product of its prime factors.
Let

n = pα1

1 pα2

2 · · ·pαr

r .

First, we look at a simple case, where n = pα1

1 pα2

2 . Our universal set S

consists of the numbers between 1 and n, so |S| = n. We can construct
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two subsets, A1 consisting of all the numbers between 1 and n that
have p1 as a factor and A2 consisting of all the numbers between 1 and
n that have p2 as a factor. To find the number of integers between 1
and n coprime to n, we can subtract the number of integers that are
not coprime to n (the ones that share a common divisor, be it p1, p2,
or both, p1p2). By the PIE2,

|S − A1 ∩ A2| = |S| − |A1| − |A2| + |A1 ∩ A2|.

The size of the set Ai is n
pi

.

Further, A1∩A2 will consist of all the numbers between 1 and n that
are divisible by both p1 and p2, and |A1 ∩ A2| = n

p1p2

.

Thus,

φ(n) = n −
n

p1

−
n

p2

+
n

p1p2

.

Factoring gives:

φ(n) = n
(

1 − 1

p1

− 1

p2

+ 1

p1p2

)

= n
(

1 − 1

p1

)(

1 − 1

p2

)

.

Similarly, when n has three prime factors, p1, p2, and p3, let S be
the set of numbers between 1 and n, let A1 be the numbers with p1 as
a factor, let A2 be the numbers with p2 as a factor, and let A3 be the
numbers with p2 as a factor. Then, the intersection of the two sets A2

and A3 is the set of numbers with p2p3 as a factor, and the intersection
of all three sets is the set of numbers with p1p2p3 as a factor. So by
the PIE3,

φ(n) = n
(

1 − 1

p1

− 1

p2

− 1

p3

+ 1

p1p2

+ 1

p1p3

+ 1

p2p3

− 1

p1p2p3

)

= n
(

1 − 1

p1

)(

1 − 1

p2

)(

1 − 1

p3

)

.

This can be generalized for n = pα1

1 pα2

2 · · · pαr
r . Let S = {1, 2, ..., r},

and let Ai = {k ≤ r| pi divides k}. Thus,

φ(n) = |S| − |A1 ∪ A2 ∪ · · · ∪ An|

= n
(

1 − 1

p1

)(

1 − 1

p2

)

· · ·
(

1 − 1

pr

)

,

or, using product notation:

φ(n) = n

r
∏

i=0

(

1 −
1

pi

)

.
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4. Principle of Inclusion and Exclusion the Second

The former definition of the PIE, while straightforward, has the
rather serious drawback that it rarely fits on one LATEXpage. An alter-
nate definition given in Lovász’ book, is much shorter.

As before, given some finite set S, let A1, A2, ..., An be subsets of S.
For any I that is a subset of {1, 2, ..., n}, let

AI =
⋂

i∈I

Ai

A∅ = S.

So, the set AI consists of the intersection of all the subsets Ai, where i

is an element of I. Some examples of sets under the new definition are
as follows:

A{1} = A1

A{1,2} = A1 ∩ A2

A{5,12,22} = A5 ∩ A12 ∩ A22.

To define the PIE for these intersections, first assume S has three
subsets: A1, A2, and A3. Recall the PIE3 states that:

|A1∪A2∪A3| = |A1|+|A2|+|A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+|A1∩A2∩A3|.

Each of the sets on the right side of the equation can be described by
AI , where I ⊆ {1, 2, 3}.

A1 = A{1} A1 ∩ A2 = A{1,2} A1 ∩ A2 ∩ A3 = A{1,2,3}

A2 = A{2} A1 ∩ A3 = A{1,2}

A3 = A{3} A2 ∩ A3 = A{2,3}

By the PIE3, we know

|A1 ∪ A2 ∪ A3| = |A{1}| + |A{2}| + |A{3}|
−|A{1,2}| − |A{1,3}| − |A{2,3}|
+|A{1,2,3}|.

While this doesn’t look any simpler than the previous definition, we
can group each of the new subsets according to the size of I. The size
of the union of A1, A2 and A3 is:

(1) |A1 ∪ A2 ∪ A3| =
∑

|I|=1

|AI | −
∑

|I|=2

|AI| +
∑

|I|=3

|AI |.

Often, the PIE is applied to a set to calculate how much of the set
S lies outside of its subsets. So, we’d like to be able to apply this
definition to the problem S − (A1 ∪ A2 ∪ A3). Since we’ve defined
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Figure 7. The shaded region is the set S − (A1 ∪ A2 ∪
A3). The size of this set can be written either as

|S − (A1 ∪ A2 ∪ A3)| or as |S| − |A1 ∪ A2 ∪ A3|

.

A∅ = S, this won’t be exceptionally difficult. By inspecting Figure 4,
we can see that .

(2) |S − (A1 ∪ A2 ∪ A3)| = |S| − |A1 ∪ A2 ∪ A3|.

Writing Equation 2 in summation form is even simpler than in the
above Equation 1, since the inclusion of the set A∅ guarantees that
we’re using all possible subsets of {1, 2, 3}. Thus,

(3) |S − A1 ∪ A2 ∪ A3| =
∑

I⊆{1,2,3}

(−1)|I||AI|.

Equation 3 can be generalized quite easily to a set S with n subsets
A1, A2, ...An,

(4) |S − A1 ∪ A2 ∪ · · · ∪ An| =
∑

I⊆{1,2,...,n}

(−1)|I||AI |.

4.1. Example. We can use the new PIE to calculate the number of
onto functions with domain of size k and range or size n. Let the
domain be the set {1, 2, ..., k} and the codomain be the set {1, 2, ..., n}.

First, let the set S refer to the total number of functions with the
domain and codomain assigned above. Since there are k elements in
the domain and n members of the codomain, there are nk possible
functions between them.
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In order to use the PIE, we need to assign the elements of sub-
sets. Let Ai be the set of functions with domain {1, 2, ..., k} and
codomain the set {1, 2, ..., n} without the element i, in other words:
{1, 2, .., i−1, i+1, ..., n}. So, A5 would be the functions with codomain
{1, 2, 3, 4, 6, ...n}. Then the set A2 ∩ A4 is the set of functions with
codomain {1, 3, 5, 6, ..., n}.

To find the number of onto functions, we’ll subtract the number of
functions that miss at least one element of the set {1, 2, ..., n}, so we
want to find a formula for

|S − (A1 ∪ A2 ∪ · · · ∪ An)|.

Recall Equation 4 gives the following formula for the PIE:

|S − (A1 ∪ A2 ∪ · · · ∪ An)| =
∑

I⊆{1,2,...,n}

(−1)|I||AI |.

Each of the sets A1, A2,..., An will have the same size, since there
are equal numbers of sets with the same size domain and codomain,
regardless of which element of {1, 2, ..., n} is missing. Thus, every set
AI with |I| = 1 has the same size. There will be n sets with |I| = 1,
and each set will have size (n − 1)k, since there are n possible choices
to remove an element of {1, 2, ..., n}, and there are (n − 1)k functions
with domain of size k and codomain of size n − 1.

Similarly, when we calculate the size of the sets AI when |I| = 2,
there will be

(

n

2

)

sets, since there are
(

n

2

)

ways to choose 2 elements
from the set of size n. These functions all have domain of size k and
codomain of size n − 2. Each set will have size (n − 2)k.

Thus, for AI when |I| = i, we would have
(

n

i

)

sets of size (n − i)k.
Thus, the number m of onto functions will be given by

m =
n

∑

i=0

(−1)i

(

n

i

)

(n − i)k.

Because
(

n

i

)

=
(

n

n−i

)

, we can revise the sum to show

(5) m =
n

∑

i=0

(−1)i

(

n

n − i

)

(n − i)k =
n

∑

i=0

(−1)n+i

(

n

i

)

ik.

If k < n, then obviously m = 0, since no onto functions can exist. If
n = k, then any onto funciton is one-to-one and m = n!. Thus,

(6)

n
∑

i=0

(−1)i

(

n

i

)

ik =

{

0 0 ≤ k < n

(−1)nn! k = n
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Equation 6 is an identity given by Lovász. For the remaining case,
when k > n, we have that the codomain of the function is greater than
its domain. Though it’s not easy to use, Equation 6 is the simplest
way to count these onto functions.

5. Möbius Functions

Before we go on, we define what it means for a set to be partially
ordered by some relation. Given a set X, any subset of the product
R ⊆ X ×X is called a relation. We sometimes write aRb to represent
(a, b) ∈ R. A relation is a partial ordering if it has all of the following
three properties [1].

(1) Reflexivity: Given x ∈ X, we have xRx or (x, x) ∈ R. That is,
every element is related to itself.

(2) Antisymmetry: if xRy and yRx, then x = y. If any two ele-
ments are each related to each other, then they must be equal.

(3) Transitivity: if xRy and yRz, then xRz.

Given any relation, we can determine whether it is a partial ordering
by checking it against the above properties. Let’s look at an example on
the non-negative integers. Suppose xRy whenever x|y, so R contains
all the pairs (x, y) where x|y, or whenever there exists some integer k

such that xk = y.

(1) Reflexivity: Since any number divides itself, x|x, so (x, x) ∈ R.
(2) Antisymmetry: Suppose x|y and y|x. Thus there exist integers

k and l such that kx = y and ly = x. We can combine these
equatinos to find that klx = x. Either x = 0, which is a trivial
solution, or kl = 1. Since k and l are both non-negative integers,
k = l = 1, so x = y.

(3) Transitivity: Suppose x|y and y|z. Then there exist k and l

such that kx = y and ly = z. Thus, klx = z. Since k and l are
both integers, kl will also be an integer, so x|z.

The Möbius Function of V , a finite set {x1, ..., xn} partially or-
dered by the relation ≤, is the function µ defined on V × V such that

µ(x, y) = 0 if x 6≤ y

µ(x, x) = 1
∑

x≤y≤z µ(x, y) = 0 (x < z)

[2].

An easy way of examining relations is to think of them as lines
connecting dots. An example is shown in Figure 8, which illustrates
the Möbius Function of V = {a, b, c, d}. In this case, a dot x is related
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Figure 8. A partial ordering of the set {a, b, c, d}

to another dot y, or x ≤ y, if they are connected and x is not above y.
Therefore, every dot is related to itself and

a ≤ b

a ≤ d

b ≤ d

c ≤ d.

To determine the Möbius Function for Figure 8, we need to find µ(x, y)
for every possible combination of x and y. From the definition of the
Möbius Function, we know that for all x ∈ V µ(x, x) = 1, so

µ(a, a) = µ(b, b) = µ(c, c) = µ(d, d) = 1.

Also, µ(x, y) will be zero whenever x is not related to y. Since d is the
maximum point, it isn’t related to any other points, so

µ(d, a) = µ(d, b) = µ(d, c) = 0.

Similarly, since b and c are both above a, we have µ(b, a) = µ(c, a) = 0.
There is no line connecting b and c or a and c, so µ(a, c) = µ(b, c) =
µ(c, b) = 0.

We’re now left with unknowns for µ(a, b), µ(a, d), µ(b, d), and µ(c, d).
We first look at µ(a, b).

Recall from the definition of Möbius Functions that given any x and
z ∈ V ,

∑

x≤y≤z

µ(x, y) = 0.

Since a ≤ a and a ≤ b and there is no other x such that a ≤ x ≤ b,
we have µ(a, a) + µ(a, b) = 0. We know already that µ(a, a) = 1, so
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Figure 9. A partial ordering of the set {a, b, c, d, e}

µ(a, b) = −1. We can calculate µ(b, d) and µ(c, d) the same way. We
know µ(b, b) + µ(b, d) = 0 and µ(b, b) = 1, so µ(b, d) = −1. Also,
µ(c, c) + µ(c, d) = 0 and µ(c, c) = 1, so µ(c, d) = −1. Calculation of
µ(a, d) is slightly more complicated. There are three elements x that
have a ≤ x ≤ d:

a ≤ a ≤ d

a ≤ b ≤ d

a ≤ d ≤ d

Since

0 =
∑

a≤x≤d

µ(a, x),

we have

0 = µ(a, a) + µ(a, b) + µ(a, b)
= 1 + (−1) + µ(a, d)

Therefore, µ(a, d) = 0.
This method of piecewise calculating µ for each combination of ele-

ments in a set can be used for more complicated relations as well. In
Figure 9,

µ(a, b) = µ(a, c) = µ(a, d) = µ(b, e) = µ(c, e) = µ(d, e) = −1.

In this figure, µ(a, e) is the most interesting to calculate, since there
will be five terms included in the sum.
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Because a is related to every other point, and every point is also
related to e,

a ≤ a ≤ e

a ≤ b ≤ e

a ≤ c ≤ e

a ≤ d ≤ e

a ≤ e ≤ e,

Thus,
∑

a≤x≤e

µ(a, x) = µ(a, a) + µ(a, b) + µ(a, c) + µ(a, d) + µ(a, e) = 0

Recall that µ(a, a) = 1. Note that b, c, and d are each only one
step above a; that is, there are no other points x for which a ≤ x ≤ b.
Therefore, µ(a, b) = µ(a, c) = µ(a, d) = −1. So,

µ(a, e) = 0 − 1 − 3(−1) = 2.

Even for the most complicated relations, determining µ(x, y) for any
x and y is a simple process. The relation between x and y can be
broken down into small steps, each of which we can calculate.

Let’s examine the Möbius Functions of some specific relations on
various sets V .

5.1. Subsets. First let’s consider the subsets of some set S, which are
ordered by inclusion. Since they’re ordered by inclusion, we say A ≤ B

if and only if A ⊆ B. We’ll begin with a short example. Given the
set S = {1, 2, 3}, we can construct a diagram as shown in Figure 10.
Whenever two sets are connected, that means the lower set is a subset
of the higher one. Note that there is a top set, the maximum, located
at the top, back, right corner of the cube; each subset is related to the
set S. Also, the empty set, located at the front, bottom, left corner, is
a subset of every other set.

The Möbius Function in this case will be

µ(A, A) = 1
µ(A, B) = 0 if A 6⊆ B

∑

A⊆C⊆B µ(A, C) = 0 if A ⊆ B

The Möbius Functions of each subset with itself will be equal to 1,
and then when |A|− |B| = 1, we have µ(A, B) = −1. Now we examine
a pair of subsets whose sizes differ by 2. We’ll find µ(A, B) where
A = {1} and B = {1, 2, 3}. According to the third part of the formula
for constructing a Möbius Function,
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Figure 10. The partial ordering with respect to set in-
clusion of the set S = {1, 2, 3}

∑

{1}⊆X⊆{1,2,3}

µ({1}, X) = 0.

Thus,

µ({1}, {1}) + µ({1}, {1, 2}) + µ({1}, {1, 3}) + µ({1}, {1, 2, 3}) = 0.

We know µ({1}, {1}) = 1, and µ({1}, {1, 2}) = µ({1}, {1, 3}) = −1.
Thus, µ({1}, {1, 2, 3}) = 1. Therefore, the Möbius Function of any two
subsets with a difference in size of 2 is 1. It now appears that we have
a formula for the Möbius Function of subsets ordered by inclusion:

µ(A, A) = 1
µ(A, B) = 0 if A 6⊆ B

µ(A, B) = (−1)|B|−|A| if A ⊆ B

We can prove this result by induction. Let n be the difference in
size between sets A and B. So, n = |B| − |A|. We want to show that
µ(A, B) = (−1)n. For the base case, let n = 1. Since set B has only one
element more than B, there are no other sets C such that A ⊆ C ⊆ B.
Therefore,

µ(A, A) + µ(A, B) = 0.

Since µ(A, A) = 1, we find that µ(A, B) = −1, which is the same as
(−1)1 = (−1)n.

Assume that our formula holds true for all k < n. So, assume that
when |B| − |A| = k, we have µ(A, B) = (−1)k. We want to show that
when |B| − |A| = n, we have µ(A, B) = (−1)n. Since A ⊂ B, we know
B consists of all the elements of A as well as n extra elements.

Recall
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(7)
∑

A⊆C⊆B

µ(A, C) = 0

There exist sets C such that for all x < n, |C| = |A| + x. So, for
x = 1, C has one element more than A, and that one element is one
of the extra n elements in B. There are therefore

(

n

1

)

, or n, sets C.
Similarly, for |C| = |A| + 2, C consists of A and two other elements
that are two of the n extra elements in B, so there are

(

n

2

)

sets C.
So, for Ci defined as any set with |Ci| = |A| + i, we could rewrite

Equation 7:

(8)
0 =

∑

A⊆C⊆B µ(A, C)

= µ(A, A) +
(

n

1

)

µ(A, C1) +
(

n

2

)

µ(A, C2) + · · · +
(

n

n

)

µ(A, B)

Because of our initial assumption, the µ(A, C) is known for all C

smaller than B, and µ(A, Ci) = (−1)i.
Thus,

(9)

0 =
∑

A⊆C⊆B

µ(A, C) =

(

n

0

)

−

(

n

1

)

+

(

n

2

)

+· · ·+(−1)n−1

(

n

n − 1

)

+

(

n

n

)

·µ(A, B)

The numbers
(

n

0

) (

n

1

)

· · ·
(

n

n

)

form the nth row of Pascal’s Triangle,
which also gives the coefficients for binomial expansion, as follows:

(10) (a + b)n = an + nan−1b +

(

n

2

)

an−1b2 + · · ·

(

n

n

)

bn

If we choose a = 1 and b = 1, then Equations 10 and 11 are the
same, and we have

0 = (1 − 1)n =

(

n

0

)

−

(

n

1

)

+

(

n

2

)

− · · · + (−1)n

(

n

n

)

.

Since Equations 9 and 10 both add to 0, and every term up until the
last is also equal, it follows that

(

n

n

)

· µ(A, B) =

(

n

n

)

(−1)n.

Therefore, µ(A, B) = (−1)n, and so for all A ⊆ B, where
n = |B| − |A|, we have µ(A, B) = (−1)n.
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Figure 11. An Arborescence

Figure 12. Another Arborescence

5.2. Arborescences. An arborescence is a partial ordering with a
least element where there is a unique path between any two elements.

The set in Figure 8 is not an arborescence because it has two minimal
elements, a and c. Figure 9 also doesn’t demonstrate an arborescence.
Even though a is a least element, there are three paths from a to e.
Figures 11 and 12 both represent arborescences. In each case, a is the
least element and there is only one possible path to any of the other
points.

To define the Möbius Function for arborescences, let’s start with a,
the least element shown in Figure 11. We know µ(a, a) = 1. The next
point, b, will have µ(a, b) = −1, so that µ(a, a) + µ(a, b) = 0. Since
there’s only one possible path between any two points,

µ(a, c) = µ(a, d) = 0,

since it must be true both that

µ(a, a) + µ(a, b) + µ(a, c) = 0
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and
µ(a, a) + µ(a, b) + µ(a, c) + µ(a, d) = 0.

If we start at b, we find that µ(b, b) = 1, then µ(b, c) = −1, and it
follows that µ(c, d) = 0.

Similarly, in Figure 12, µ(a, b) = µ(a, c) = −1, since both b and c

are only one step away from a. Then µ(a, d) = µ(a, e) = 0, since in
both cases there is only one possible way to get from a to d or from a

to e, and so
µ(a, a) + µ(a, b) + µ(a, d) = 0

and
µ(a, a) + µ(a, c) + µ(a, e) = 0.

Therefore, for an arborescence V that contains some elements x, y,
and z, if we’re finding µ(x, z) and there is no y other than x and z such
that x ≤ y ≤ z, then µ(x, z) = −1. Since every path is unique, every z

after that, where there is at least one y such that x ≤ y ≤ z will have
µ(x, z) = 0.

5.3. Integers. Now let’s examine the Möbius Function for the set of
integers 1, ..., n, and we say x ≤ y whenever x|y.

Since there are many combinations of integers a and b such that a|b,
it would be nice if we could find some way to simplify the problem.
We’re going to show that µ(a, b) = µ(1, b

a
) by induction. Given any a,

we know µ(1, 1) = µ(a, a). Now suppose that µ(1, c
a
) = µ(a, c) for all

c < b such that a|c and c|b.
Note that

µ(a, b) = −
∑

a≤c<b

µ(a, c).

Thus, by the induction hypothesis,

µ(a, b) = −
∑

a≤c<b

µ(1,
c

a
).

Instead of summing over all c such that a|c and c|b, we can sum over
all c

a
such that 1| c

a
and c

a
| b
a
. So we now have

µ(a, b) = −
∑

1≤ c
a
< b

a

µ(1, c
a
)

= µ(1, b
a
).

Let b
a

= n. Since n is some integer, it can be written as the product
of its prime factors; that is, n = pα1

1 pα2

2 · · · pαr
r .

To find the formula for µ(1, n), let’s examine separately the following
cases

(1) n is a product of distinct primes
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Figure 13. The partial ordering with respect to divi-
sion of n = 30

(2) n has at least one repeated factor

5.3.1. Case(1) n = p1 · p2 · · · pr. Figure 13 shows a simple example of
the partial ordering of n = 2 · 3 · 5.

Notice that the structure of the partial ordering in Figure 13 is iden-
tical to that of the subsets examined in the previous section, shown
in Figure 10. For integers, 1 takes the place of the emptyset, and n

takes the place of A, and all the multiples of the prime factors of n

correspond to the remaining subsets of A. This result extends to any
r since every integer x such that x|p1p2...pr corresponds to a subset of
{1, 2, ..., r}. Thus, the same result follows for µ(1, n) as for µ(A, B).
When n has r distinct prime factors, µ(1, n) = (−1)r.

5.3.2. Case(2): n = pα1

1 pα2

2 · · · pαr
r , where some αi 6= 1. We would like

to use induction to show that µ(1, n) = 0.
Assume for all numbers m smaller than n, where m = pα1

1 · · · p
αq
q

µ(1, m) =

{

(−1)q if every α = 1
0 if there exists some α such that α 6= 1

Let n = pα1

1 ·pα2

2 · · · pαr
r . We can write µ(1, n) as a sum of the Möbius

Functions of all of its factors:

µ(1, n) = −
∑

1≤a<n

µ(1, a)

Of the a’s, some will be products of distinct prime factors of n, and
the rest will have repeated prime factors. All of the a’s with repeated
prime factors will have µ(1, a) = 0. Those with distinct prime factors
are all divisors of the one ar which is the product of all the prime factors
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of n, where ar = p1 ·p2 · · · pr. Since all the other a’s with distinct prime
factors divide ar, we know that

∑

1≤a≤ar

µ(1, a) = 0.

Thus, the Möbius functions of all the divisors of n with distinct prime
factors will add to zero, and the Möbius functions of all the divisors of
n with repeated prime factors are 0. Therefore, since

µ(1, n) = −
∑

1≤a≤n

µ(1, a),

µ(1, n) = 0.

So, now we have a formula for the Möbius functions of any two
integers:

µ(x, y) = 0 if x does not divide y

µ(x, x) = 1
µ(x, y) = µ(1, y

x
)

µ(1, y

x
) = (−1)r if y

x
= p1 · · · pr

µ(1, y

x
) = 0 if y

x
= pα1

1 · · · pαr
r with some α > 1.

6. Upside-Down Möbius Function

Before we can examine the Möbius Inversion Formula, there’s one
very important Möbius Function to consider. The Upside-Down Möbius
Function acts on V ordered by ≤∗, where x ≤∗ y whenever y ≤ x. We
define the Upside-Down Möbius Function as follows:

µ∗(x, y) = 0 if x 6≤∗ y

µ∗(x, x) = 1
∑

x≤∗y≤∗z µ∗(x, y) = 0 (x <∗ z)

This form only illustrates that the Upside-Down Möbius Function is
indeed a Möbius Function. To relate it to the previous sections, we’d
like to show that µ∗(x, y) = µ(y, x).

6.0.3. Example. To begin, let’s look at an example. We’ll calculate the
Möbius Function and the Upside-Down Möbius Function acting on the
set shown in Figure 14. As was shown earlier, µ(a, d) can be calculated
by adding up the Möbius Functions of all the elements below d.

Recall that
∑

a≤x≤d

µ(a, x) = 0.
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Figure 14. A relation on the set {a, b, c, d}

So, µ(a, a) + µ(a, b) + µ(a, c) + µ(a, d) = 0. To obtain a formula
strictly for µ(a, d), we subtract everything except µ(a, d) to get

µ(a, d) = −(µ(a, a) + µ(a, b) + µ(a, c))
= −

∑

a≤x<d µ(a, x).

Because b and c are each only one step away from a, we know
µ(a, b) = µ(a, c) = −1. Thus, simple addition gives µ(a, d) = 1.

We can use exactly the same process to calculate the Upside-Down
Möbius Function for the same set.

Our definition for the Upside-Down Möbius Function stated
∑

d≤∗x≤∗a

µ∗(d, x) = 0.

Since d ≤∗ x is equivalent to saying x ≤ d, we can rewrite the bounds
in the sum:

∑

a≤x≤d

µ∗(d, x) = 0.

This is equivalent to saying

µ∗(d, a) + µ∗(d, b) + µ∗(d, c) + µ∗(d, d) = 0.

Since we’re mostly interested in the Upside-Down Möbius Function
between d and a, we can rewrite this as a formula for µ∗(d, a):

µ∗(d, a) = −(µ∗(d, b) + µ∗(d, c) + µ∗(d, d)),

or equivalently



26 ERIN STUHLSATZ

Figure 15. A slightly more compolicated relation on
the set {x, z1, z2, w, y}.

µ∗(d, a) =
∑

a<x≤d

µ∗(d, x).

The Upside-Down Möbius Function is defined in the same was as the
regular Möbius Function, so we can calculate µ∗(d, c) and µ∗(d, b) in the
same way as we would if they were normal. The only difference is here
we’re adding down instead of up the relation. Since b and c are only
one step away from d, then µ∗(d, b) = µ∗(d, c) = −1, so µ∗(d, a) = 1.
In this case, at least, it is true that µ(a, d) = µ∗(d, a).

Recall that

µ(a, d) = −(µ(a, a) + µ(a, b) + µ(a, c)).

Both µ(a, b) and µ(a, c) can also be expressed as sums of Möbius
Functions of elements that are ’below’ them. In this case, only a is
below either of these, so µ(a, b) = µ(a, c) = −µ(a, a). Thus,

µ(a, d) = −(µ(a, a) − (µ(a, a)) − (µ(a, a))
= −(1 − (1) − (1))
= (−1)1 + (−1)2 + (−1)2

= 1.

6.0.4. Another Example. Let’s look at a more complicated relation, as
shown in Figure 15.

In Figure 15, the points are now labeled according to what “level”
they are. The lowest level consists of x, and the top level is only y.
Both z1 and z2 are exactly one step up from x, and then w is a step
above z1. We’re going to examine µ(x, y).
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We found before that the Möbius Function of any two objects can
be expressed as a negative sum of the Möbius Functions of the objects
between them. Thus, we can write µ(x, y) as

µ(x, y) = −(µ(x, x) + µ(x, z1) + µ(x, z2) + µ(x, w)).

Because z1 and z2 are only one step away from x, each can be ex-
pressed as −(µ(x, x)). Because there is an intermediate step in between
x and w, µ(x, w) will be the sum −(µ(x, x) + µ(x, z2). Then, µ(x, z2)
is further reduced to −µ(x, x). In this way, µ(x, y) is simplified to a
sum of powers of (−1) as shown below.

Thus,

µ(x, y) = −(µ(x, x) − (µ(x, x)) − (µ(x, x)) − (µ(x, x) + µ(x, z2)))
= −(µ(x, x) − (µ(x, x)) − (µ(x, x)) − (µ(x, x) + (−µ(x, x))))
= −(1 − (1) − (1) − (1 − (1)))
= (−1)1 + (−1)2 + (−1)2 + (−1)2 + (−1)3

= (−1)1 + 3(−1)2 + (−1)3

= 1.

Notice these numbers describe the possible paths between x and y.
Since x ≤ y, there is a path of length 1 that connects x and y. There
are three possible ways to go from x to y with one intermediate step:

x ≤ z1 ≤ y

x ≤ z2 ≤ y

x ≤ w ≤ y

Thus, there are three occurences of (−1)2. There is only one possible
way to take three steps going from x to y:

x ≤ z2 ≤ w ≤ y,

and we have only one (−1)3.
So, we can also express µ(x, y) as follows:

µ(x, y) =
∑

x≤q1,q2,...,qi≤y

(−1)i+1,

where qi describes the intermediate steps in between x and y; (−1)i+1

is summed over all possible paths between x and y, and i is the length
of the path.

Since there will be the same number and size of paths going from y

to x as there were from x to y, we can say that

µ∗(y, x) =
∑

x≤q1,q2,...,qi≤y

(−1)i+1.
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So, µ(x, y) = µ∗(y, x).
These same concepts can be used for any relation and arbitrary x

and y so that, in general,

µ(x, y) = µ∗(y, x).

7. Möbius Inversion Formula

Now, we finally have enough background to introduce the Möbius
Inversion Formula: Given any function f(x), if g(x) is defined such
that

g(x) =
∑

z≤x

f(z),

then

(11) f(x) =
∑

z≤x

g(z)µ(z, x).

This result can be proven using induction.
First, note that

(12) f(x) =
∑

z≤x

f(z) −
∑

z<x

f(z).

Let g(x) =
∑

z≤x f(z). The first term in Equation 12 is therefore
simply g(x).

For the first case, there will be no z such that z < x, so f(x) = g(x),
and since µ(x, x) = 1, f(x) = g(x)µ(x, x).

We can assume that for any element w less than the current x,
f(w) =

∑

z≤w g(z)µ(z, w). Thus,

f(x) = g(x) −
∑

z<x

∑

w≤z

g(w)µ(w, z)

Any given g(w) will appear with each z where w ≤ z < x, which
gives

f(x) = g(x) − g(w)(−µ(w, z1) − µ(w, z2) − ... − µ(w, w).

which is the same as

f(x) = g(x) − g(w)(−
∑

z<x

µ(w, z)

Recall that

µ(x, y) = −
∑

z<y

µ(x, z).
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The term in the sum associated with each w will be g(w)µ(w, x).
The set of w’s is the same as the set of z’s, since the w’s are defined
as the elements such that w ≤ z < x. Any z has at least one w, itself,
and every w is a z, since w < x.

So, Equation 12 can be rewritten as:

(13) f(x) = g(x) +
∑

z<x

g(z)µ(z, x).

Since µ(x, x) = 1, we can multiply g(x) by µ(x, x), which allows us
to simplify Equation 13 to

(14) f(x) =
∑

z≤x

g(z)µ(z, x).

Note that Equations 14 and 11 are the same.
Therefore, when

g(x) =
∑

z≤x

f(z),

f(x) =
∑

z≤x

g(z)µ(z, x),

and we’ve proved the Möbius Inversion Formula.

8. Möbius PIE

Recall the Principle of Inclusion and Exclusion for a set S with sub-
sets A1, A2, ..., An:
(15)
|S − A1 ∪ · · · ∪ An| = |S| −(|A1| + |A2| + · · ·+ |An|)

+(|A1 ∩ A2| + |A1 ∩ A3| + · · · + |An−1 + An|
−(|A1 ∩ A2 ∩ A3| + · · ·+ |An−2 ∩ An−1 ∩ An|,

or, alternatively, if we define I as some subset of {1, 2, ..., n} and let

AI =
⋂

i∈I

Ai A∅ = S,

then

(16) |S − (A1 ∪ · · · ∪ An)| =
∑

I⊆{1,2,...,n}

(−1)|I||AI |.

Earlier we demonstrated the Principle of Inclusion-Exclusion using
Venn diagrams for small numbers of subsets, and we proved it using
induction. Now that we’re familiar with the Möbius Inversion Formula,
we can use it to prove the PIE, thereby coming full circle.



30 ERIN STUHLSATZ

Figure 16. The shaded region has size f(I)

We’ll be using the version of the PIE shown in Equation 16. To
begin, consider subsets of {1, 2, ..., n}. Given two subsets, called I and
J , we’ll say I ≤ J whenever J ⊆ I. Recall the Möbius Function for
subsets ordered by inclusion, which stated that if we have two sets A

and B, and A ⊆ B, then A ≤ B and µ(A, B) = (−1)|B|−|A|. Notice
that in our current example, we have that if J ⊆ I, then I ≤ J .
This is exactly backwards of the formula for the Möbius Function of
subsets, which defines µ(J, I), since J ⊆ I. However, the Upside-Down
Möbius Function guarantees that µ∗(I, J) = µ(J, I). Thus, we can say
µ(I, J) = (−1)|I|−|J |.

Now recall the Möbius Inversion formula, which stated that given
any f(x), if we define g(x) such that

g(x) =
∑

z≤x

f(z)

then we will have

f(x) =
∑

z≤x

g(z)µ(z, x).

Let’s define our f(x) so that

f(I) =

∣

∣

∣

∣

⋂

i∈I

Ai −
⋃

I⊂J

(

⋂

j∈J

Aj

)

∣

∣

∣

∣

or, equivalently,

f(I) =

∣

∣

∣

∣

AI −
⋃

I⊂J

AJ

∣

∣

∣

∣

.

So, for some I ⊆ {1, 2, ..., n}, f(I) is the size of the set consisting of
elements that are in AI but are not in any other subsets of S. Figure
8 shows the region whose size is f(I).
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Let’s first look at the set S, or A∅.

f(∅) =

∣

∣

∣

∣

A∅ −
⋃

I⊆{1,...,n}

AI

∣

∣

∣

∣

=

∣

∣

∣

∣

A∅ −
⋃

i∈{1,2,...,n}

Ai

∣

∣

∣

∣

So, if we look at the big set S, or A∅,

f(∅) =

∣

∣

∣

∣

A∅ −
⋃

I⊆{1,...,n}

AI

∣

∣

∣

∣

=

∣

∣

∣

∣

A∅ −
⋃

i∈{1,2,...,n}

Ai

∣

∣

∣

∣

.

This is the expression for
∣

∣S − (A1 ∪ · · ·∪An)
∣

∣, so in order to prove the
Principle of Inclusion-Exclusion, we need

f(∅) =
∑

I⊆{1,2,...,n}

|AI |(−1)|I|.

To construct g(I) from the definition of the Möbius Inversion For-
mula, let

g(I) =
∑

J≤I

f(J).

Substituting the formula for f(J) gives

g(I) =
∑

J≤I

∣

∣

∣

∣

AJ −
⋃

K⊂J

AK

∣

∣

∣

∣

.

If we separate out the first term I,

(17) g(I) =

∣

∣

∣

∣

AI −
⋃

I⊂J

AJ

∣

∣

∣

∣

+
∑

I⊂J

∣

∣

∣

∣

(

AJ −
⋃

K⊂J

AK

)

∣

∣

∣

∣

Not that the summation term in Equation 17 sums the sizes of the
sets corresponding to each I that consist of elements that are only in
I, and not in any subsets of I. Since we sum over all I ⊂ J , we can
rewrite that sum as

∑

I⊂J

∣

∣

∣

∣

(

AJ −
⋃

K⊂J

AK

)

∣

∣

∣

∣

=

∣

∣

∣

∣

⋃

I⊂J

AJ

Thus, g(I) = |AI|.
Remember from the original Möbius Inversion Formula,

f(I) =
∑

J≤I

g(J)µ(J, I).
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We know µ(J, I) = (−1)|J |−|I|, so

f(I) =
∑

I⊆J

|AJ | · (−1)|J |−|I|.

Let’s examine f(∅) again. This should give the size of the set con-
taining all the elements of S that aren’t any of the subsets A1, ..., An,
or |S − A1 ∪ A2 ∪ · · · ∪ An|. We find that

f(∅) =
∑

∅⊆J

|AJ | · (−1)|J |

or

f(∅) =
∑

I⊆{1,2,...,n}

|AI | · (−1)|I|,

which looks pretty familiar, since it’s the Principle of Inclusion-
Exclusion!
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