
COLORED GRAPHS AND THEIR PROPERTIES

BEN STEVENS

1. Introduction

This paper is concerned with the upper bound on the chromatic
number for graphs of maximum vertex degree ∆ under three different
sets of coloring rules. For a regularly colored graph, we present a proof
of Brooks’ Theorem, stating that the chromatic number is at most ∆ in
all but two cases. For a 2, 1-colored graph, we demonstrate that the 2, 1-
chromatic number is at most ∆2 +∆. For a fractionally colored graph,
we show that the fractional chromatic number is at most the regular
chromatic number and that there always exists an optimal fractional
coloring.

2. Preliminary Definitions

This paper deals with a subdiscipline of graph theory known as graph
coloring. Before we address graph coloring, however, some definitions
of basic concepts in graph theory will be necessary.

While the word “graph” is common in mathematics courses as far
back as introductory algebra, usually as a term for a plot of a function
or a set of data, in graph theory the term takes on a different meaning.
In the context of graph theory, a graph is a collection of vertices and
edges, each edge connecting two vertices.

If we take a graph and remove some of its vertices and edges, making
sure that each edge is still connected to two vertices (that is, no edge
may be “left hanging” with one or both ends not attached to a vertex),
we obtain what is called a subgraph.

We formalize these two definitions as follows:

Definition 2.1. A graph is a set of vertices V coupled with a set
of edges E, each edge being incident on a pair of vertices in V . A
subgraph of a graph is a subset of V , called V ′, coupled with a subset
of E, called E ′, such that each edge in E ′ is incident on two vertices
in V ′.

See Figure 1 for some examples of graphs and Figure 2 for an example
of a subgraph.

1



2 BEN STEVENS

It is important to note in Figure 1 that there are several points on
the first two graphs in the figure where the edges cross but there is no
bold dot present. These points should not be confused with vertices.
There are some graphs where this sort of edge crossing is unavoidable
(such as the center graph in Figure 1). Keep in mind, however, that
not every point where two edges cross is a vertex: only the points with
bold dots represent vertices.

Figure 1. Some examples of graphs

Figure 2. G′ is a subgraph of G

Definition 2.2. We call two vertices adjacent if there is a single edge
that is incident on both vertices.

Definition 2.3. The degree of a vertex v is the number of edges that
are incident on v.

An example of vertices of varying degrees is shown in Figure 3. In
the figure, vertex A has degree 0, vertex B has degree 1, vertices C



COLORED GRAPHS AND THEIR PROPERTIES 3

and D each have degree 2, and vertex E has degree 3. The degree
of the vertex in a graph with the most edges incident on it, called the
maximum degree, will be very important in determining that graph’s
coloring properties. The maximum degree of the graph in Figure 3 is
3.

Figure 3. Vertices of varying degrees.

The idea of two vertices in a graph being connected will also prove
important in the study of graph coloring. In informal terms, two ver-
tices are connected if you can get from one vertex to the other following
the graph’s edges. We formalize this idea of connected in the following
two definitions:

Definition 2.4. A path is a sequence of vertices {v1, v2, · · · , vk−1, vk}
in a graph such that for each vertex vi, with i = 1, 2, · · · , k − 1, in the
sequence there exists an edge such that the edge is incident on both vi

and vi+1.

Note that vertices may be repeated in paths. That is, there may be
a path in which vi = vj for some i 6= j. For example, in Figure 4,
{A, B, C, B, C, D} is a path.

Definition 2.5. Two vertices, u and v, are called connected if there
exists a path from u to v. A connected graph is a graph in which
every distinct pair of vertices is connected.

An example of a graph that is not connected (also known as dis-
connected) is shown in Figure 4. In this graph, vertices A and D

are connected, as there exists a path between them, such as the path
{A, B, C, D}. However, vertices A and E are not connected, as there
is no path between them. From this, we conclude that the graph is
disconnected.

Throughout this paper, we will be working exclusively with con-
nected graphs, for reasons that will become clear when we learn about



4 BEN STEVENS

Figure 4. A disconnected graph.

graph coloring. However, it is a concept needed in order to define
connectivity, which we will define in the next section.

In addition to connected graphs, there are many other types of spe-
cial graphs that are important in the field of graph coloring. Two of
these types of graphs are defined by a special type of path known as
a circuit, a path that begins and ends at the same point and doesn’t
cross any given vertex more than once.

Definition 2.6. A circuit is a path in which, given the path’s vertex
sequence {v1, v2, · · · , vk−1, vk, v1}, vi 6= vj for i 6= j. A graph composed
of a single circuit is called a cycle. A cycle with an even number of
vertices is called an even cycle, while a cycle with an odd number of
vertices is called an odd cycle.

Because the labels are so similar, it is worth reiterating the difference
between a circuit and a cycle. Informally, a circuit is a path that forms
a closed loop, and is an ordered set of vertices within a graph. A cycle,
on the other hand, is itself a graph, one composed entirely of a single
circuit.

Referring back to Figure 4, the path {B, C, D, B} is a circuit. Two
examples of cycles are shown in Figure 5. In the figure, graph G is an
even cycle (as it has 6 vertices), while graph G′ is an odd cycle (having
5 vertices).

Another important type of connected graph is a graph that does not
contain any circuits. This type of graph is called a tree.

Definition 2.7. A tree is a connected graph that contains no circuits.
A tree of a graph G is a subgraph of G that is a tree. A spanning

tree of a graph G is a tree of G which contains all of the vertices in
G.



COLORED GRAPHS AND THEIR PROPERTIES 5

Figure 5. Two cycles.

An example of a tree is shown in Figure 6. In Figure 7, graph G′ is
a tree of graph G, while graph G′′ is a spanning tree of graph G.

Figure 6. A tree.

Figure 7. G′ is a tree of G. G′′ is a spanning tree of G.

One last type of graph we should consider is called a complete graph,
in which there is an edge between every pair of vertices in the graph.

Definition 2.8. A complete graph is a graph G in which every vertex
is adjacent to every other vertex in G. A complete graph containing n

vertices is referred to as the complete graph on n vertices and is denoted
Kn.



6 BEN STEVENS

Figure 8. From left to right, the complete graphs on
four, five and two vertices.

Some examples of complete graphs are shown in Figure 8.
Finally, we address graph coloring. We “color” a graph by assigning

various colors to the vertices of that graph. As we will see, this process
of coloring is generally governed by a set of coloring rules. For example,
the most basic set of coloring rules, referred to as regular coloring, con-
sists of a single rule: no two adjacent vertices may have the same color.
We will explore regular coloring in more detail in the next section. For
now, we will present some basic definitions regarding graph coloring.

Definition 2.9. A colored graph is a graph in which each vertex is
assigned a color. A properly colored graph is a colored graph whose
color assignments conform to the coloring rules applied to the graph.
The chromatic number of a graph G, denoted χ(G), is the least
number of distinct colors with which G can be properly colored.

Figure 9 gives an example of a colored graph. This graph is colored
using the colors R, G, B, Y . Moreover, it is properly colored according
to regular coloring rules. While it is less readily apparent, the graph’s
chromatic number is 4.

Note that when we say we have “colored” a vertex, we simply mean
that we have assigned a label to it. The concept of colors merely
provides a helpful mental image, but keep in mind that they need not
actually represent colors as we know them, such as red and blue. As
seen in Figure 9, it suffices to label the vertices of a graph, with each
label representing a “color”.

The concept of the chromatic number of a graph is one of the most
interesting in all of graph theory. While there is no general rule defining
a graph’s chromatic number, we instead place an upper bound on the
chromatic number of a graph based on the graph’s maximum vertex
degree. That is, we say that for a graph G with maximum vertex degree
∆, χ(G) ≤ f(∆), where f(∆) is some function of the maximum vertex
degree. The remainder of this paper deals with the problem of finding



COLORED GRAPHS AND THEIR PROPERTIES 7

Figure 9. A properly colored graph of chromatic num-
ber 4.

a suitable upper bound for the chromatic number of any graph in each
of three sets of coloring rules. We begin with the simplest set of rules,
regular coloring.

3. Regular Coloring

3.1. Basic Results. As stated above, regular coloring is a rule for
coloring graphs which states that no two adjacent vertices may have
the same color. See Figure 10 for an example. In the figure, graph
G is properly colored by regular coloring rules, while G′ is not, as it
contains two adjacent vertices that are both colored with color R.

Figure 10. Two colored graphs. G is properly colored,
G′ is not.

Given this coloring rule, it becomes apparent why we may safely
ignore disconnected graphs in our exploration of graph coloring. As
the coloring rules deal with vertices that are adjacent, the colors on the
vertices of each disjoint part of a disconnected graph have no bearing
whatsoever on the colors of the vertices on any other disjoint part.



8 BEN STEVENS

Thus, we may treat the each of the disjoint parts of the graph as if
they were individual, connected graphs.

As we are ultimately trying to derive an upper bound for the chro-
matic number of a regularly colored graph, we will begin by finding
the chromatic number of several types of graphs and see if a pattern
emerges.

In a complete graph on n vertices, each of the n vertices in the graph
is adjacent to every other vertex in the graph. In other words, each
vertex in the graph is adjacent to n − 1 vertices. Thus, every vertex
has degree n − 1, and we conclude that the maximum vertex degree
of the complete graph on n vertices is ∆ = n − 1. So, how does the
chromatic number of a complete graph relate to ∆? Let’s look at an
example, shown in Figure 11.

In this example, the complete graph on 5 vertices, we begin by col-
oring one vertex with a color, called C1. We then attempt to color a
second vertex. This vertex must be adjacent to the first vertex that
we colored, so it cannot be colored with C1. Thus, we color it with
some other color, C2. The third vertex we choose will be adjacent to
both of the first two vertices, so it must be colored with a third color,
C3, and so on, until we have colored all five vertices using a total of 5
colors. As can clearly be seen in the far right side of Figure 11, none of
the vertices could be colored any of the other colors without violating
our coloring rule. Thus, we conclude that the chromatic number of the
complete graph on 5 vertices is 5.

Figure 11. Illustrating the process of coloring the com-
plete graph on 5 vertices.

It is not difficult to see how this example is generalized, in the case
of the complete graph on n vertices, Kn. As each of the n vertices in
Kn is adjacent to every other vertex in the graph, each vertex must be
colored with a different color, making the chromatic number n. From
our previous relationship of ∆ = n−1, we conclude that, for a complete
graph G, we have χ(G) = ∆ + 1.



COLORED GRAPHS AND THEIR PROPERTIES 9

Now let us look at another type of graph, a cycle. A cycle is a
graph composed of a single circuit. From the examples of cycles shown
in Figure 5, we easily see that every vertex has degree 2. This is
intuitively true for any cycle, as a cycle represents a closed path with
no repeated vertices, so, if one follows the path in one full circuit, each
vertex must have one edge leading into it and one edge leading out of
it. Thus, for a cycle, we conclude that ∆ = 2.

What, then, is the chromatic number of a cycle? At first glance,
it might appear that two colors, C1 and C2 should be sufficient to
properly color a cycle, as we may simply start at a vertex v1, color
it with C1, then move around the circuit in one direction, alternating
between coloring with C2 and C1 as we go. However, we must consider
what happens when we arrive at the last vertex in the circuit, vn which
is adjacent to v1, the first vertex we colored. Examining the other
vertex adjacent to vn, which we’ll call vn−1, we find two cases.

In the first case, vn−1 is colored with C1. In this case, we are free to
simply color vn with C2, and we have properly colored the cycle with
2 colors.

In the second case, vn−1 is colored with C2. In this case, vn is adjacent
to a vertex colored with C1 and a vertex colored with C2, so vn may
not be colored with either of these colors. Thus, we must color it with
some third color, C3. Here, we have properly colored the cycle with 3
colors.

This process is illustrated in Figures 12 and 13. In the figures, we
begin by coloring vertex v1, then proceed clockwise around the cycle,
coloring each vertex. Figure 13 shows the two cases for the final two
vertices we color, vn−1 and vn.

Figure 12. In coloring a cycle, we need only concern
ourselves with vertices v1, vn and vn−1.

With a bit of thought, it is easy to deduce that the first case occurs
when the cycle contains an even number of vertices, while the second



10 BEN STEVENS

Figure 13. The two possible cases for the color of vn.
In case 1, both vertices adjacent to vn are colored with
color C1, so we are free to color vn with color C2. In case
2, vn is adjacent to a vertex colored with C1 and a vertex
colored with C2, so it must be colored with a third color,
C3.

case occurs when the number of vertices is odd. See Figure 14 for an
illustration of this.

Figure 14. Cycles of even and odd length properly colored.

As these are the only two possibilities for cycles, we conclude that,
for a cycle G, χ(G) ≤ 3 = ∆ + 1.

From these two types of graphs, we begin to see a pattern emerge in
the relationship between the chromatic number χ and the maximum
vertex degree ∆. For complete graphs, we have χ = ∆+1 and for cycles
we have χ ≤ ∆ + 1. Can we generalize this result, that χ ≤ ∆ + 1, for
all graphs? It turns out that we can, in a very simple proof.

Theorem 3.1. If the maximum vertex degree of a graph G is ∆, then
χ(G) ≤ ∆ + 1.



COLORED GRAPHS AND THEIR PROPERTIES 11

Proof. We choose any arbitrary vertex in G and color it with one of
the ∆ + 1 available colors. We then pick any uncolored vertex in G

and color it with a color that has not been assigned to any of the
vertices adjacent to it. We then repeat this last step until every vertex
in G is colored. Because any given vertex v is connected to at most
∆ vertices, there can be at most ∆ distinct colors already used on the
vertices adjacent to v, so there will alway be at least one color available
to color v with. �

We have established that, under regular coloring rules, it requires at
most ∆+1 colors to properly color any graph of maximum vertex degree
∆. But can we do better? In general, the answer is obviously no, as we
have found that complete graphs and odd cycles require ∆ + 1 colors
to be properly colored. But what about graphs that do not fall into
either of these categories? We already know that even cycles require
∆ colors to be properly colored, so let’s look at a few more examples.

Figure 15. A graph of maximum vertex degree 3 prop-
erly colored using 3 colors

In Figure 15, we have a graph with a maximum degree ∆ = 3. The
figure illustrates how the graph can be properly colored using 3 colors.
Because the graph contains a triangle, which requires three colors, it
will take no less than three colors to properly color the graph. So, in
this case, we have χ = ∆.

In Figure 16, we have a graph with a maximum degree ∆ = 7. The
graph, however, is properly colored using only 2 colors. This is quite
obviously the minimum number of colors, as any connected graph with
more than one vertex requires at least 2 colors in order to properly
color it. So, here we have a graph in which χ < ∆.

As it turns out, complete graphs and odd cycles are the only graphs
that require ∆ + 1 colors to properly color. For any graph that is not
a complete graph or an odd cycle, we will show that the chromatic



12 BEN STEVENS

Figure 16. A graph of maximum vertex degree 7 prop-
erly colored using 2 colors

number of the graph is at most ∆. This result is one of the most
important in all of graph theory and is known as Brooks’ Theorem.

3.2. Brooks’ Theorem. Brooks’ Theorem states the following:

Theorem 3.2. For any graph G with maximum vertex degree ∆ such
that G is not a complete graph or an odd cycle, χ(G) ≤ ∆.

Before we prove Brooks’ Theorem, there are a few more necessary
definitions and minor theorems that will be used in the proof.

Definition 3.1. An ordered graph is a graph for which the set of its
vertices is an ordered set. We call this ordered set the vertex order.

In general, the set of vertices in a graph is not ordered. In an ordered
graph, we assign an order to these vertices, so that they may be used
in an algorithm, detailed below. An example of an ordered graph is
shown in Figure 17.

Figure 17. An ordered graph. Here, we take the vertex
order to be {1, 2, 3, 4, 5, 6, 7}.

Note that, in Figure 17, the order of the vertices need not have
anything to do with the vertices’ labels. The fact that they were labeled
with the integers 1 through 7 is completely arbitrary. For example,



COLORED GRAPHS AND THEIR PROPERTIES 13

{4, 7, 3, 2, 5, 1, 6}, with vertex 4 appearing first in the order, vertex 7
second, and so on, would have also been an acceptable order. However,
each vertex in the graph must appear in the vertex order exactly once.
Hence, using the graph from Figure 17 again, {1, 2, 2, 4, 7, 6} would not
be a legitimate vertex order.

As stated above, ordered graphs are useful because one may apply
algorithms to them. One such algorithm which we will need in the
proof of Brooks’ Theorem is called the Greedy Coloring Algorithm.

Definition 3.2. The Greedy Coloring Algorithm is an algorithm
used to properly color an ordered graph using k colors (assuming that,
given the order of the vertices and the graph’s chromatic number, such
a coloring is possible). It is implemented as follows:

1. Assign an order to the set of colors.
2. Considering the first vertex in the vertex order, assign to it the

first color.
3. Considering the next vertex, assign to it the lowest-ordered color

that has not already been assigned to a vertex adjacent to it.
4. Repeat step 3 until the graph is colored.

For an example of this algorithm, refer back to Figure 17. Suppose we
want to properly color the graph in Figure 17 using 3 colors. Suppose
the colors are R, G, B. To implement the algorithm, we first assign an
order to the colors. As no specific color has any special signifigance, we
arbitrarily choose the order {G, R, B}. Now, we color the first vertex,
vertex 1, with the first color, G. Next, we consider the next vertex in
the order, vertex 2. As vertex 2 is not adjacent to any vertices that
have colors assigned to them, we are free to color this vertex with G as
well. Considering the next vertex, vertex 3, we see that it is adjacent
to vertex 1, which is already colored with G. Thus, we choose the next
available color in the color order, which is R, and color vertex 3 with
it. This process continues until the entire graph is colored. See Figure
18 for an illustration of this process.

It is important to note that the Greedy Coloring Algorthm does not
always color a graph using its chromatic number of colors. It is possible
to select a vertex order that will result in some number of colors greater
than the graph’s chromatic number being needed to color the graph.
See Figure 19 for an example. In the figure, the ordered graph is an
even cycle, which we know has a chromatic number of χ = 2. However,
given the vertex order, the algorithm colors the graph with 3 colors.

So, if the Greedy Coloring Algorithm sometimes produces less-than-
optimal results, why is it useful? What is important about the al-
gorithm is that, for any graph, given the correct vertex order, it will



14 BEN STEVENS

Figure 18. An ordered graph with vertex order
{1, 2, 3, 4, 5, 6, 7} colored using the greedy coloring algo-
rithm with a color order of {G, R, B}.

Figure 19. An ordered graph with vertex order
{1, 2, 3, 4, 5, 6} colored using the greedy coloring algo-
rithm with a color order of {G, R, B}. In this example,
the number of colors used is greater than the graph’s
chromatic number.

produce the optimal result (that is, it will color the graph using a num-
ber of colors equal to the graph’s chromatic number). We prove this
result below.

Theorem 3.3. For any graph, G, there is an order that can be assigned
to the vertices of G for which the greedy coloring algorithm will use the
graph’s chromatic number of colors to properly color G.

Proof. By the definition of the chromatic number, we know that at
least one such coloring exists. Assign an arbitrary order to the colors
used in the graph. Now, we consider the set of all graph colors that use
the chromatic number of colors. Of these, we consider the subset of
these colorings which use the first color the maximum number of times.
Of those colorings, we consider the subset of colorings which use the



COLORED GRAPHS AND THEIR PROPERTIES 15

second color the maximum number of times, and so on, until you are
left with one coloring.

In this coloring, we know that any vertex colored with the second
color must be adjacent to at least one vertex colored with the first color
(if it were not, it could have been colored with the first color, which
would imply that the coloring did not have the maximum number of
vertices colored with the first color). Similarly, any vertex colored
with the third color will be adjacent to both a vertex of the first color
and a vertex of the second color, and so on. In this graph, order the
vertices as follows: place any vertex colored with the first color first in
the order. Place any unordered vertex colored with the lowest-ordered
color available next in the vertex order. Continue this process until
all the vertices in the graph are ordered. Now, applying the greedy
coloring algorithm to this ordered graph using the same color order as
used previously, we will recreate the original graph coloring, which uses
the graph’s chromatic number of colors. �

Now that we have some basic results concerning the Greedy Coloring
Algorithm, we need to devise a method for ordering the vertices of a
graph in such a way that we can use the algorithm to prove Brooks’
Theorem. We find such a method in the following two theorems.

Theorem 3.4. Every connected graph has at least one spanning tree.

Proof. If the graph contains no circuits, it is already a tree and is
therefore its own spanning tree. If the graph contains at least one
circuit, remove one edge from each circuit in the graph. The graph will
still be connected, as a circuit implies that for any two vertices on the
circuit, two distinct paths exist between those vertices. By removing
one edge from the circuit, we remove one of these paths, which still
leaves one path between those two vertices. Further, the removal of an
edge from a circuit ensures that the remaining edges will no longer form
a circuit. Now, as the new graph is connected and contains no circuits,
it is a tree of the original graph. As we did not remove any of the
original graph’s vertices in this process, the new graph is a spanning
tree of the original graph. �

Theorem 3.5. For any connected graph, G, there is an order in which
one can place the vertices of G such that every vertex has a higher-
ordered neighbor, with the exception of the last vertex in the order.

Proof. Consider a spanning tree of G, which we will call Gt. Gt contains
all of the vertices of G, and any vertices that are adjacent in Gt are
also adjacent in G. Now assume that all of the edges in Gt are given



16 BEN STEVENS

a weight, which we will call length. Furthermore, let each edge in Gt

have a length of 1. Now choose any vertex v0 in Gt. Given that vertex,
we order the vertices of Gt, as well as the corresponding vertices in G,
as follows:

1. Find the vertex for which the path from that vertex to v0 has
the greatest length. If more than one such vertex exists, choose any of
these vertices. Place this vertex first in the order.

2. Find the unordered vertex for which the path from it to v0 has
the greastest length. If more than one such vertex exists, choose any
of these vertices. Place this vertex next in the order.

3. Repeat step 2 until all vertices in Gt except v0 have been ordered.
4. Place v0 last in the order.
It can easily be shown that there is only one distinct path between

any two given vertices in a tree, as two paths between those vertices
would imply that a circuit exists. Given this, by the above ordering
algorithm, all the vertices in the ordered graph of Gt, and therefore in
the ordered graph of G, will have higher-ordered neighbors, except for
v0, which appears last in the order. �

We will refer to the algorithm introduced in the previous proof as the
Vertex Ordering Algorithm. An example of the implementation of
this algorithm is shown in Figures 20 and 21.

Figure 20. Two graphs, G and Gt. Gt is a spanning
tree of G.

Figure 20 shows a graph G and a spanning tree of that graph Gt that
we will use in the implementation of the Vertex Ordering Algorithm.
In Figure 21, we implement the algorithm on Gt from Figure 20, first
selecting an arbitrary v0 from the vertices in Gt. Next, we find the
vertex for which path from that vertex to v0 is of the greatest possible
length. In this graph, there are three such vertices, all with paths of
length 4 between them and v0. We choose one of these vertices and
place it first in the vertex order (this is the vertex labeled 1). We



COLORED GRAPHS AND THEIR PROPERTIES 17

Figure 21. An implementation of the Vertex Ordering
Algorithm on the graph and spanning tree in Figure 20.

Figure 22. The vertex order obtained in Figure 21
mapped onto the vertices of G.

then choose another of these vertices with a path of length 4 to v0

and place it second in the order (the vertex labeled 2). We repeat this
process, ordering the vertices according to their distance from v0 until
we arrive at the vertex ordering shown in the right-most graph in Figure
21. Finally, we map the vertex order from Gt onto the corresponding
vertices in G, as shown in Figure 22. As can be seen, every vertex in
G except vertex 8, the last in the vertex order, has a higher-ordered
neighbor.

Using the Vertex Ordering Algorithm in conjunction with the Greedy
Coloring Algorithm, we are now able to prove Brooks’ Theorem for all
but one type of graph, known as a regular graph.

Definition 3.3. A regular graph is a graph in which every vertex
has the same degree. An n-regular graph is a regular graph in which
all vertices have degree n.



18 BEN STEVENS

In Figure 23 we give some examples of regular graphs. Note that
a complete graph is a special case of a regular graph, specifically an
n-regular graph containing n + 1 vertices. Also note that cycles are
2-regular graphs.

Figure 23. Two examples of 3-regular graphs.

Theorem 3.6. For any non-regular graph G, let ∆ be the maximum
vertex degree. Then the chromatic number of G is at most ∆.

Proof. Because G is not regular, at least one of the vertices in G must
have a degree of less than ∆. Choose any such vertex and label it v0.
Now apply the Vertex Ordering algorithm to G, using the vertex v0 as-
signed here. Using the vertex order generated by the Vertex Ordering
Algorithm, we apply the Greedy Coloring Algorithm. As all vertices
except v0 have at least one higher-ordered neighbor, and all vertices in
G have at most ∆ neighbors, when the Greedy Coloring Algorithm con-
siders a given vertex w, that vertex will have at most ∆− 1 previously
colored neighbors, meaning that at least one color will be available to
color w. When the algorithm reaches v0, the final vertex, we know that
it has fewer than ∆ neighbors, all of which will be colored, meaning at
least one color will be available to color v0. Hence, G can be properly
colored using ∆ colors. �

From this we conclude that Brooks’ Theorem holds for all non-
regular graphs. All that remains to be shown, then, is that it also
holds true for all regular graphs that are neither complete graphs nor
odd cycles. Unless otherwise specified, any further reference to a regu-
lar graph will be taken to mean a regular graph that is not a complete
graph nor an odd cycle.

Before we attempt to prove Brooks’ Theorem for the case of reg-
ular graphs, let us first consider some of the implications of regular



COLORED GRAPHS AND THEIR PROPERTIES 19

graphs with respect to the Vertex Ordering Algorithm. As each vertex
in a regular graph will have degree ∆, our choice of which vertex to
make v0 becomes more complicated. The vertex designated as v0 will
have exactly ∆ previously colored neighbors when it is considered by
the Greedy Coloring Algorithm. Thus, in order to guarantee that the
Greedy Coloring Algorithm will color the graph using at most ∆ col-
ors, we need to ensure that at least two of the neighbors of v0 have the
same color. If these two vertices do have the same color, at most ∆−1
colors will be forbidden to be used on v0, and so there will be at least
one color left with which to color it.

These two like-colored neighbors, then, must be non-adjacent. We
are guaranteed at least one such pair of non-adjacent neighbors. If all
of v0’s neighbors were adjacent to each other, a bit of thought reveals
that the graph would be a complete graph, which we are assuming that
it is not. This holds true for any v0, as all vertices in the graph have
the same degree.

To ensure that two non-adjacent neighbors of v0 are colored with
the same color, we need to alter the method in which we construct
our vertex order. Specifically, we need to be more precise about which
spanning tree of the graph must be used. First, note that every tree
has at least two vertices of degree 1, as logic dictates that there would
need to be a circuit in the graph for this not to be true. From this, we
find that there is only one tree that is also a regular graph. This tree
has just two vertices connected by an edge, and is shown in Figure 24.
This, however, is also the complete graph on two vertices, so we may
ignore it. As such, we may safely ignore any 1-regular graphs. Any
connected regular graph we will be considering, then, is not a tree and
therefore contains at least one circuit.

Figure 24. The only regular tree, the tree on 2 vertices.
This graph is also the complete graph on 2 vertices.

Consider a 2-regular connected graph, which is a cycle. As we are not
considering cycles of odd length, assume that this is an even cycle. As
discussed earlier, we can properly color this graph using 2 colors. We
therefore may also ignore any 2-regular graphs in our further discussion



20 BEN STEVENS

of Brooks’ Theorem. Thus, we need only prove Brooks’ Theorem for ∆-
regular graphs where ∆ ≥ 3. However, before we finish proving Brooks’
Theorem, we will need to define a concept known as connectivity.

Definition 3.4. The connectivity of a connected graph G is the mini-
mum number of vertices that one would need to remove from G in order
to disconnect it.

Some examples of graphs of different connectivities are shown in
Figure 25. In the figure, graph G has connectivity 1. Removing vertex
v would disconnect G into two disjoint parts. Graph G′ has connectivity
2. Removing vertices w1 and w2 would disconnect the graph. It can
also be seen that there is no single vertex that could be removed from G′

that would disconnect the graph. Finally, graph G′′ has connectivity 3.
By removing vertices z1, z2 and z3 we can disconnect G′′. Examing G′′

reveals that there is no single vertex or pair of vertices whose removal
would disconnect the graph.

Figure 25. Graphs G, G′ and G′′ have connectivity 1,
2 and 3, respectively.

Now we may resume our proof of Brooks’ Theorem. We will prove
Brooks’ Theorem in the case of regular graphs by addressing three
separate cases: regular graphs of connectivity three or greater, regular
graphs of connectivity two and regular graphs of connectivity one.

Theorem 3.7. For any ∆-regular graph G3 of connectivity three or
greater, χ(G3) is at most ∆.

Proof. That G3 has connectivity of at least three implies that one can
remove any two vertices of G3 without disconnecting it. Given this,
consider the set of all spanning trees of the graph. We are trying to
find a spanning tree of G3 such that there is at least one vertex with two
neighbors of degree one (in the spanning tree) that are not themselves
adjacent in the original graph. Given the nature of spanning trees,
we see that these two vertices can be any two nonadjacent vertices



COLORED GRAPHS AND THEIR PROPERTIES 21

with a common neighbor whose removal will not disconnect G3. As
this graph has connectivity three or greater, we are free to choose any
two nonadjacent vertices with a common neighbor in G3. Hence, there
exists at least one spanning tree of G3 in which those two vertices will
have degree one and will both be adjacent to the same vertex. We label
these two vertices of v1 and v2 and call the vertex to which they are
both adjacent v0.

From this, we implement a modified version of the Vertex Ordering
Algorithm. This algorithm should create a vertex order that, when
used in conjunction with the Greedy Coloring Algorithm, will properly
color the graph using at most ∆ colors. The modified algorithm is as
follows:

1. Place v1 first in the vertex order.
2. Place v2 second in the vertex order.
3. Find the unordered vertex for which the path from that vertex

to v0 is of the greatest length. Place that vertex next in the vertex
order. If there is more than one such vertex, arbitrarily choose any of
the applicable vertices.

4. Repeat step 3 until all vertices except v0 are ordered.
5. Place v0 last in the vertex order.
Now, assigning some arbitrary order to the ∆ colors being used,

we implement the Greedy Coloring Algorithm on this ordered graph.
First it will color both v1 and v2 with the first color, as they are not
adjacent in the original graph. In this ordering, every vertex except
v0 has a higher-ordered neighbor. Therefore, when a vertex vk, where
vk 6= v0, is colored by the greedy coloring algorithm, it will have at most
∆− 1 colored neighbors, so at least one color will be available to color
vk. When v0 is reached, it will have ∆ colored neighbors. However,
v1 and v2 are colored with the same color, leaving at least one color
available to color v0. Hence, Brooks’ Theorem applies to regular graphs
of connectivity three or greater. �

An example of the process used in the proof is illustrated in Figures
26-28. Figure 26 shows a graph G which is 3-regular and of connectivity
3. Also shown in Figure 26 is a spanning tree of G, called Gt, which
contains two vertices of degree one that are both adjacent to the same
vertex. Further, their corresponding vertices in G are not adjacent.
Hence, Gt meets all of the requirements for our spanning tree described
above.

Figure 27 illustrates an implementation of the modified Vertex Or-
dering Algorithm. In it, vertices v1 and v2 are placed first and second
in the vertex order, then the vertex farthest away from v0 is placed



22 BEN STEVENS

Figure 26. Graph G is a 3-regular graph of connectiv-
ity 3. Gt is a spanning tree of G.

third, then the next farthest is placed fourth, and so on. Once the
other five vertices have been ordered, v0 is placed sixth in the order.

Figure 27. Applying the modified Vertex Ordering Al-
gorithm to Gt.

Finally, in Figure 28, the vertex order obtained on Gt is mapped to
the corresponding vertices in G and the Greedy Coloring Algorithm is
applied. As seen in the figure, there are three colors used, which is the
maximum vertex degree of G.

Now that we have established that Brooks’ Theorem is valid in the
case of a regular graph of connectivity three or greater, we must also
prove the theorem in two other cases: regular graphs of connectivity
one and of connectivity two.

Theorem 3.8. Any ∆-regular graph of connectivity one has a chro-
matic number of ∆.

Proof. Consider such a graph, called G1. As G1 has connectivity one,
there is some vertex, vc, which, if removed, would disconnect G1 into n

disjoint parts, with n ≥ 2. Now consider the n subgraphs of G1 formed
by removing all vertices (and any edges incident on those vertices)



COLORED GRAPHS AND THEIR PROPERTIES 23

Figure 28. Applying the Greedy Coloring Algorithm
to G using the vertex order obtained in Figure 27.

contained in all but one of those disjoint parts. An example of such a
graph and its subgraphs is shown in Figure 29.

Figure 29. G1, a 3-regular graph with connectivity 1,
being split into three subgraphs

Each of these subgraphs is non-regular since in the subgraph, vc will
have a degree at least one less than its degree in G1. Therefore, each
of these subgraphs can be properly colored using at most ∆ colors, as
Brooks’ Theorem applies to all non-regular graphs. Coloring each of
these subgraphs using the Vertex Ordering Algorithm and the Greedy
Coloring Algorithm, we obtain n colored subgraphs of G1. If vc is
colored the same color in each of these subgraphs, we can map the n

colored subgraphs onto G1, coloring each vertex in G1 as it was colored
in its respective subgraph.

If vc is not the same color in each subgraph, we can apply a simple
color permutation to each subgraph, exchanging colors until vc is col-
ored with the same color in each subgraph. We then proceed as above.
As each subgraph was properly colored, so, too, will G1 be, using at



24 BEN STEVENS

most ∆ colors. Brooks’ Theorem, then, applies to regular graphs of
connectivity one. �

An illustration of the process described in the above proof is shown
in Figures 30 and 31.

Figure 30. Each subgraph of G1 is properly colored,
then colors are permutated so that the colors on vc

match.

Figure 31. The colorings of the subgraphs of G1 are
mapped onto G1, properly coloring it.

In Figure 30, each of the three subgraphs of G1 are properly colored
using the Vertex Ordering Algorithm and the Greedy Coloring Algo-
rithm. As vc is not colored with the same color in all three subgraphs,
we perform a color permutation, interchanging the colors R and G in



COLORED GRAPHS AND THEIR PROPERTIES 25

the bottom subgraph, as seen on the right-hand side of Figure 30. Now,
vc is colored with color G in all three subgraphs.

In Figure 31, we color every vertex in G1 as it was colored in its
corresponding subgraph. Now, G1 is properly colored using ∆ = 3
colors.

Theorem 3.9. Any ∆-regular graph of connectivity two can be properly
colored using at most ∆ colors.

Proof. Consider such a graph, called G2. In G2 there is at least one set
of vertices, {vα, vβ} such that removing these vertices will disconnect
G2. Consider all of the sets of three vertices {v0, v1, v2} in G2 such that
v1 and v2 are both adjacent to v0, but not to each other. If for at least
one of these sets of vertices the removal of v1 and v2 will not disconnect
G2, we may proceed to color the graph as we did in the case of a graph
with connectivity three or greater.

If all of these sets are such that v1 and v2 cannot be removed without
disconnecting G2, we arbitrarily choose one such set. The removal of v1

and v2 would then split G2 into n disjoint parts, with n ≥ 2. We now
form two subgraphs of G2, GL and GR. GL is formed by removing the
vertices in every disjoint part of G2 except for the part containing v0.
GR is formed by removing the vertices in the disjoint part containing
v0. This process is illustrated in Figure 32. Note that the figure is a
general example, showing only vertices v0, v1 and v2 and none of the
other vertices in G2.

Figure 32. A regular graph G2 with connectivity 2. G2

is split into two subgraphs, GL and GR.

Both of these subgraphs are non-regular, and as such can be properly
colored using ∆ colors. Coloring both subgraphs using the Vertex



26 BEN STEVENS

Ordering Algorithm and the Greedy Coloring Algorithm, we consider
the colors of v1 and v2 in both subgraphs. If v1 and v2 are both colored
with one color, say color cL, in GL and are both colored with one color,
cR, in GR, we may simply interchange colors cL and cR in GR. Then v1

and v2 will both be colored with cL in both subgraphs. We may then
map the colorings of the two graphs onto the corresponding vertices G2,
properly coloring it with ∆ colors. We may follow the same reasoning
if v1 and v2 are colored with two distinct colors in each of GL and GR.
This process is illustrated in Figure 33.

Figure 33. After coloring GL and GR, if v1 and v2 are
the same color in both subgraphs, we permute the colors
so we may combine the subgraphs to create a properly
colored G2. The same process is used if v1 and v2 are
different colors in both GL and GR.

If v1 and v2 are colored with the same color in one subgraph (without
loss of generality, we’ll assume they’re colored with the same color in
GL) and colored with two distinct colors in the other subgraph, we may
force the two vertices in GL to be different colors. We accomplish this
by temporarily adding an edge between v1 and v2 in GL while we apply
the greedy coloring algorithm to it. Adding this edge does not change
the the maximum vertex degree of GL, as we know that the degrees of
v1 and v2 in GL are both strictly less than ∆. Figure 34 provides an
example of this strategy.

Adding an edge between v1 and v2 will be sufficient to properly color
G2 unless adding the edge in GL causes GL to be regular. In this case,
we must force v1 and v2 to be the same color in GR. Assume that, in
GR, v1 is colored with color c1 and v2 is colored with color c2. Given
that adding an edge between v1 and v2 in GL causes GL to be regular,
we can conclude that, in GR, v1 and v2 each have degree one. There
are then two possible cases for GR.

In the first case, v1 and v2 are both adjacent to one vertex, v3. In
this case, v3 must be colored with some color c3, so we may simply



COLORED GRAPHS AND THEIR PROPERTIES 27

Figure 34. After coloring GL and GR, if v1 and v2 are
the same color in GL but not in GR, we add a temporary
edge between the vertices in GL.

change the color of v2 to color c1, making v1 and v2 the same color.
This case is shown in Figure 35.

Figure 35. If we cannot add a temporary edge between
v1 and v2 in GL, we force the vertices in GR to be the
same color. In this case, they are adjacent to the same
vertex.

In the second case, v1 is adjacent to a vertex va and v2 is adjacent
to another vertex vb. If va is not colored with color c2, we may change
the color of v1 to color c2, making v1 and v2 the same color. We follow
a similar line of reasoning if vb is not colored with color c1. If va is
colored with c2 and vb is colored with c1, we consider our assumption
that ∆ ≥ 3. As such, there is some third color, c3, that we may color
both v1 and v2 with. This situation is shown in Figure 36.

In both cases, we can map the colorings of the two subgraphs onto
G2, which will then be properly colored with ∆ colors. Brooks’ Theo-
rem, then, applies to regular graphs of connectivity two. The proof of
Brooks’ Theorem is now complete. �



28 BEN STEVENS

Figure 36. As in Figure 35, we force v1 and v2 to be
the same color in GR. In this case, the two vertices are
adjacent to two distinct vertices.

4. 2, 1-Coloring

As stated above, Regular Coloring is only one of many possible sets
of coloring rules. Now we will focus on a different, but related, set of
coloring rules known as 2, 1-coloring.

Suppose that each of the k +1 colors we wish to use to color a graph
are each assigned a distinct integer ni, where 0 ≤ ni ≤ k. We may
then refer to each color by its corresponding integer assignment. That
is, we are coloring a graph using the set of colors {0, 1, 2, . . . , k− 1, k}.
Then we define the rules of 2, 1-coloring as follows:

1. Adjacent vertices must have colors that are at least 2 numbers
apart.

2. Two distinct vertices separated by exactly two edges cannot be
the same color.

First, note that the color order is not cyclical. That is to say, color
0 is not considered to be one number away from color k. Also note
that, in this set of rules, if a graph uses colors 0, 1, 3, 4, we say that
it is colored using 5 colors, even though only four were used, as the
highest-ordered color used is the fifth color overall. In other words,
any colors less than the highest numbered color that were not used in
the graph still count toward the total number of colors used.

However, it turns out to be simpler if we define the 2, 1-chromatic
number as the number of the highest-ordered color used the the graph.
Thus, the 2, 1-chromatic number is one less than the total number of
colors used in 2, 1-coloring the graph. We denote the 2, 1-chromatic
number as λ.

Just as in the case of regular coloring, we wish to find an upper bound
on the 2, 1-chromatic number of a graph. To begin, we will proceed as
we did above, by examining the behavior of several common types of
graphs under these coloring rules. We begin with cycles.



COLORED GRAPHS AND THEIR PROPERTIES 29

Figure 37. Cycles on 3, 4, 5, and 6 vertices that are
2, 1-colored.

Diagrams of the cycles on 3, 4, 5, and 6 vertices properly colored
according to 2, 1-coloring rules are shown in Figure 37. All of them can
be colored by using 5 colors (colors 0 through 4). This seems to be a
pattern, suggesting that cycles can be 2, 1-colored using 5 colors.

We now turn our attention to complete graphs. Because all of
the vertices in these graphs are adjacent, we can easily find the 2, 1-
chromatic number for complete graphs. To use the minimum number
of colors, color one vertex with color 0. Picking any other vertex, we
know that it is adjacent to the original vertex, so we color it with color
2. Picking a third, it is adjacent to both the previous vertices, so it
must be colored with color 4. Continuing on in this fashion, we see
that the kth vertex chosen will be colored with color 2(k − 1). So,
a complete graph on ∆ vertices will have a 2, 1-chromatic number of
2(∆ − 1), or 2∆ − 2. See Figure 38 for an example of a 2, 1-colored
complete graph.

Figure 38. A 2, 1-coloring of K5. In this graph, λ =
8 = 2(5) − 2.

In order to find a suitable upper bound on the 2, 1-chromatic number
of a graph of maximum vertex degree ∆, we need to alter the defini-
tion of the Greedy Coloring Algorithm used in the proof of Brooks’
Theorem.



30 BEN STEVENS

Definition 4.1. The Alternative Greedy Coloring Algorithm is an al-
gorithm which colors the vertices of an ordered graph. Its steps are as
follows:

1. Assign an order to the colors being used.
2. Consider the first vertex in the vertex order. If it can legally be

colored with the first color, color it with the first color. If it cannot,
leave it uncolored.

3. Repeat step 2 for the next vertex in the vertex order until all of
the vertices of the graph have been considered.

4. Repeat steps 2 and 3 for the next color in the color order.
5. Repeat step 4 until all of the colors have been considered, or until

there are no uncolored vertices, whichever comes first.

In the case of 2, 1-coloring, step 1 is already done, as the colors
inherently have an order associated with them. An example of this
algorithm being implemented to 2, 1-color a graph is shown in Figure
39. In the figure, the numbers in the left-hand graph represent the
vertex order used. In the other two graphs in the figure, the numbers
represent the colors assigned to each vertex.

Figure 39. An implementation of the Alternative
Greedy Coloring Algorithm.

In Figure 39, the algorithm considers vertex 1 and colors it with color
0. It then considers vertex 2, which is adjacent to vertex 1 and as such
cannot be colored with color 0. Therefore, it remains uncolored. Vertex
3 is then considered. As it is separated from vertex 1 by more than two
edges, it can be colored with color 0. The algorithm then reconsiders
every uncolored vertex for each color, resulting in the 2, 1-coloring on
the right-hand side of Figure 39.

Using the Alternative Greedy Coloring Algorithm, we are now able
to prove a suitable upper-bound on the 2, 1-chromatic number of a
graph of maximum vertex degree ∆.



COLORED GRAPHS AND THEIR PROPERTIES 31

Theorem 4.1. For any graph G with maximum vertex degree ∆, λ ≤
∆2 + ∆, where λ is the 2, 1-chromatic number of G.

Proof. We begin by assigning an order to the vertices of G. We then
apply the Alternative Greedy Coloring Algorithm, defined above, to
this ordered graph, using ∆2 + ∆ + 1 colors. Recall that λ is defined
such that it is equal to the number of colors used minus one. Assume
that G was not properly colored by this algorithm. This implies that
at least one vertex was left uncolored at the end of the algorithm.

Let us consider one of these uncolored vertices, which we’ll call w.
As w was not colored by the algorithm, this means that each time the
algorithm arrived at w, it could not color w with the color that was
being considered during that iteration of the algorithm. This means
that for all i, when the algorithm was considering the ith color, w had
either a 2-neighbor that had already been colored with color i or a
neighbor colored with either color i or color i−1. Note that a neighbor
of w colored with color i + 1 would also prevent w from being colored
with color i. However, we do not consider this case, as the Alternative
Greedy Coloring Algorithm considers each color in sequence. Thus, no
vertices will be colored with color i + 1 when the algorithm attempts
to color vertex w with color i.

As the maximum vertex degree of G is ∆, w has at most ∆ neighbors
and at most ∆(∆−1) 2-neighbors. As mentioned above, each neighbor
precludes the use of at most two colors and each 2-neighbors forbids
the use of one color. The worst case scenario, then, is that each of these
forbidden colors is distinct. The maximum number of colors that can
be forbidden to w, then, is 2∆+∆(∆− 1), which simplifies to ∆2 +∆.
However, we were using ∆2 + ∆ + 1 colors in our algorithm, so there
must have been at least one color that could have been used to color
w.

As G can be properly colored using at most ∆2 + ∆ + 1 colors, its
2, 1-chromatic number λ is at most ∆2 + ∆. �

It has been demonstrated that the upper bound on the 2, 1-chromatic
number is, in fact, lower than ∆2 + ∆. The lowest upper bound cur-
rently known is given as λ ≤ ∆2 + ∆− 2. However, the proof of this is
quite long and complicated, and will not be covered here.

This concludes our discussion of 2, 1-coloring. The final set of color-
ing rules we will investigate involves potentially assigning “fractions”
of colors to vertices. This set of rules is appropriately titled fractional

coloring.

5. Fractional Coloring



32 BEN STEVENS

Figure 40. A graph G. The chromatic number of G is 4.

5.1. Properties of Fractional Colorings. Consider the graph, G,
shown in Figure 40. If we were to assign a regular coloring to it, we
would find that it cannot be properly colored using 3 colors. However,
we could see by trial that it can be properly colored using 4 colors. We
would then conclude, correctly, that the graph’s chromatic number is
4.

However, what if we were to color each vertex with several different
colors, each color weighted as a “fraction of a color”? Consider the
coloring shown in Figure 41, in which colors A, C, E, and F are assigned
a weight of 1

3
of a color and colors B, D and G are assigned a weight

of 2

3
of a color.

Figure 41. A fractional coloring of G. Here, G is col-
ored with fewer than 4 whole colors.

In this coloring, notice that the sum of the weights of the colors on
each vertex equals one and that no two adjacent vertices share colors.
Furthermore, if we add up the weights of all the colors used, we get
4 · 1

3
+ 3 · 2

3
= 10

3
< 4. Using this fractional coloring scheme, we



COLORED GRAPHS AND THEIR PROPERTIES 33

have colored the graph using “fewer” colors than the graph’s regular
chromatic number.

Before we formalize the concept of fractional coloring, we need to
define the concept of an independent set.

Definition 5.1. A set of vertices in a graph is called an indepen-

dent set if no two vertices in the set are adjacent. Conversely, a set
is dependent if at least two of the vertices in the set are adjacent.
A maximal independent set is an independent set which would be-
come dependent were any other vertex in the graph added to it. The
independence number β(G) of a graph G is the size of the largest
maximal independent set in G.[2]

Definition 5.2. A fractional coloring of a graph G is a set of non-
negative weights (colors) assigned to the independent sets of vertices in
G such that the sum of the weights on each independent set containing
a given vertex v is at least 1.

Definition 5.3. The weight of a fractional coloring of a graph G is
the sum of the weights of all independent sets in G. The fractional

chromatic number of G, denoted χf(G) is the minimum weight of a
fractional coloring of G.

Looking back to the example in Figure 41, the colors A through G
each represent an independent set of the graph’s vertices. The coloring
is distinguished from a regular coloring in that the independent sets
corresponding to colors do not need to be disjoint and the weights
assigned to these sets are not necessarily one.

We see, then, that a regular coloring of a graph, then, is merely a
special case of a fractional coloring. In a regular coloring, each color
represents an independent set. Assigning a weight of one to any inde-
pendent set corresponding to a color and a weight of zero to any other
independent sets produces a regular coloring.

The set of regular colorings of a graph is, then, a subset of the set
of fractional colorings. As we have just shown in the above example, it
is possible to use a smaller total weight in a fractional coloring than is
possible in a regular coloring. From these two results we can conclude
that the fractional chromatic number is at most equal to the regular
chromatic number. That is, χf (G) ≤ χ(G).

It may seem odd that the rules of fractional coloring state that the
total weight on any vertex must be at least 1. This means that each
vertex may be colored with more than the equivalent of one regular
color, which would seem to imply that any such coloring would not be



34 BEN STEVENS

optimal. However, we can show that an optimal coloring always exists
such that the weight on each vertex in the coloring is exactly 1.

Theorem 5.1. Given the fractional chromatic number of a graph G,
χf(G), there is a fractional coloring of G with total weight equal to
χf(G) in which the total weight of each vertex is equal to 1.

Proof. Suppose that no such coloring exists. This means that, for every
fractional coloring of G with total weight equal to χf(G), there is at
least one vertex whose total weight is strictly greater than one.

Suppose one such vertex, w, has a total weight equal to 1+α, where
α is some positive rational number. Consider the independent sets with
non-zero weight that include w. If any of them have weight less than or
equal to α, we may remove w from that independent set. We continue
to remove w from independent sets until either its total weight becomes
exactly 1 or there are no independent sets from which we can remove
w without reducing its total weight to less than 1.

In the latter case, suppose that removing w from some independent
set A with weight a

b
would make the total weight of w equal to 1 − c

d
.

We now replace independent set A with two independent sets, A1 and
A2, such that A1 has weight equal to c

d
and includes all vertices that

were included in A. A2, meanwhile, has weight equal to a
b
− c

d
and

includes all vertices that were included in A except for w, which it
does not include. Vertex w now has a total weight of exactly 1. Note
that, in this process, we did not change the total weight of the graph,
as the combined weight of sets A1 and A2 is equal to the weight of A,
the set they replaced.

We may now repeat this process for all vertices with total weight
greater than 1 in G, achieving a fractional coloring of G with total
weight equal to χf(G) in which all vertices have total weight equal to
1. �

The problem of finding χf (G) for a specific graph can be expressed
by way of a linear programming problem. In the problem, we seek to
minimize the sum of the weights of each maximal independent set (we
can safely ignore all non-maximal independent sets by assigning each
of them a weight of 0) in G subject to the constraints that the sum of
the weights of all independent sets that contain a given vertex v must
be at least one, for all v in G.

Assume that there are m vertices and n maximal independent sets in
G. We then create an m × n vertex-independence matrix A, in which
the i, j position is filled with a 1 if vertex i is in the independent set j



COLORED GRAPHS AND THEIR PROPERTIES 35

and with a 0 if not. We also create an n-dimensional vector w whose
j-th entry is the weight of the independent set j.

Let 1 be a vector in n-space with each entry 1 and let 0 be a vector
in n-space with each entry 0. We can then succinctly state the above
linear programming problem as:

Minimize 1Tw subject to Aw ≤ 1 and w ≥ 0. Here, the ≤ compari-
son operator is taken to mean that each entry in the left-hand vector is
less than or equal to the corresponding entry in the right-hand vector
(with a similar definition for the ≥ operator).

Linear programming problems like this one can be solved using an
algorithm known as the simplex method. While it is outside the scope
of this paper, any text on linear programming may be consulted for
those interested in the specifics of the simplex method.

But can we always guarantee that a singular solution exists? Given
the above problem of finding the fractional chromatic number of a
graph, we have m linear constraints (that is, the weights of the max-
imal independent sets). Geometrically, the linear constraints define
a convex polyhedron in m-space. As none of the constraints contra-
dict one another and the polyhedron is not unbounded in the direction
of the objective function, linear programming theory guarantees that
there is an optimum that is attained at a vertex of the polyhedron.
That is to say, the solution is a single point.

As the problem is a collection of linear equations and the coefficients
in the constraints are all rational numbers, we may conclude that the
solutions are all rational numbers as well. Therefore, the minimal so-
lution of the objective function is rational. From this we conclude
that there is always a solution to the problem of finding the fractional
chromatic number of a graph.[1]

6. Conclusion

While this paper provides a good introduction to the study of graph
coloring, there are many other questions in the field that bear address-
ing. Regular coloring, 2, 1-coloring and fractional coloring are only
three examples out of countless potential sets of coloring rules. Each
set of coloring rules has its own upper bound on the corresponding chro-
matic number. Even within these three examples, there are questions
outside the scope of this paper. For example, as previously mentioned,
it has been shown that the upper bound on the 2, 1-chromatic number
is less than the upper bound proved in this paper. Regardless, the
strategies and reasoning used in this paper would serve as an excellent
starting point for exploring further into the field of graph coloring.



36 BEN STEVENS

References

[1] Wikipedia. Linear Programming. http://en.wikipedia.org/wiki/Linear programming.
[2] C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill Book Com-

pany, 1968.


