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1. Introduction

This paper considers the nature of partitions and many of the results
surrounding them. Partitions lead into a discussion of Tableaux, the
RSK algorithm, Euler’s pentagonal number theorem and even symmet-
ric polynomials. At first these topics seem to have little to do with each
other but partitions tie them all together. I prove small results about
each of those topics and even come up with a conjecture that I have
yet to prove.

2. Partitions

The definition of tableau begins with the partition diagram for a
particular partition λ. In order to define such a diagram, and in turn
tableaux, the concept of a partition must be clear.

Definition 2.1. Let n be a positive integer. A partition of n is an
expression for n as a sum of positive integers, where the order of the
summands is unimportant [1].

For example, if n = 5 one partition of n is 4 + 1. Note that the
number of partitions of any given n is finite. In the case when n = 5
there exist precisely 7 partitions of n:

5 = 5

= 4 + 1

= 3 + 1 + 1

= 3 + 2

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1.

Notice that n is always a partition of itself. One of the most im-
portant initial problems surrounding partitions was to find a formla to
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count the number of different partitions that exist for each integer. The
calculations necessary to obtain the number of partitions for small in-
tegers do not require much thought. As n gets larger the length of time
necessary to find the number of partitions of n increases severely, even
though the actual calculations are still relatively trivial. In the next
section the construction of a generating function for partition numbers
solves the problem of the amount of time required to compute answers.
The coefficient on the nth term in the generating function equals the
number of partitions on n.

For the remainder of the paper λ ` n signifies “λ is a partition of n.”
As simple as it is to write partitions out numerically, it is often useful
to represent them graphically. Definition 2.2 explains the construction
of the partition diagram for a given partition λ.

Definition 2.2. Let λ be the partition n = n1 + · · ·+ nk, with
n1 ≥ · · · ≥ nk. The diagram of λ has k rows; the ith row (numbering
from the top) contains ni cells, aligned at the left. D(λ) refers to the
diagram of λ [1].

The cells are represented by either dots or empty squares. Figure 1
gives an example of each type of digram for the partition of 8 where
λ = 4+2+1+1. In general it will be more useful to represent partitions
with the second type of diagram. This type of diagram leads to the
definition of tableaux.

Figure 1. Partition Diagrams for 8 = 4 + 2 + 1 + 1

A few proofs about the nature of partitions use the concept of a
dual partition. Given a partition λ, we denote the dual partition or
conjugate of λ by λ∗.

Definition 2.3. Let λ ` n. The conjugate of λ is the partition of n
whose diagram is the transpose (in the sense of matrices) of that of λ
[1].
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Definition 2.3 can be stated another way. To construct the conjugate
of a partition diagram we simply interchange the rows and columns of
D(λ). Clearly the dual partition λ∗ is also a partition of n. There is still
a total of n dots or cells in the diagram. If we take as λ the partition
from Figure 1, notice that λ = λ∗. A more interesting example occurs
when examining the partition of 9: λ = 5 + 3 + 1. Figure 2 shows
D(λ) and D(λ∗). Then, λ∗ represents the partition 3+2+2+1+1 which
is also a partition of 9.

Figure 2. The Dual Partition of λ=5+3+1

3. Theorems

Theorem 3.1 appears as an exercise on page 33 of Yaglom’s text [5].

Theorem 3.1. The number of partitions of n into at most m parts is
eqaul to the number of partitions of n with parts smaller than or equal
to m [5].

Suppose that m equals 3. Now consider the partitions of n = 6:
6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1,
2+1+1+1+1, and 1+1+1+1+1+1 are all of the partitions of 6. In
order to make the statement of the theorem clearer we can sort these
partitions into the appropriate subsets.

With at most 3 parts {6, 5 + 1, 4 + 2, 4 + 1 + 1,
3 + 3, 2 + 2 + 2, 3 + 2 + 1}

With parts ≤ 3 {3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1,
2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1,
1 + 1 + 1 + 1 + 1 + 1}

These lists point out an important part of the theorem: the two sets
are not necessarily disjoint. In other words the intersection of the two
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sets is potentially non-empty. Thus, the proof really only states the
equivalence of the size of the two sets but says nothing about the total
number of partitions of n. In order to prove theorem 3.1 we want to
look at two subsets of the partitions of n and prove that they have to
same size. In this case the best way to do so is to show that there
exists a bijection between the two sets.

Proof. Start with λ ` n where λ = n1 + n2 + · · · + nk where k ≤ m.
λ is a generic partition of n with no more than m parts. In fact, λ
could only have one part. Consider the partition diagram, D(λ), of λ.
Each row of a partition diagram represents one element of a partition.
Notice that D(λ) has at most m rows. The conjugate of λ, or λ∗ is also
a partiton of n since there must also be n cells in D(λ∗). Recall the
definition of conjugate. We simply interchange the rows and columns of
D(λ). Thus, λ∗ has at most m columns. In other words any particular
row in D(λ∗) has fewer than m cells. Once again, each row represents
one part of the partition. So, each part of λ∗ is less than or m.

Now that we have a way to get from a partition of n with at most
m parts to a partition of n with parts less than or equal to m we need
to prove that the sets of each are the same size. Suppose there exists
a mapping, φ, that takes a partition diagram to its conjugate. Every
partition diagram has a conjugate. In other words φ(D(λ)) is onto.
Furthermore, this mapping must be one-to-one. Given two distinct
partitions of n, λ1 = a1 + a2 + · · · + ak and λ2 = b1 + b2 + · · · + bj

can λ∗
1 equal λ∗

2? Since λ1 and λ2 are distinct ai cannot equal bi for
all i. In terms of diagrams, there must be at least two rows that differ
between the two partitions. If λ∗

1 equalled λ∗
2 each column would be

the same. This would imply that each row in the original diagrams
were equivalent, further implying that λ1 = λ2. Thus the map must be
one-to-one. A map that is both onto and one-to-one is a bijection. For
each diagram with fewer than m rows, there is a conjugate with fewer
than m columns. This bijection proves the equivalence of the size of
the sets in question. �

The next result is again based on the size of certain subsets of parti-
tions of n. This theorem also comes from page 33 of Yaglom’s text [5].
Theorem 3.2 refers to partitions with distinct parts. A partition with
distinct parts is one in which no two parts are equivalent. Be careful to
differentiate this from distinct partitions. Distinct partitions are two
partitions that are not entirely equivalent.
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Theorem 3.2. Suppose that n > m(m+1)
2

. The number of partitions of

n into m distinct parts is equal to the number of partitions of n−m(m+1)
2

into at most m (not necessarily distinct) parts [5].

As with Theorem 3.1, the goal of the proof of Theorem 3.2 is to show
the equivalence of the sizes of two subsets of the partitions of n. Once
again, the existence of a bijective mapping between the subsets suffices
to prove the theorem.

Proof. Suppose that n > m(m+1)
2

. Also suppose that λ ` n such that
λ = x1 + x2 + · · · + xm where xi > xj when i < j. In other words x1

is the largest part of λ. Since we know that
∑m

i=1 i = m(m+1)
2

we also
know that

n −
m(m + 1)

2
= (x1 − m) + (x2 − (m − 1)) + · · ·+ (xm − 1).

We know that xm ≥ 1, thus xm−1 ≥ 2, xm−2 ≥ 3, . . . , x1 ≥ m.
Furthermore, x1 − m ≥ x2 − (m − 1) ≥ · · · ≥ xm − 1 ≥ 0. In order to
keep the notation simpler we need to define zi:

z1 = x1 − m

z2 = x2 − (m − 1)
...zm = xm − 1.

Since From any partition of n, even if it has fewer than m parts,

a partition of n − m(m+1)
2

can easily be constructed. Namely, λn =
z1 + · · ·+ zi where zi is the last nonzero z. This construction works for
every partition of n with at most m distinct parts. Furthermore, λn

must have at most m parts. Let A equal the set of partitions on n that
have fewer than m distinct parts and let B equal the set of partitions

on n− m(m+1)
2

into at most m parts. In order to prove the equivalence
of |A| and |B| we need to be able to construct λ, a partition of n, from

λn, a partition of n − m(m+1)
2

. In other words we need a map, φ from
A to B given by λn 7→ λ. Given that λn = z1 + z2 + · · · + zi we can
simply add back the integers 1 through m. Thus, n = (z1 + m) + (z2 +
(m − 1)) + · · · + (zi + (m − i − 1)) + (0 + (m − i − 2))) + · · · + 1. We
should express those terms using the xjs from the original partition of
n:
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x1 = z1 + m

x2 = z2 + (m − 1)
...

xi = zi + (m − i − 1)

xi+1 = 0 + (m − i − 2)
...

xm = 0 + (m − (m − 1)) = 1.

At first glance it may appear as though xm will always equal 1.
However, if i = m, then zm is nonzero and thus xm = zm + 1. We

can now construct a partition of n − m(m+1)
2

from a partition of n
and vice versa. Recall that we started with a partition of n that had

precisely m distinct parts. We ended up with a partition of n− m(m+1)
2

with at most m parts. The fact that φ is one-to-one and onto proves
that A and B have the same size. Thus each set has the same number
of elements. �

An argument for the same theorem can be made using partition
diagrams alone. This proof shows two important facts about parti-
tions and combinatorics in general. First of all, partition diagrams, as
mentioned earlier, represent more than a convenient way to represent
partitions. They often make for an elegant proof technique. More im-
portantly, almost every proof in combinatorics has multiple methods.
This means that problems that may have been solved a hundred years
ago still prove to be intriguing. The goal now is to find the best method
of proof. To that end, Theorem 3.2 is proven using partition diagrams
below.

Proof. Begin with a partition of n = λ = x1 + x2 + · · · + xm where
xi > xj when i < j. In other words x1 is the largest part of λ. D(λ)
necessarily has an equilateral triangle of cells embedded in the left
side, with one of the sides being on the left edge. We know that such
a triangle will exist since the parts of λ are distinct. Thus, each one
is larger than the one below it. By removing this triangle we subtract
each number from 1 to m and are therefore, by the work above, left

with a partition of n − m(m+1)
2

. Each diagram of a partition of n must
have such a triangle and is therefore paired with a particular partition of

n− m(m+1)
2

. Moreover, if a triangle is added to a partition of n− m(m+1)
2
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we obtain a partition of n. Thus the set of partitions of n into m distnct

parts is equal to the number of partitions of m(m+1)
2

. �

Since this proof relies heavily on the graphical analysis of partition
diagrams an example helps to clarify the method. Figure 3 contains
two partitions. The first is a partition of 15: λ=6+4+3+2. The second
partition results from removing the triangle highlighted in the first.
This new partition is a partition of 5. In this example n=15 and
m=4. Note that D(λ1) is a partition of n and D(λ2) is a partition of

n − m(m+1)
2

.

Figure 3. The graphical proof of Theorem 3.2

Already we have a few different methods to use to best prove results
about partitions. The next theorem gives us yet another tool.

4. The Generating Function for Partition Numbers

Generating functions have a very broad, simple definition. This sim-
plicity allows for a usefulness in nearly all areas of mathematics. The
field of Combinatorics is no exception. In order for the generating
function to be useful we must define partition number.

Definition 4.1. A partition number, P (n), is the total number of par-
titions of n.

As mentioned above, one of the biggest questions surrounding par-
titions is exactly how many different partitions there are for a given n.
The generating function for partition numbers answers this question.

Definition 4.2. A generating function is a power series whose coeffi-
cients describe the nature of a specific set.
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On page 38 of Cameron’s book he defines the generating function for
partition numbers as follows:

∑

n≥0

P (n)tn =

n∏

i=1

1

1 − ti
(1)

with the convention that P (0) = 1 [1]. Theorem 4.1 more clearly
states the significance of the generating function.

Theorem 4.1. The number of partitions of n is equal to the coefficient
on tn in the product

n∏

i=1

1

1 − ti
.

We want to prove that the coefficient on tn in the series in Theorem
4.1 equals the number of partitions of n. After some expansion of
the product in Theorem 4.1, the equivalence of Equation 1 is proven
combinatorially.

Proof. Notice that the right side of Equation 1 is in the form of a
product of gometric series. That fact implies that the equation can be
expanded in the following way:

n∏

i=1

1

1 − ti
=

n∏

i=1

(1 + ti + t2i + t3i + t4i . . . )(2)

= (1 + t + t2 + . . . )(1 + t2 + t4 + . . . ) · · · .(3)

In order to see the source of the partition numbers, we need to first
look at tn. A term that has the nth power in the expansion of Equation
3 is obtained by selecting t1a1 from the first factor, t2a2 from the second,
and so on, where a1 + 2a2 +3a3 + · · · = n. In other words, a particular
tn is constructed by multiplying different powers of t that sum up to
n. By definition we know that

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

a1

+ 2 + 2 + · · ·+ 2
︸ ︷︷ ︸

a2

+ 3 + 3 + · · ·+ 3
︸ ︷︷ ︸

a3

· · · ` n

.
Notice that every partition of n is created by selecting values of t from
different factors of Equation 3. All of the ones are represented in the
first factor, twos in the second, threes in the third, and so on. Every
tn that comes out of the expansion of Equation 3 must come from a
partition on n. The exponent results directly from the summation of
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integers smaller than or equal to n. Also notice that every partition
of n appears in the product. This ensures that all partitions of n are
generated. Thus the coefficient on tn does in fact equal P (n) [1]. �

Using n = 3 as an example, some of the details of the proof become
clearer. There are only 3 different partitions to be generated: λ1 = 3,
λ2 = 2 + 1, and λ3 = 1 + 1 + 1. With n = 3 the pertinent coefficient is
that on t3. In other words the number of t3s left after expansion should
equal the number of partitions of 3. Moreover, the way the product
creates cubes of t should reflect the three partitions of 3.

How many ways are there to multiply ti to obtain t3 where i is a
positive integer? The first is t3 · t0. In the product above t3 · t0 appears
twice: once when the t3 in the first factor of the product in Equation 3
term is multiplied by ones in every other factor and again when the t3

in the third factor is multiplied by ones in every other factor. These two
products represent λ3 and λ1 respectively. The other way to multiply
powers of t to obtain t3 is t2 · t1. This product only comes up once in
the series: when the t in the first factor is multiplied by the t2 in the
second factor and by ones everywhere else. This product represents the
partition λ2.

The power of the generating function for partition numbers lies in its
usefulness in proofs. The proof of theorem 4.2 highlights that ability.

Theorem 4.2. Given the set of all partitions of n and some positive
integer k the subset of partitions whose parts occur no more than k− 1
times is equal to the subset of partitions whose parts k does not divide
[5].

For example, if n equals 5 and k equals 2 the above constraints would
leave the following sets:

{5, 4 + 1, 3 + 2}

and

{5, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1}

Each set has exactly 3 elements. Is this equality true for all k and
all n? In other words, is the set of partitions of n whose parts occur
no more than k − 1 times the same size as the set of partitions of n
whose parts k does not divide? The proof of theorem 4.2 expresses each
set using the generating function and then shows that the generating
functions for each set are equivalent.

Proof. We should begin by modifying the generating function for all
partition numbers in order to just count the partitions we want. Let’s
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start with partitions of distinct parts. A partition with distinct parts
is one in which no integer part is repeated. Recall that each integer
i in a given partition is counted by the ith factor in equation 3. We
only want to consider one element of each factor. Thus, the generating
function for partitions with distinct parts is

(1 + t)(1 + t2)(1 + t3) · · · .

This is a special case of the problem at hand, namely where k = 2.
Generalizing for k−1, the expression for partitions with parts appearing
no more than k − 1 times is

(1 + t + · · · + tk−1)(1 + t2 + · · · + t2(k−1))(1 + t3 + · · · + t3(k+1)) · · · .

Suppose λ ` n=a1 +a2 + · · ·+am where no ai appears more than k−1
times. The repetition of each term a1 in the partition is determined
by the power on t in the ath

1 factor of the term above. In each factor
of that function there is at most k − 1 terms. Thus no part can be
chosen more than k − 1 times. The expression for parts not divisible
by k is slightly more complicated, but follows the same sort of idea as
above. We want to only keep the parts that k does not divide. We can
force this to happen by taking out all multiples of k. The generating
function for parts not divisible by k is a product of the following:

(1 + t + t2 + . . . )

(1 + t2 + t4 + . . . )
...

(1 + tk−1 + t2(k−1) + . . . )

(1 + tk+1 + t2(k+1) + . . . )
...

(1 + t2(k−1) + t2(2k−1) + . . . )

(1 + t2(k+1) + t2(2k+1) + . . . )
...

This function represents partitions with parts not divisible by k be-
cause a part that is divisible by k must come from a coeffecient on ti

where k|i. All of the factors in the product above are not divisible by
k. Essentially, equation given by multiplying the above factors is the
generating function for partition numbers with factors that begin with
tmk removed.
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Now, to show that the two expressions are actually equivalent, we want
to put them back into a more manageable form. To do this we can mul-
tiply the second function by 1 in a sufficienty creative manner. Take
the generating function for parts not divisible by k and multiply by

1 − t

1 − t
·
1 − t2

1 − t2
· · ·

1 − tk−1

1 − tk−1
·
1 − tk+1

1 − tk+1
· · · .(4)

Note that Equation 4 can be rewritten in a more suggestive manner:

(1 − t) ·
1

1 − t
· (1 − t2) ·

1

1 − t2
· · · (1 − tk−1) ·

1

1 − tk−1
· · ·(5)

Now we can see that Equation 5 contains gemoetric series, moreover,
those series are exactly those series in the generating function for parts
not divisible by k. Thus, upon multiplying that generating function by
Equation 5 we are just left with

(1 − t)(1 − t2) · · · (1 − tk−1)(1 − tk+1) · · · (1 − t2(k−1)) · · ·(6)

Recognize that upon expansion Equation 6 simplifies to the gener-
ating function for partitions with parts appearing no more than k − 1
times. The equivalence of the two generating functions proves the
equivalence of the size of the two sets. �

The next result is a variation on a proof above. Specifically, this new
proof highlights the power of partition diagrams. Theorem 4.2 proved
that the number of partitions of n into parts that occur no more than
k−1 times is equal to the number of partitions of n whose parts k does
not divide. Notice a particular case of this theorem: when k=2. The
partitions of n are now split up into one set where each partition has
entirely distinct parts and the other set where each partition is com-
posed of odd parts. The proof of Theorem 4.2 proves this claim, but a
proof based on partition diagrams yields the same result. Figure 4 is
an image of both the distinct and odd partitons of 10. It is apparent
that each set consists of ten elements. But why is this the case for
every n? The arrows in the diagram represent an algorithm that maps
an odd partition to a partition of distinct parts. The algorithm can be
stated as follows, where D(λ)′ is the transformation of D(λ):

Step 1: Examine D(λ): If D(λ) has distinct parts, D(λ)′ = D(λ).
If not, procede to Step 2.

Step 2: Take repeated parts not equal to one and combine them by
addition. If the partition still does not have distinct parts procede to
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Step 3.

Step 3: Take repeated ones and add them into the highest power of
two possible. Repeat Step 3 until D(λ)′ is composed of distinct parts.

The algorithm works similarly in the other direction, from partitions
of distinct parts to odd partitions:

Step 1: Examine D(λ), if D(λ) is composed of odd parts, D(λ)′ =
D(λ). If not, procede to Step 2, but leave all odd parts intact.

Step 2: Find all parts, ai of D(λ) such that ai = 2m for some inte-
ger m. Break all such ai into parts of size one. If D(λ) is still not
composed of odd parts, proced to Step 3.

Step 3: Any left over part, aj is necesarrily of the form k2m for some
integers k and m. Now take aj and break into two halves. If D(λ)′ is
still not composed of odd parts, repeat Step 3.

The goal of such an algorithm is to show a bijection between the two
sets. In other words, to show that a member of one set corresponds to
exactly one member of the other set. This algorithm does exactly that.
The process is simply reversed to go from one set to the other. Thus,
each set must have the same number of elements. Figure 4 shows the
algorithm in action. In this example λ=5+3+3+3+1+1+1+1+1+1
and thus is an odd partition. We want to use the algorithm to obtain
a partition composed of distinct parts. We may procede to step 2 since
λ is not made up of distinct parts. Step 2 tells us to combine repeated
parts not equal to 1. The only such part is equal to 3. Thus we com-
bine two of the threes and are left with a part of equal to 6 and one of
the original threes. Now the only repeated parts are of size one, thus
we can move on to step 3. There are 6 ones in λ. Step 3 says to add
them into the highest power of 2 possible. In this case that power is 2.
Thus, we combine four of the ones and now have a part of size 4 and
two ones left over. Since we still have repeated ones, we repeat step
three and combine the last two ones and get a part of size two. After
all of these steps we obtain the partition 20=6+5+4+3+2. Notice also
that λ is a partition of 20 as well.
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Figure 4. The odd and distinct partitions of 10

5. Tableaux

The theorems surrounding partitions show many interesting and even
surprising properties. Examining partition diagrams shows that they
are filled with unique properties as well. Recall that there were two
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Figure 5. The Algorithm applied to λ=5+3+3+3+1+1+1+1+1+1

ways to represent partition graphically: with dots and with cells. Call-
ing the spaces cells suggests that they could be filled with something.
Indeed, when those cells are filled with the numbers 1 through n the
partition diagram becomes a tableau.

Definition 5.1. A tableau consists of a partition diagram with its cells
numbered from 1 through n in any order [2].

The partition λ=4+2+1+1 came up earlier in the example of parti-
tion diagram. Figure 6 gives an example of a tableau on λ.

Importantly there are no restrictions on the way the numbers can
fill the cells. This makes counting the number of tableaux of a given
shape relatively simple. There are n choices for the first cell, n − 1
for the second, n − 2 for the third, and so on. Thus, there are n!
different tableaux for each partition diagram on n. What if we put
certain restrictions on the way that tableaux were filled?

Definition 5.2. A standard tableau is a specific type of tableau in which
the numbers 1 through n increase moving right and down the partition
diagram.
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Figure 6. An example of a Tableau

Figure 7 gives an example of a standard tableau where n is equal
to 13 and λ is the partition 5+3+2+2+1. Obviously this isn’t the
only example of a standard tableau for λ: the 13 and the 10 could be
switched, or many other changes. Unfortunately, counting the number
of standard tableaux of a given shape is not as simple as counting the
number of tableaux.

Figure 7. An example of a standard tableau with n=13

Certain parts of the calculation are easy to determine. For instance,
1 always must go in the top left hand corner of the standard tableaux. If
1 were in any other location the rule defining standard tableaux would
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necessarily be violated: the numbers would decrease moving either right
or down somewhere. After this point, however, the calculations become
very dependent on the individual partition diagram. As it turns out,
there is no known easy combinatorial method to count the number of
standard tableaux of a given shape. But, there is a very elegant and
simple formula involving the hook-lengths of the cells of a partition
diagram.

Definition 5.3. The hook-length h(i, j) of any cell (i, j) in a partition
diagram is the number of cells directly left and below that cell, counting
the cell itself [1].

Return again to the partition of n = 8 = 4 + 2 + 1 + 1. Figure 8
displays the hook-lengths of each cell according to Definition 5.3. In
particular the hook-length of cell (1, 1), or h(1, 1), is equal to 7.

Figure 8. The Hook-Lengths for λ = 4 + 2 + 1 + 1

Theorem 5.1 states the hook-length formula. The formula counts the
number of standard tableaux of a given shape using the product of the
hook-lengths for that shape.

Theorem 5.1. The number of standard tableaux of λ, denoted fλ,
where λ ` n is equal to

n!
∏

(i,j)∈D(λ) h(i, j)
.

Theorem 5.1 was first proven in 1953 [2]. Since no combinatorial
method of proof is known, the proofs are all constructive in nature.
In other words each proof createss an algorithm that builds standard
tableaux out of tableaux. The formula for the number of tableaux is
simple. In Feldman’s text the proof centers on probability theory.
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The backbone of Feldman’s algorithm is that it generates a standard
tableaux at random. By at random, Feldmen means that his algorithm
will generate all standard tableaux with equal likelihood [2]. Feldman
begins by defining a lower-right-hand-corner cell of a partition diagram.

Definition 5.4. A lower-right-hand-corner-cell, or lc, is a cell in a
partition diagram that has no cells to the right or below it [2].

In order for the diagram to be a standard tableaux n must be in a
lc. Otherwise, some number k < n will fill some cell below or to the
right of n. This violates the definition of a standard tableaux. Thus,
the algorithm is as follows:

Step 1 : Begin by picking a cell C1 in the partition diagram at ran-
dom (i.e., all cells have equal probability). If we choose an lc from
the start, we immediately use that cell to hold the number n . If not,
procede to step 2

Step 2 : Since C1 is not an lc, randomly pick a cell C2 in the hook
of C1. If C2 is an lc then place n in C2. If not, repeat step 2 until we
finally pick some lc as our Cj, for some j < n. Then n is put into cell
Cj [2].

Step 3 : Repeat steps 1 and 2, this time considering n − 1 instead
of n. Ignore cell Cj, as it is already filled.

The algorithm above always produces a standard tableau. After the
cell for n is chosen, the algorithm resets and considers a new partition
diagram for n − 1: the cell filled with n is effectively removed from
the diagram. The numbers 1 through n will be increasing as we move
right and down the diagram, since the higher numbers always fill the
lcs first. Furthermore, note that every standard tableaux of a given
shape can be generated by this algorithm. n can fill any lc, then n− 1
can fill any lc of the new diagram, and so on. The crux of the proof
comes in showing that all standard tableaux of a given shape appeard
with equal probability. The statement of the algorithm gives an idea
as to how theorem 5.1 is proven. Unfortunately, the scope of this paper
limits a complete explination of the proof.

6. The RSK Algorithm

Standard tableaux certainly have a combinatorial feel about them,
but they do not seem to have the normal connections to permutations
and other counting methods. The RSK algorithm gives a way to gen-
erate standard tableaux from permutations. The algorithm leads to
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the RSK correspondence. The correspondence relates a permutation
to two standard tableaux of the same shape.

In order to understand the RSK algorithm, a basic understanding
of permutations is necessary. As the name suggests a permutation
permutes the elements of a set. In other words a permutation on the
set S will take each element to another member of the same set.

Definition 6.1. A permutation is a rearrangement of the elements of
an ordered set, S, into a one-to-one correspondence with S itself [1].

Let’s start with some basic examples. Consider the set S1={2,1}.
There are only 2!=2 permutations of S1, namely {1,2} and {2,1}. Note
that the set itself is considered a permutation. This permutation is usu-
ally called the identity permutation. Now consider the set S2={1,2,3}.
There are 3!=6 permutations of S2: {1,2,3}, {1,3,2}, {2,1,3}, {2,3,1},
{3,1,2}, and {3,2,1}. Counting permutations is relatively easy and is
based on the size of S. If |S|=n then there are n! permutations of S.
There are n choices for the first spot, n − 1 for the second, and so on.
Multiplying these options together yields n!.

There are a few conventional ways to write down permutations, how-
ever, one is more helpful when using the RSK algorithm. This notation
uses a 2 × n matrix to represent a permutation. The first row is the
original set S and the second row is the new arrangment of S. If S
equalls {1, 2, 3, 4} the matrix

[

1 2 3 4

2 4 3 1

]

represents the permutation {2,4,3,1}. Now that we have a basic un-
derstanding of permutations the RSK algorithm is as follows.

Given a permutation g=(a1, . . . , an) on the set N={1,2,. . . ,n} we
can build two standard tableaux (S, T ) using this alorithm. First we
have to create a subroutine called INSERT where the integer a is placed
in the jth row of a partial tableau T :

• If a is greater than the last element of the j th row, then append
it to this row. (If the jth row is empty, put a in the first position.)
• Otherwise, let x be the smallest element of the j th row for
which a is not greater than x. ‘Bump’ x out of the jth row,
replacing it with a: then INSERT x into the (j + 1)st row.

Using this subroutine we can give a complete definition for the RSK
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algorithm:

Start with S and T empty. For i=1,. . . ,n, do the following:
(1) INSERT ai into the first row of S. This causes a cascade
of ‘bumps,’ ending with a new cell being created and a number
(not exceeding ai) written into it.
(2) Now creat a new cell in the same position in T and write i
into it.

To help understand the algorithm Figure 9 shows an example of the
RSK algorithm in action. Figure 10 gives examples of the RSK al-
gorithm with some permutations on the set {1, 2, 3, 4, 5, 6, 7} where
a=(1,3,5,4,7,6,2) and b=(4,6,2,7,3,5,1).

Figure 9. A quick application of the RSK algorithm
where g = (2, 3, 1) [1]
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Figure 10. The pairs of Tableaux for a =
(1, 3, 5, 4, 7, 6, 2) and b = (4, 6, 2, 7, 3, 5, 1)
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7. Theorems Surrounding the RSK Algorithm

The RSK algorithm gives a relationship between tableaux and per-
mutations. By playing around with the RSK algorithm it became ap-
parent that there potentially existed a relationship between the number
of permutations of n and the number of standard tableaux of size n.
The actual correspondence is as follows:

Conjecture 7.1. The total number of permutations on the set {1, 2, . . . , n}
can be expressed using the number of standard tableaux on n. In par-
ticular the sum of the squares of the number of standard tableaux for a
given shape is equal to n!.

In my own research I was both unable to prove Conjecture 7.1 myself
and was unable to find any proof of the conjecture in any articles I read.
That being said I am confident that the conjecture holds. Cameron uses
the conjecture on page 138 of his book in order to prove a different
result [1]. His passing reference does not give any hint as to how the
conjecture could be proved, nor when it was proved. The following
paragraphs illustrate Conjecture 7.1 for two small values of n.

Take a look at figures 11 and 12, where n=3 and 4. The figures each
contain the different shapes of tableau possible for n=3 and 4. The
hook length appears in each cell.

Figure 11. The three partition diagrams for n=3

Theorem 7.1 grounds tableaux, permutation, and the RSK algorithm
in one of the most basic combinatorial problems: what is the sum of
the first n integers? The cases for n=3 and 4 give an idea of what the
theorem really states.

Recall that the hook length formula gives an expression for the total
number, fλ of standard tableaux of a given shape λ. The hook length
formula is

fλ =
n!

∏

(i,j)∈λ h(i, j)
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Figure 12. The five partition diagrams for n=5

where h(i, j) represents the hook length of a given cell (i, j). Now we
can apply the hook length formula to calculate the total number of
standard tableaux of each shape. Figures 11 and 12 make the hook
length calculations simple. For the sake of clear notation, λ(n) equals
the total number of standard tableaux for an integer n of shape λ.
Also, P (n) equals the number of partitons of n. For n=3 the following
calulations ensue:

λ(3) =

P (3)
∑

a=1

n!
∏

(i,j)∈λa
h(i, j)

=
3∑

a=1

3!
∏

(i,j)∈λa
h(i, j)

=
6

3 · 1 · 1
+

6

3 · 2 · 1
+

6

3 · 2 · 1

= 2 + 1 + 1

For now let’s leave the sum in that form. Applying the same formula
where n=4, we obtain the following:

λ(4) =
5∑

a=1

4!
∏

(i,j)∈λa
h(i, j)

=
24

3 · 2 · 2 · 1
+

24

4 · 2 · 2 · 1
+

24

4 · 2 · 2 · 1
+

24

4 · 3 · 2 · 1
+

24

4 · 3 · 2 · 1

= 2 + 3 + 3 + 1 + 1
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According to Conjecture 7.1, we want to show that
∑p

1(λa)
2=n!.

Particularly for the cases when n=3 and n=4. For n=3,

P∑

1

(λa)
2 = 22 + 12 + 12

= 4 + 1 + 1

= 6

= 3!

For n=4
P∑

1

(λa)
2 = 22 + 32 + 32 + 12 + 12

= 4 + 9 + 9 + 1 + 1

= 24

= 4!

Based on the fact that the base cases work for n=1,2,3, and 4, induc-
tion seeems like an appropriate approach. Unfortunately, I have been
unable to generate a proof of theorem 7.1.

The RSK algorithm appears to generate every tableau of size n. In
other words, every λa can be generated by some permutation of n.
Suppose we have a tableau λ on n such that its columns are a1, a2,
. . . , ar where r is the number of columns in λ. The theorem also utilizes
the following notation: a−1

i represents the elements in column ai read
from bottom to top. Formally, this idea is stated as follows:

Theorem 7.1. The permutation
(

1 2 ... n

a
−1

1
a
−1

2
...a

−1
r

)
will generate the pair of

tableaux (S, T ) where S has columns a1 through ai. Since every tableau
can be written this way every tableau appears in the first position of the
RSK algorithm.

The proof of this theorem is straight forward.

Proof. Given a tableau λ with n entries, let ai represent the ith column
of λ. Further, suppose that λ has r columns. Now examine the RSK
algorithm as applied to the permutation

(
1 2...n

a−1

1
a−1

2
...a−1

r

)
. Note that the

first part of the algorithm will deal with a−1
1 . Since λ is a tableau the

elements of a1 are stricly increasing. Thus, the elements of a−1
1 are

stricly decreasing. When a permutation decreases, a bump occurs in
the RSK algorithm. Applying the RSK algorithm to this first set of
numbers creates a bump at every step of the way and it will necessarily
generate the first column of λ. Obviously this is true of each a−1

i .
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However, a problem occurs between a−1
i and a−1

i+1, and particularly
between members of the same row. If an element in the j th row of ai+1

is less than a member of the jth row of ai, the bump will occur in ai

rather than in ai+1 and the algorithm will generate a new tableau. But,
since λ is a tableau, there is no such j. By definition each row must
be increasing as we move right. Since ai+1 is to the right of ai, each
element in ai must be smaller than the element in the same row of ai+1.
Thus, every tableaux can be generated by the RSK algorithm. �

8. Euler’s Pentagonal Numbers Theorem

First of all, pentagonal numbers need to be defined. A pentagonal
number is a number belonging to the following set:

{

k(3k − 1)

2
|k ∈ Z

}

.

Figure 13 shows the motivation for the name “pentagonal numbers.”
Each pentagonal number generated by a positive value of k can be
drawn in a pentagonal shape like those in Figure 13. The numbers
generated by when k is negative are more accuurately called general-
ized pentagonal numbers because they do not follow the pattern of the
pentagonal numbers in Figure 13.

Figure 13. Small petagonal numbers [1]

Each of the three numbers, 1, 5 and , 12 take the shape of a pentagon
when arranged as in Figure 13. Every pentagonal number generated
by a positive k value can be drawn in in this fashion. The pentagon
representing the kth pentagonal number is constructed by adding one
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to each edge of the (k − 1)th pentagon. What could pentagonal num-
bers possibly have to do with partitions and standard tableaux? Euler
developed the following theorem:

Theorem 8.1. (a) If n is not a pentagonal number, then the number
of partitions of n into an even number of distinct parts and the number
of partitions of n into an odd number of distinct parts are equal.

(b) If n = k(3k−1)
2

for some k ∈ Z, then the number of partitions of
n into an even number of distinct parts exceeds the number of parti-
tions into an odd number of distinct parts by one if k is even, and
vice versa if k is odd [1].

Suppose that n = 6 [1]. There are four partitions of 6 into distinct
parts, namely:

6 = 5 + 1

= 4 + 2

= 3 + 2 + 1.

Notice that there are two partitions of each parity, i.e. two with an
even number of elements and two with an odd number of elements.
Based on the definition above, 7 is a pentagonal number with k = −2.
If n = 7 there are five partitions of n into distinct parts:

7 = 7

= 6 + 1

= 5 + 2

= 4 + 3

= 4 + 2 + 1.

Of these five, three have an even number of parts and two have an
odd number.

The most obvious way to go about proving Euler’s pentagonal num-
ber theorem is to attempt to produce a bijection between partitions
with an even and an odd number of distinct parts, and examine what
happens with the unique cases of pentagonal numbers. In Cameron’s
text he defines two new terms that help motivate such a bijection [1].

If we let λ be any partition of n into distinct parts we can define two
subsets of the diagram D(λ) as follows:
(1) the base is the bottom row of the diagram (i.e. the smallest part),
and
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(2) the slope is the set of cells starting at the right end of the top
row and procedeing in a down and to the left for as long as possible
[1]. Figure 14 displays these two definitions in a partition diagram.

Figure 14. Base and slope [1]

Using these two definitions Cameron creates the following three classes
of partitions of n with distinct parts:

Class 1 consists of the partitions for which either the base is longer
than slope and they don’t interesct, or the base exceeds the slope by
at least 2;

Class 2 consists of the partitions for which either the slope is at least
as long as the base and they don’t intersect, or the slope is strictly
longer than the base;

Class 3 consists of all other partitions with distinct parts.
Figure 15 gives examples of a partition from each of the three classes.
Armed with these classes and new definitions we can now prove The-

orem 8.1; Euler’s pentagonal numbers theorem. The proof hinges on
the ability to create one partition diagram out of another. Thus, with-
out further ado:

Proof. Given a partition λ in Class 1, we create a new partition λ′ by
removing the slope of λ and installing it as a new base. Assume that
the slope of λ contains k cells. Thus we remove a cell from each of
the k largest rows and create a new, smallest row of size k. By the
definition of partitions in Class 1, λ′ is a legal partition with distinct
parts. Since the parts began distinct, removing the slope cannot make
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Figure 15. Top: Class 1 partiton, Middle: Class 2 par-
tition, Bottom: Class 3 partition [1]

any two parts the same. Moreover, since the base must be larger than
the slope we know that the new base must be the smallest part of λ′.
The base of λ′ is the slope of λ. Since λ belongs to Class 1, its base
is longer than its slope. Thus the slope of λ′ is at least as large as the
slope of λ, and stricly larger if it meets the base. So λ′ must be in Class
2.
Working in the other direction, let λ′ belong to Class 2. We can create
a new partition, λ by removing the base of λ′ and installing it as a new
slope. Again we must have a partition with all parts distinct. Suppose
the base has size k.′ The base is distinct from everything else, and we
simply add 1 to the first k rows of λ′. Note that λ lies in Class 1. The
slope of λ is equal to the base of λ′. Since the base of λ′ is smaller than
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its slope, the slope of λ must be smaller than its base.
The nature of these bijection shows that the sizes of Class 1 and Class
2 are equal. The algorithm to go from one to the other is exactly
inverted. Also note that the bijection changes the parity of a given
partition. From Class 1 to Class 2 we add one part. From Class 2 to
Class 1 we remove one part. Thus, in the union of Class 1 and Class
2 the numbers of partitions with even and odd numbers of parts are
equal.
Class 3 does not fit into either of these bijections. A partition in Class
3 has the property that the base and slope intersect and either the
lengths are equal, or the base is longer than the slope by 1. If the base
were 2 unit longer the partition would belong in class 2. Obviously if
the slope and base did not intersect the partition would belong to either
Class 1 or Class 2. Suppose that λ′′ has k parts and belongs to Class
3. Now, imagine we “complete” λ′′ in the following way. Add cells to
the diagram on the far right side until we obtain a rectangle composed
of two squares of area k2. Figure 16 helps clear up the concept of
completion.

Figure 16. The completion of a Class 3 partition

Now we can easily count the number of cells in λ′′. There is one
section of size k2 and one section of size

k(k − 1)

2
due to the fact that it is the sum of the integers from 1 to k − 1. Thus

n = k2 +
k(k − 1)

2
=

3k2 − k

2
=

k(3k − 1)

2
.

If the base exceeds the length of the slope by 1,

n =
k(3k + 1)

2
.
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Thus, if n is not a pentagonal number Class 3 is empty. For some k ∈ Z

Class 3 will consist of one partition with |k| distinct parts. Thus, if k is
even the size of the number of partitions with an even number of parts
will be 1 larger. Similarly for odds if k is odd. This proves Euler’s
pentagonal number theorem. �

9. Extensions

Partitions and tableaux have characteristics that are surprising and
intriguing. As with many topics in mathematics, the deeper we explore
the more exciting things become. In combinatorics there are a myriad
of ways to continue to explore. Symmetric polynomials are the first. I
introduce them here as a way to further investigation about partitions.

Symmetric polynomials and combinatorics connect in many different
ways. Cameron points out that if a problem does not have an explana-
tion using symmetric polynomials then it is not really a combinatorial
problem [1]. Symmetric polynomials can provide a new way to look at
some of the problems considered above.

Definition 9.1. Let x1, . . . , xN be indeterminates. A polynomial
f(x1, . . . , xN) is called symmetric if it is left unchanged by any permu-
tation of its arguments [1].

In other words, if f(x1g, . . . , xNg) = f(x1, . . . , xN) for all g ∈ Sn then
f is considered symmetric. In this case Sn is the set of all permutations
on {1, 2, . . . , n}. There are four special cases of symmetric polynomials
that are extremely useful when dealing with combinatorics. Let λ be
the partition n = n1 + n2 + · · · + nk.
(1) The basic polynomial mλ is the sum of the terms xn1

1 . . . xnk

k and
all other terms which can be obtained from this one by permuting the
indeterminates.
For example, if λ=1+2+3 then mλ=

x1 x2
2 x3

3 +

x2
1 x1

2 x3
3 +

x1
1 x3

2 x2
3 +

x2
1 x3

2 x1
3 +

x3
1 x1

2 x2
3 +

x3
1 x2

2 x1
3.

(2) The elemetary symmetric polynomial, en, is the sum of all
products of n distinct indeterminates.
For examply, if n is 3 then
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e1 = x1 + x2 + x3

e2 = x1x2 + x1x3 + x2x3

e3 = x1x2x3

(3) The complete symmetric polynomial, hn, is the sum of all prod-
ucts of n indeterminates (repititions allowed).
For example, if n=3 then

h1 = x1 + x2 + x3

h2 = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3

h3 = x3
1 + x3

2 + x3
3 + x2

1x2 + x2
1x3 + x2

2x1 + x2
2x3 + x2

3x1 + x2
3x2 + x1x2x3

(4) The power sum polynomial, pn, is equal to xn
1 + · · · + xn

N .

Suppose that z is one of the symbols e, h or p then zλ = zn1
. . . znk

where λ is a partition of n. As usual, an example will greatly help
explain these four cases. This example comes from Cameron [1]. If
there are three indeterminates, and λ is the partition 3 = 2 + 1, then

mλ = x2
1x2 + x2

2x1 + x2
1x3 + x2

3x1 + x2
2x3 + x2

3x2,

eλ = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

pλ = (x2
1 + x2

2 + x2
3)(x1 + x2 + x3)

hλ = eλ + pλ.

These examples do not make the power of symmetric polynomials
clear. They can be used to prove things from the generagting function
for partition numbers to the forumla for the binomial coefficient. The
adaptability of the symmetric polynomials comes from our ability to
choose values for the indeterminiates.

As mentioned above, the filling of partition diagrams based on the
rules that define standard tableaux is only one possible method. We
could stipulate that the cells be filled in a different manner or that the
partition be represented in another way. Some other types of tableaux
and partition diagrams also have some distinctive combinatorial prop-
erties about them as well. In order to define skew diagrams we have to
work through two other definitions.

Let λ = a1 + a2 + ... be a partiton of the integer n. Recall that the
partition diagram, D(λ) is a graphical representation of the partition
λ. The rows of D(λ) represent one of the ais. Also, remember each row
is less than or equal to the size of the row above it. As further review,
Figure 1 shows the two types of partition diagrams for λ = 4+2+1+1.
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The rank of a given partiton diagram, denoted rank(λ), is the length
of the main diagonal of D(λ), or equivalently, the largest integer i for
which ai ≥ i [4]. Figure 17 shows the rank of a partition digram. Now
we can define skew diagrams.

Figure 17. The rank of λ=8+5+4+4+3+1

Recall that a standard tableau is a diagram of λ, a partition on
n, filled with the integers 1 through n such that the numbers stricly
increase down and to the right. A semi-standard tableau works with
the same idea on a partition diargram for λ. Let λ1 be the first row
of λ. A semi-standard tableau fills λ with the integers 1 through λ1

such that they weakly increase to the right and strictly increase down.
Regev proves a connection between skew diagrams and semi-standard
tableaux.

A skew diagram is effectively the result of subtracting one partition
diagram from another. Given two partition diagrams µ and ν, such
that ν is completely contained within µ, the the skew diagram µ/ν is
equal to the complement of µ∩ν. Skew diagrams have a few interesting
properties about them. They have connections to graphical trees, Schur
functions, and of course symmetric polynomials. One of the papers I
read deals with the hook numbers of a few diagrams associated with
skew diagrams.

Using the hook-length formula, Regev is able to prove a formula for
the number of a specific type of skew-diagram for a given n. The result
goes much too far into the nature of schur functions to adequately
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introduce here but the fact that such results exist and provide further
study is important to the rest of the work I did.

10. Conclusion

In the above sections I dealt with a variety of seemingly independent
topics. From standard tableaux to symmetric polynomials. Each topic
comes back to partitions in one way or another. On first glance par-
titions seem simple. They offer an interesting combinatorial problem,
i.e. how many are there, and then we can be done with them. With a
bit of creativity partitions open up a wealth of new ideas and problems
in combinatorics.
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