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Abstract. The Adaptive Landscape (AL) provides biologists with a heuristic
for modeling the way the forces of evolution affect a population of organisms.
We investigate the possibility of creating a computer simulation of a population
moving around an AL. First, we create a simple landscape using a Gaussian
distribution, and then a sample population in phenotype space. Then we
explore methods of simulating the population’s motion through phenotype
space over time.

1. Introduction

On the surface, biology appears to be one of the least mathematical of the three
major sciences. While physicists and chemists benefit from many and varied appli-
cations of diverse branches of mathematics, the stereotypical biologist is canvassing
the jungle for a rare species of howler monkey, mutating fruitflies, or scrutinizing
bacteria under a microscope, not puzzling over equations on a whiteboard. Biology
would seem to be a largely qualitative discipline. However, experience has taught
us that there is very little under the sun that mathematics cannot be utilized to
investigate, expand on, and model; and biology is certainly no exception.

It should come as no great surprise, then, that evolution, the single most unifying
concept in biology as well as one of the most influential scientific ideas in human
history, lends itself readily to such mathematical endeavors. The gradual flow and
change of genes and species over time, and how those genes and species are molded,
selected for, and driven out of existence by natural selection, is a fascinating sub-
ject to explore from an analytical standpoint. We intend to explore methods of
modeling changes in population over time (genetic drift, speciation, extinction, and
so on), using a concept called “The Adaptive Landscape” as a framework for my
investigation. Several ideas in this paper, as well as the inspiration for the project
as a whole, are due to Arnold et al.

This paper begins with a brief description of the development of the adaptive
landscape as a tool for modeling evolution, from its inception in 1932 to current
work in the field. We will also detail both the promise, and criticism, of the model.
In Section 3, we’ll explore the paper used as a basis for the investigation. After
that, a more detailed exploration of the computer coding techniques used will be
presented, followed by some conclusions regarding the potential of this particular
model.

We will begin by answering the obvious first question: what is an Adaptive
Landscape?
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Figure 1. Sample distribution of leg size among individuals
within a population. The scale is arbitrary.

2. The Adaptive Landscape

It is a central tenet of biology that a certain amount of genetic variability is
common to all species (for if it were not, and all organisms in a species were exactly
the same from one generation to the next, natural selection, and thereby evolution,
could not occur). Humans, as an example, exhibit a wide range of heights, body
types, eye colors. They also have other traits that are not so visually obvious, such
as resistance to disease, metabolism rate, and so on. These differences, excluding
various environmental factors such as diet and climate, are caused by the genes
present in an individual’s DNA. However, the interplay between genes is so com-
plex that for the purposes of this investigation we will ignore genes and concentrate
rather on the physical traits they cause in an organism. Natural selection seldom
acts on genes themselves; it is, rather, these inherited traits, called phenotypes,
that determine whether an organism dies young or lives to procreate and pass on
its genes, and thereby its phenotypes as well, to another generation. Relating an
organism’s phenotypes to its propensity to procreate (in biological jargon, its fit-
ness) forms the basis of the adaptive landscape that will be considered here.

To get an initial grasp of what the adaptive landscape represents, it is easiest to
start very simply, with one phenotype only, and build up from there. Consider leg
length (certainly a phenotype of sorts) in the roadrunner (geococcyx californianus).
In order to survive and reproduce, the roadrunner must evade its main predator
(which, as everyone knows, is the coyote, canis latrans). It isn’t too surprising that
6-inch legs would prove highly ineffective, for such a mal-proportioned bird would
quickly be outrun and devoured; however, 10-foot long legs would also be a disad-
vantage, as the unfortunate bird would have a hard time keeping any sort of gait
under control, much less eating, from such a ridiculous height. Therefore it is rea-
sonable to conclude that there is a certain leg length that provides the roadrunner
with maximum getaway speed, and hence that phenotype is the one most favored
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Figure 2. A sample Adaptive Landscape in phenotype-space.
Note the fitness peak. Once again, the scale is arbitrary.

by natural selection (since those that deviate from the height are more likely to be
killed off before they can reproduce). Phenotypic variation generally occurs in a
bell-shaped curve, with the peak of the curve at the most “fit” sort of phenotype
(there can be more than one peak, however; more on that later); see Fig. 1 for a
sample leg-length distribution.

Now imagine another phenotype: beak size, to use an oft-cited example. Picture
threespace with x, y, and z axes; let the x axis represent the leg length phenotype
previously discussed and the y axis beak size. There exists a fitness function f(x, y)
that expresses the relative fitness of an organism in terms of its phenotypes; this
surface in phenotype-space, shown in Fig. 2, is called the Adaptive Landscape. The
peak on the surface, called a fitness optimum, represents the best combination of
phenotypes from a fitness standpoint: natural selection encourages the proliferation
of organisms that are closer to the fitness peak, for the tautological reason that they
are more fit and hence create more progeny. Entire populations can be plotted on
adaptive landscapes, in far more dimensions than the 3-D example outlined above.

We will investigate the possibility of plotting a population of organisms on such
an adaptive landscape, and simulating the ‘pull’ of natural selection moving a pop-
ulation towards the peak. We will also explore the potential for simulating more
complicated phenomena, as well. A landscape with several peaks, for instance, is
certainly possible, leading to a population getting ‘stuck’ on a lower peak. We could
also move towards a dynamic landscape rather than a static one, leading to events
such as speciation (the divergence of one species into two) and extinction.

Before any of that is possible, though, we will need to create a simple model of
the landscape itself and insert a population onto it. Our goal then is to create a nu-
merical simulation of a population of organisms moving on the adaptive landscape.
We will begin by creating the landscape itself, then move on to a population.
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2.1. The Quadratic Form. Because of its simplicity, we’re going to use a function
called a quadratic form to create our sample landscape. Quadratic forms have the
form Q(x) = xT Ax, where x is a 1×n vector and A is an n×n matrix. They are so
named since carrying out the matrix multiplication yields a term that is quadratic
in every variable present in the vector x. An example Adaptive Landscape can be
described by the multi-variate Gaussian

W (z) = exp[−
1

2
(z − Θ)T ω−1(z − Θ)]

where z is a point in phenotype-space, Θ is the optimum of the surface (the peak),
and the matrix ω is made of vectors describing the selection surface itself1. This
has an obvious parallel with a quadratic form; in fact,

W (z) = exp[Q(z)]

with A = ω−1 and x = z − Θ.

For our purposes, the actual values of A don’t really matter, since we’re at-
tempting to create a qualitative model rather than obtain meaningful numerical
results. All we need are parameters that describe a landscape that’s ‘nice-looking’.

In order to find how a population moves around the landscape, however, we need
to find the derivative of the surface at a given point - the selection gradient. We
will go ahead and derive the formula for the derivative, as it will come in handy
later on when we write up our code.

2.2. Differentiating the Multivariate Gaussian. Consider the function

f(x) = exp[xT Ax]

where
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This function f is what we’ll be using for our Adaptive Landscape. It can be easily
manipulated to have the correct shape and that’s all we need at this point.

Doing the multiplication to expand out f(z) yields

f(x) = exp[ax2
1 + (d + b)x1x2 + ex2

2 + (g + c)x1x3 + (h + f)x2x3 + ix3]

This is easy to differentiate in turns with respect to x1, x2, and x3.

∂f

∂x1
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and so on. A pattern of these derivatives quickly emerges, and we see that
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Therefore
β = (A + AT )xf(x)

yields a direction gradient vector (comprised of partials of x1, x2), etc. This result,
it turns out, can be generalized to any number of variables (not just 3).

We have found that the derivative of xT Ax is (A+AT )x, and applied this result
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to the Gaussian function we’re using to describe the adaptive landscape. This will
be helpful in the future in allowing us to calculate how populations will be “pulled”
towards fitness peaks.

3. Adding a Population

To start off, we’ll take a simple adaptive landscape (created in the manner de-
scribed above) and plot a “trait mean point” and its motion through phenotype
space. The trait mean point is the average value of all the phenotypes among indi-
viduals in a population; it’s a way of collapsing an entire population into one data
point for simplicity. We’re going to take this mean point and plot its movement
along a landscape. Naturally, since the landscape represents the viability of certain
traits over others, we expect the point to travel up the landscape to the nearest
peak (indicative of highest fitness), and then stay there. The way we’ll go about
modeling this is with the following iterative process:

(1) Pick an arbitrary point in phenotype-space (call it z̄)
(2) Find the gradient vector β of the AL at that point
(3) Find our new z̄ with the equation

z̄n = z̄n−1 + cβ

where c is just a small scaling constant, to keep z̄ from jumping all over the
place.

(4) Return to step 2.

This is pretty easy to code, but it is not that interesting, as the trait mean simply
follows a path directly up the gradient vector to the nearest peak, which is exactly
what we’d expect. Thus far in our model, the population can never leave a peak,
because doing so would be movement against the force of natural selection; and
that is simply not allowed.

3.1. Larger Populations. The next step towards a more accurate model is to
abandon the idea of treating a population as one representative point, and allow the
model to portray an entire population of organisms spread out through phenotype
space. We’ll make the assumption that, with respect to each possible trait, the
distribution takes on a normal curve (also called a Bell curve or a Gaussian function;
refer back to Figure 1 for an example). We’re going to create a population based
off of a Gaussian, but instead of trying to model natural selection acting on the
entire population at once, we’re going to break it down into a matrix of values and
have our ‘selection gradient’ act on each point separately. From this ground-up
approach, we hope to create a usable model.

3.2. The Population Matrix. First, we’ll create a single-peaked multi-variate
Gaussian (in much the same way we made the AL, using an exponentiated qua-
dratic form). Then, we’ll create a matrix of points in phenotype space to use as a
simplified representation of the population - a sort of low-resolution snapshot of the
population in phenotype-space. Every point in that grid of points will also have a
value associated with it: that is, the (x, y) values of that point in phenotype space
fed into the original Gaussian function. So basically, the matrix will be comprised
of points 1 to m , and each point will be associated with both an (x, y) value and the
value of the Gaussian population function at that point - just a way of representing
the population as a discrete rather than continuous distribution. It is important to
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note that these values - initially determined by the Gaussian function w - are fixed
to that particular slot in the matrix from here on in. The (x, y) co-ordinates of that
point can and will change, but if the jth entry in the matrix has a w ‘population’
value of 5 (representing the relative number of organisms with a certain phenotypic
makeup), it will always have a value of 5.

3.3. Selection Pressure. The next step, then, is to superimpose the population
down on the AL and watch it change. We’ll find β - the gradient vector - in the same
way as before, just taking partial derivatives. However, we’ll use a slightly different
process for iterating changes in population. This time, for a point an = (x, y) we’re
going to use the formula

anew = (x, y) + kβw(an)

where k is an arbitrary scaling constant and w is the population ‘height’ (the initial
w value) at the point. So the outlying fringes of the population move more slowly,
and the ones towards the middle, where the population is more concentrated, are
pulled more strongly toward the peak.

3.4. Change Over Time. Initially, at least, the higher-density population points
will pull out ahead, leaving the lower points trailing behind in a comet-like tail.
However, as the denser points start getting close to the peak and the gradient
vector begins to shrink, the lower density population points will start to catch
up again. Unfortunately, however, as yet there is no restriction on the minimum
variation present in population - with the inevitable conclusion that every point in
the original population matrix will end up sitting on the peak, all clumped together!

3.5. Inherent Variation. Needless to say, this is not a desirable end result, nor
a realistic one. In nature, with every population cycle (which is, of course, in
reality a continuous process; we have merely modeled it iteratively for the sake of
convenience) comes new varation. It is this variation, in fact, that gives natural
selection fresh material to work with, and it is the lifeblood of the evolutionary
process. (Obviously, it also prevents an entire population from ending up genetically
identical, as our model would have it). Hence, a parameter needs to be added to
represent this ongoing creation of population variation.

3.6. Current State of the Model. The basic idea here is to initially describe
the population as a multivariate Gaussian, but model that Gaussian with a grid
of points (the (x, y) values together with the values of the Gaussian itself, the
‘density’ of the population at that (x, y) value). These points would then take on
a life of their own, moving across the adaptive landscape (AL) in the direction of
the gradient vector at a rate proportional to their associated population density.
Since this method results in a consolidation of all points as they head towards the
AL peak, we will also need to program in a ‘variation’ routine that smears the
population out, so to speak, with every generation (or, in our case, iteration).

4. Numerical Experiments

First off, it is necessary to create an array of points that we can use to model
the multivariate Gaussian we’re going to be using to describe population density.
We create a Matlab script for this purpose. Here’s roughly how it works:
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Figure 3. A simple multivariate Gaussian, modeled at a mesh of points.

(1) The user feeds in a number m that determines the size of the grid; the higher
the number the better, but processing power rapidly becomes a problem.
We will use m = 50, thus a grid of 2500 points, for our examples.

(2) Matlab’s meshgrid function is used to create an appropriate array of evenly
spaced out (x, y) points.

(3) An m × m × 3 matrix called popgrid is created. The x values from the
meshgrid are used to fill up the ‘bottom level’ of the matrix, and the second
level houses the corresponding y values.

(4) Each (x, y) pair is run through the multivariate Gaussian distribution, and
the resulting value is placed in the slot ‘above’ that point in the matrix
(i.e. it’s at (i, j, 3) for whatever i and j values correspond to that (x, y)
pair. So now we have a matrix, m × m wide and 3 tall, where for a given
representation point (i, j) (i, j, 1) is the corresponding x value, (i, j, 2) is the
y value, and (i, j, 3) is the value of the Gaussian evaluated at that (x, y)
point.

Figure 3 shows the result of graphing all these points for m = 50.

4.1. Putting them on the AL. The goal, in order to better visualize how the
population sits on the landscape, would be to plot a landscape and have this pop-
ulation distribution sit ‘on top’ of it. All that’s necessary to do this is, instead of
plotting (x, y, z) from the matrix, plot (x, y, z + al(x, y)) where al is the adaptive
landscape fitness function. So basically we’re keeping the x and y values the same
for every point; we’re just raising them all up so that the ‘base’ of the Gaussian
distribution lies along the landscape itself. Coding this yields the result shown in
Figure 4.1 (this is for a landscape with a peak at (1, 1). Obviously the scaling factor
is off (the population is much larger relative to the fitness peak than it should be)
but that’s just a matter of throwing in a constant to shrink down the population.
The next step is to try to get the Gaussian samples to actually move relative to
the fitness peak in the manner described earlier. This is done simply by treating
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Figure 4. The same Gaussian, superposed over a (so-far invisible) AL.

each (x, y, z) ‘slot’ in popgrid (or vertical column, if you prefer to think of it that
way) as an individual point in phenotype space. The gradient vector is evaluated
at that point and used to move the point along the AL (except this time throwing
in a scaling factor proportional to z, the population’s ’density’ at that point. Using
a pair of nested for loops, the script cycles through all the points in popgrid and
moves them one by one.

Starting with the Gaussian in Figure 4.1: Figure 5 is after five iterations, Figure
6 after 10 iterations, and Figure 7 after 50. The population is clearly converging
towards the peak at (1, 1).

4.2. Iterations. When we move the population across the landscape, we start
seeing odd things happen. Figure 8 shows the result of 10 iterations, where an
‘iteration’ is simply the the addition of the vector

1

5
βAL(p)(1/4)

to the point p (where AL(p) is the fitness of the point p, and β is the gradient
vector at that same point).

Previously, we saw the population moving in a somewhat similar manner; however,
the height of the peak caused it to move much more rapidly than other points –
so much more so that the peak started looking hook-shaped, which really doesn’t
make any sense biologically. The addition of the ‘fourth-root’ for δp lessens the
disparity between the highest points and the points around them, while keeping
to the general theme that higher points move faster. This creates the effect of the
peak points ‘dragging’ the lower points along with them, which is exactly what we
want. The hook-shaped peak is much less likely to occur.

4.3. Death. This model still has several problems. First, points with very small
fitness values don’t die off like they should. There is a limit to the speed of evolution
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Figure 5. After 5 iterations. Individuals near the trait mean
move the farthest up the landscape towards the fitness peak.
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Figure 6. After 10 iterations. Some of them reach the peak.

(interesting side note: this is actually a defined concept, and the rate of evolution
of a species is, naturally, measured in ‘darwins’). Therefore if a point, no matter
how population dense, is just too far from the fitness peak, it should die off.

Similarly, points with very small population densities, which would otherwise lie
stagnant on the AL and wreak havoc with the system, should also die off. There’s
no provision for this in my model.
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Figure 7. After 50 iterations. The population distribution begins
to look very distorted.
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Figure 8. After 10 iterations, with a less potent natural selection
force; in this graphic, the Landscape is visible ‘underneath’ the
population.

4.4. Collapse on to the peak. With a little thought, it becomes obvious that
after an absurdly high number of iterations every point ends up squarely atop the
fitness peak. This is biological nonsense. A basic fact of evolution is that with
every generation (read: iteration) comes a certain amount of variation without
which natural selection would have no pool to select from. This variation would be
represented in this model as a ‘smearing out’ of the population in phenotype space.
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Highly dense population points should induce a population increase in the points
around them with every successive iteration, thus giving rise to a well-distributed
population at any point in the process rather than everything simply collapsing in
on itself.

5. Modeling Variation

The model we’ve created so far moves a population towards the peak, but there’s
no spreading out from generation to generation. Eventually, the population will
become homogeneous. We now implement a spreading algorithm that moves ‘pop-
ulation points’ away from one another. This is accomplished by finding the overall
mean of the population, and then with each generation (iteration) move every point
a bit away from that mean.

5.1. A Numerical Example. First, we’re going to find the overall trait mean of
the population as a whole.

x̄ =

∑n
i=1 xif(x)
∑n

i=1 xi

and

ȳ =

∑n
i=1 yif(y)
∑n

i=1 yi
,

the trait means for traits x and y respectively. Now, we create a vector

δp = (x − x̄, y − ȳ)

(in other words, the vector pointing from the overall mean of the population to the
point (x, y)). So now we have a collection of vectors pointing from the overall trait
mean to every point in the population. We can use this now to ‘push’ all the points
in the population away from the mean, simulating spread in the population.

Previously, we just added in a multiple of the gradient vector with each iter-
ation. This had the effect of ‘pulling’ each point towards the peak of the landscape.
We’re still going to do that, but we also add in δp (times a scaling constant), thus
expanding the population.

5.2. Results. As can be seen in Figure 9, the population has now moved over the
hump, acting against the force of the gradient vector. Figure 10, however, shows
that the spreading has taken over; the population has grown huge and dwarfs the
landscape itself.

Apparently, then, we need to find a balance between accounting for the pull of
selection and the spread of variation, so that one does not overwhelm the other.

6. Concluding remarks

We have come a fair ways towards creating a rudimentary model of the evolution
of a population of organisms. It’s time now to step back and consider how we got
where we are today, where the model stands, and where everything is going.
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Figure 9. After 20 iterations, with an allowance for spread. The
population has grown over the peak, something that was impossible
before.
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Figure 10. After 50 iterations. The population has grown over
the visible landscape.

6.1. Groundwork. First, we went through some basic biology, and defined terms
such as fitness and phenotype. From there, we talked about the concept of the
Adaptive Landscape, and how we can picture natural selection and other forces
of evolution moving that population about in ‘phenotype-space.’ The next step,
naturally, was to translate this heuristic into something from which we could con-
struct a viable computer simulation. Using an array of data points, each data point
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representing both a certain set of phenotypes and the number of organisms in the
population with those phenotypes, we put together a population.

But this population was just floating in limbo. We constructed a simple AL
using a Gaussian distribution, and overlaid the population on it (this was possible
since both the landscape and the population array are based around co-ordinates in
phenotype space). Next, to move beyond static to dynamic. We decided to use
the gradient vector of the adaptive landscape as the direction of natural selection
(which makes sense, since in this case the gradient points towards the direction of
maximum fitness increase). So every generation, each point in the population array
gets moved a certain distance along the AL’s gradient vector.

However, after enough generations, it’s clear that this leads to a complete col-
lapse of the population - every point ends up at a fitness peak and can never leave.
So we introduced a smearing factor, an expansion of the population in every direc-
tion in phenotype space with every generation. This represents genetic variability
that is invariably and repeatedly introduced with every new generation, and it has
the effect of spreading the population out no matter where it lives on the Adaptive
Landscape.

We had a population, a landscape, and two evolutionary forces: selection and
mutation (the underlying cause of the spread). It was time to run the model.

6.2. Where we are now. Individually, the components worked as desired. The
population array idea lends itself well to a point-by-point parsing of the population
as a whole, and it’s not hard to graph the population on top of the landscape.
Selection and drift also, individually, have pretty much the desired effect.

The problem lies in the last two components, and it is one of balance. For a
small number of generations, the population moves as one expects: dense popula-
tion points in the array move quickly towards the local fitness peaks, and outliers
edge their way in the same direction. The population points spread out as they go,
as well.

However, after any more than just a few generations, the population moves
up towards a local peak and, once there, either a) explodes in every direction or b)
collapses in on itself.

6.3. Where to go. The obvious first step is to alter the model so that, once a
population is perched on a peak, the two forces of natural selection come to an
equilibrium and the population hovers around the peak, maintaining a certain vari-
ability.

However, this is easier said than done. Better results may be obtained by ‘tweak-
ing’ the constants of proportionality that govern selection and spread, but it seems
cleaner to be able to derive the correct (or at least some correct combination) from
first principles.
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Other features - such as monitoring absolute population size, allowing multi-
ple peaks, speciations, extinctions - can be added down the line, but for now, the
balance issue needs to be corrected before going any further. More research is
needed to figure out how to proceed.

6.4. Applicability. There is an overriding question that has loomed over every-
thing we’ve done so far: is this even useful? Can we, with these vast oversimplifica-
tions, actually produce a computer model that gives us any sort of useful insights?
It’s a difficult question to answer. Certainly, the model described above, with
only two different phenotypes measured and a very simplistic population model,
would be only useful as a teaching tool or visualization aid. No population of real-
life organisms, however completely controlled, would submit to such a bare-bones
modeling.

However, by gathering an intimidatingly large amount of empirical data, it may
be possible to create a many-dimensional phenotype space that actually does pro-
vide enough descriptive power to model, at least generally, a population. Even
more empirical evidence would be needed to research the landscape itself - how
does it change, at what timescales, is it predictable in any way? The landscape
is a very elusive thing. If you model it based on how you see a species reacting,
you’re simply creating what you expect to see rather than actually predicting any
outcome. The trick would be to model a landscape based on evidence, and then
observe a change in the real environment and try to reflect those changes in your
model. If the population reacts in a way consistent with the simulation, that would
be very promising news.

For the time being, however, the Adaptive Landscape remains almost completely
in the realm of the theoretical. Though not yet useful as a computational or pre-
dictive tool, it is nonetheless highly useful to gain a conceptual understanding of
evolutionary change on a population level.
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