
OPTIMIZING SIZES OF CODES

LINDA MUMMY

Abstract. This paper shows how to determine if codes are of optimal size.

We discuss coding theory terms and techniques, including Hamming codes,
perfect codes, cyclic codes, dual codes, and parity-check matrices.

1. Introduction to Coding Theory

Error correcting codes and check digits were developed to counter the effects of
static interference in transmissions. For example, consider the use of the most basic
code. Let 0 stand for “no” and 1 stand for “yes.” A mistake in one digit relaying
this message can change the entire meaning. Therefore, this is a poor code. One
option to increase the probability that the correct message is received is to send the
message multiple times, like 000000 or 111111, hoping that enough instances of the
correct message get through that the receiver is able to comprehend the original
meaning. This, however, is an inefficient method of relaying data.

While some might associate “coding theory” with cryptography and “secret
codes,” the two fields are very different. Coding theory deals with transmitting
a codeword, say x, and ensuring that the receiver is able to determine the original
message x even if there is some static or interference in transmission. Cryptogra-
phy deals with methods to ensure that besides the sender and the receiver of the
message, no one is able to encode or decode the message.

We begin by discussing a real life example of the error checking codes (ISBN
numbers) which appear on all books printed after 1964. We go on to discuss different
types of codes and the mathematical theories behind their structures. Some codes
we discuss are Hamming codes, perfect codes, cyclic codes, and linear codes, along
with the methods of their generation.

2. ISBN Numbers and Basic Coding Theory Definitions

All books published after 1964 have a 10 digit ISBN number. This vector of
digits i = a1a2a3a4a5a6a7a8a9a10, where 0 ≤ ai ≤ 9, satisfies the condition

(1)
10∑

j=1

jaj ≡ 0 (mod 11).

Take, for example, the vector i = 0743277708. Then(
(10)0 + (9)7 + (8)4 + (7)3 + (6)2 + (5)7

+(4)7 + (3)7 + (2)0 + (1)8
)

(mod 11) = 0,

therefore i could be a valid ISBN. Suppose Alice tries to send i, the ISBN number
of a book for Bob to buy online, to Bob. Instead, because of static or interference,

1

2 LINDA MUMMY

Bob receives i′ = 0743227708, which is Alice’s message with the 5th digit incorrect.
To check if this could be a valid ISBN, Bob multiplies the ISBN term by term with
the sequence

w = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and considers the sum modulo 11. He finds:

w · i′ (mod 11) =
(
(10)0 + (9)7 + (8)4 + (7)3 + (6)2 + (5)2

+(4)7 + (3)7 + (2)0 + (1)8
)

(mod 11) = 8.

This ISBN is invalid since Equation 1 does not hold, so Bob needs to determine
what could be wrong and fix it. The most common error made, either through
interference in transmission or through human error, is one digit of the ISBN being
changed to an incorrect number.

Operating under the assumption that one digit is incorrect, it is possible to iterate
though all the valid ISBNs which are one digit different than Alice’s message and
satisfy the Equation 1 test for ISBN numbers. This gives:

i1 = 8743227708

i2 = 0043227708

i3 = 0733227708

i4 = 0745227708

i5 = 0743827708

i6 = 0743277708

i7 = 0743225708

i8 = 0743227808

i9 = 0743227778

i10 = 0743227700

i11 = 0743227708

Out of these numbers, only i6, i7, and i9 are ISBN numbers of books available
on Amazon.com. We have narrowed down the possibilities for the message Alice
originally sent from every book ever written to one of three books. Of these, i6 is
the vector Alice originally sent. We are able to detect that the ISBN number Bob
received is not valid, but we do not have an algorithm for taking an invalid ISBN
and figuring out exactly which ISBN Alice meant to send. If we had such a method,
it would be denoted as error correction. From this, we conclude that Bob’s attempt
at error correcting, while not perfect, drastically narrows down the possibilities for
the original message.

We now show that no valid codeword x with one digit wrong or with two digits
interchanged to form x′ can possibly satisfy Equation 1. Therefore x′ is not a
codeword.

Theorem 1. Let A = a1a2 . . . a10 satisfy the congruence
∑10

i=1 iai ≡ 0 (mod 11).
Replace aj (1 ≤ j ≤ 10) with b (0 ≤ b ≤ 9) in A to get the codeword Y . Then Y

satisfies
∑10

i=1 iai ≡ 0 (mod 11) only if aj = b.

OPTIMIZING SIZES OF CODES 3

Proof. Assume Equation 1. Replacing aj with b we want to find b such that

(2)
10∑

i=1

iai + jb− jaj ≡ 0 (mod 11).

Since A is a valid ISBN number, we know Equation 1 is true, so

(3) jb− jaj ≡ 0 (mod 11)

which implies 11 | j(b − aj). Since 1 ≤ j ≤ 10, and thus gcd(11, j) = 1, we know
11 | (b− aj). Since 0 ≤ b ≤ 9 and 0 ≤ aj ≤ 9, then b− aj = 0 and so aj = b. �

Theorem 2. Let A = a1a2 . . . a10 satisfy
∑10

i=1 iai ≡ 0 (mod 11). If Y = b1b2 . . . b10

then choose j 6= k and then, for i 6= j and i 6= k, ai = bi, aj = bk and ak = bj.
Then

∑10
i=1 ibi ≡ 0 (mod 11) only if aj = ak.

Proof. Assume
∑10

i=1 iai ≡ 0 (mod 11). Then

(4)
10∑

i=1

ibi =
10∑

i=1

iai + jak + kaj − jaj − kak.

Because
∑10

i=1 iai ≡ 0 (mod 11), we can rewrite Equation 4 as

jak + kaj − jaj − kak = j(ak − aj) + k(aj − ak)
= (j − k)(ak − aj).

When is (j − k)(ak − aj) ≡ 0 (mod 11)? We know 11|(j − k)(ak − aj). Since
11 is prime, 11|(j − k) or 11|(ak − aj). Because 1 ≤ k ≤ 10 and 1 ≤ j ≤ 10,
|j − k| ≤ 9 but j 6= k, and thus 11 - (j − k). We know 11|(ak − aj). Since
aj , ak ∈ Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} we have 11|(ak−aj) if and only if ak−aj = 0.
Thus ak = aj . �

2.1. Definitions. In order to discuss codes, we need to have proper notation to
deal with them. Let us define Fq = {0, 1, 2, . . . , q − 1}. We can think of Fq as
the alphabet we use to form codewords, which we form by grouping elements of Fq

together. We use (Fq)n to denote the set of all possible codewords formed using n
elements from Fq:

(Fq)n = {a1a2 . . . an|ai ∈ Fq ∀ 0 ≤ i ≤ n}.
A code is any subset of (Fq)n. When we explore ISBN numbers we deal with
elements of F10, since ISBN numbers are formed as strings of the integers 0 to 9.
Since all ISBN numbers are of length 10, the valid ISBN numbers are all elements
of (F10)10. There are elements of (F10)10 which are not valid ISBN numbers, like
i1 = 0743227708, from Section 2. Thus we can conclude that the set of valid ISBN
numbers is a subset of (F10)10.

Now that we have a method for defining codes and codewords, we define a
metric to measure distances between codewords. We call this metric the Hamming
Distance.

Definition 1. The Hamming Distance measures the distance between two vectors
x and y by counting the number of places in which their digits differ.

Theorem 3. The Hamming Distance satisfies the following conditions:

4 LINDA MUMMY

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) ≥ 0 for all x, y ∈ (Fq)n.
(3) d(x, y) = d(y, x) for all x, y ∈ (Fq)n.
(4) d(x, y) ≤ d(x, y) + d(z, y) for all x, y, x ∈ (Fq)n.

Proof. See Hill, page 5. �

Definition 2. The length (n) of a code is the number of digits in each codeword.

All measurements of distance refer to the Hamming Distance unless otherwise
specified. The best codes are those with large distances between all their codewords.
This way, if Bob receives an invalid codeword it usually much closer to the codeword
Alice sent than to any other, incorrect codeword. A very simplistic example is to
consider a code C with two codewords, x = 1200 and y = 1201. Since the codewords
differ only in the last place, d(x, y) = 1. Consider one digit of x being corrupted in
transmission, producing x′ = 1202. Notice now that d(x, x′) = d(y, x′) and so the
corrupted transmission is the same distance from the un-corrupted transmission as
it is from another codeword in C . This is a poor code because it has two codewords
which are only one unit away from each other.

In order to create the best possible code, we want C to have many codewords,
and have a large distance between codewords to prevent errors, but with length
short enough to be easily manageable.

Definition 3. The minimum distance of a code is the Hamming distance between
the two closest codewords.

We seek to optimize the quantities

(n, M, d)

where n is the length of a code containing M codewords and having minimum
distance d. That is, we want to maximize M while minimizing n.

2.2. Permutations.

Definition 4. A permutation is a one-to-one mapping from a set S onto itself.

Definition 5. Two codes are equivalent if one can be obtained from the other by
permutations on positions of the code or permutations of the symbols appearing in
a fixed position.

One of the most important results stemming from Definition 5 is the following
theorem:

Theorem 4. Any (n, M, d)-code on the alphabet of size q is equivalent to another
(n, M, d)-code on the same alphabet which contains the zero vector.

Proof. Assume a code of length n where all the codewords are of the form x1x2x3 . . . xn.
Choose a codeword and a xi 6= 0 which appears in the codeword. Perform the map-
ping

0 7→ xi

xi 7→ 0
j 7→ j

for each nonzero xi in the chosen codeword. This mapping is also given through
the diagram

OPTIMIZING SIZES OF CODES 5

 0 xi j
↓ ↓ ↓ ∀j 6= 0, xi

xi 0 j


We repeat the permutation choosing different all the nonzero values for xi in our
chosen codeword. Then the codeword has been permuted to be 0 and so the original
code is equivalent to a code which contains 0. �

Example 1. Consider a code of length 4:

C =

 1010
0110
0101

.

We apply a permutation on the first column, sending 1 to 0 and 0 to 1, resulting in

C ′ =

 0010
1110
1101

.

Next we apply the same permutation to the third column, resulting in

C ′′ =

 0000
1100
1111

and thus C is equivalent to a code containing the zero vector.

Definition 6. Aq(n, d) is the largest value of M such that there exists a q-ary
(n, M, d)-code. Aq(n, d) counts the maximum number of codewords available of
length n, separated by a minimum Hamming Distance of d.

Example 2. The following code C1 is a (3, 4, 3)-code over (F4)3:

C1 =


000
111
222
333

while C2 is an example of a binary (3, 4, 2)-code:

C2 =


000
101
110
011

.

The set of all possible binary codewords of length 3 is

C3 =



000
001
010
011
100
101
110
111

.

It is easy to see that C3 is all of (F2)3 and so we have found a (3, 8, 1) code.

6 LINDA MUMMY

3. Finding Codes of Optimal Size

Speed is the biggest issue in finding large sets of codewords for any given n and
d on the alphabet Fq. An exhaustive search algorithm is not efficient. Cycling
through all the possible codewords in (Fq)n involves comparing qn codewords to
every other codeword in the code. Testing every possible combination of codewords
for every possible value for M gives

s =
dn∑
i=1

(
dn

i

)
(5)

where s is the number of possible ways to choose a subset of codewords of in (Fq)n.
When considering A2(9, 3), we quickly calculate that s = 10154. As the values for
n and d increase, this already huge number grows quickly, making an exhaustive
search impractical.

3.1. Finding Values for A2(n, d). In order to determine the number of binary
codewords of length n which are d units apart, we turn to a greedy algorithm.
Because of permutations and equivalence of codes, given in Theorem 4, we can
assume that the zero vector is in our code. From there, we cycle through every
other possible codeword. The distance between each potential codeword and every
other codeword in the code is computed, and, if the potential codeword is of a
distance greater than or equal to d away from every other codeword, it is added to
the code. This method of selecting a set of codewords allows us to choose a portion
of all possible codewords, but does not, as we will see, find the optimal number in
every case.

3.2. Results from Raymond Hill’s “First Course in Coding Theory”. In
Raymond Hill’s First Course in Coding Theory, he provides a table containing
values of Aq(n, d) for small of q, n, and d. We compare values found in the binary
case using the greedy algorithm to those found in Hill. Part of Hill’s table is shown
in Table 1, for codewords of lengths 5 through 11. For example, when the minimum
distance between codewords is d = 5, n = 8 and Aq(n, d) = 4.

n d=3 d=5 d=7
5 4 2 -
6 8 2 -
7 16 2 2
8 20 4 2
9 40 6 2
10 72-79 12 2
11 144-158 24 4

Table 1. Hill’s table of values for a binary A2(n, d) for small val-
ues of n and d.

The results using my greedy algorithm are shown in Table 2. The MATLAB
code used to generate Table 2 can be found in Appendix A.

Because these some of these values are less than the values found in Hill, appli-
cation of the greedy algorithm clearly does not find the optimal size code in these

OPTIMIZING SIZES OF CODES 7

cases. We have, however, generated a list of codewords belonging to this smaller
set.

3.3. Exhaustive search of possible A2(n, d). Let s be the number of possible
subsets in (F2)n. Then from Equation 5 the number of possible subsets of codewords
of size k is

(6) s =
2n∑

k=1

(
2n

k

)
.

Values of s for small values of n are shown in table 3.
From the tables 1 and 2, note that n = 8 is the point at which our lower bound for

A2(n, d) computed through the greedy algorithm, A2(8, 3)′ = 16, first differs from
the known value of A2(8, 3) = 20. From the data above, an exhaustive search of all
possible subsets is computationally impossible, from the magnitude of comparisons
required. We remember that, by Theorem 4, every code is equivalent to a code
containing the 0 codeword. Assuming that 0 exists inside the code reduces the
number of possible codewords by 1. For a binary code with n = 8, the number of
possible subsets of codewords becomes

s =
2n−1∑
k=1

(
2n − 1

k

)
= 5.79e76

which is a negligible improvement over s = 1.16e77.

n d=3 d=5 d=7
5 4 2 -
6 8 2 -
7 16 2 2
8 16 4 2
9 32 4 2
10 64 8 2
11 128 16 4

Table 2. Lower bounds for A2(n, d) found using the greedy algo-
rithm. Note the differences between some of the values and their
respective values in Hill’s table.

n s
2 16
3 256
4 65536
5 42e9
6 1.84e19
7 3.4e38
8 1.16e77

Table 3. The number of possible subsets of (F2)n as a function of n.

8 LINDA MUMMY

We know from Hill’s chart that A2(8, 3) = 20. Therefore, if we are looking for
a list of the codewords in (8, 20, 3) we only have to consider sets smaller than the
upper bound in order to find one possibility for the set of codewords in A2(8, 3).
We can use Hill’s upper bound as a limit in order to find the exact codewords in a
code of optimal size:

s =
19∑

k=1

(
2n − 1

k

)
= 2.38e28.

We must consider, however, that this is merely the quantity of sets and not the
number of comparisons required. This number of comparisons is

C =
28−1∑
k=1

(
28 − 1

k

)
k(k + 1)

2
= 4.48e30

when n = 8. Performing this many operations is far beyond our capabilities, we
must, therefore, consider alternate methods of computing Aq(n, d).

4. Error Correction and the Sphere Packing Bound

Suppose an error occurs in a codeword during transmission. If the codeword
received is not in the code, the receiver can instantly tell that an error has occurred,
and has detected the error. If the error in the codeword turns one codeword into
other codeword, error detection is impossible. We have two questions to consider
upon receiving a codeword. Can we tell if the codeword is valid, and can we fix the
codeword if it is invalid? Let an “error” be one digit in the codeword that is wrong.
The following theorem, which we will state without proof, shows how many errors
we can correct in messages of different lengths:

Theorem 5. Detection and Correction
(1) A code C can detect up to s errors in any codeword if d(C) ≥ s + 1.
(2) A code C can correct up to s errors in any codeword if d(C) ≥ 2s + 1.

Proof. See Hill, page 7. �

One method used to find upper bounds for the sizes of codes is the sphere packing
bound. Visualize the codewords as points centered in spheres of radius t on a plane.
The metric on this plane is the Hamming Distance. Each codeword is the center
of a sphere such that all elements of (Fq)n which are less than t units away from

Figure 1. Overlapping spheres in a poor code [8]

OPTIMIZING SIZES OF CODES 9

Figure 2. Good codes have spheres that do not overlap [8]

the codeword are contained in the sphere. Any distorted message x′ of x which
lies within t units of x can be mapped back onto x, since it is obviously closer to x
than to any other codeword. Messages which do not fall into one of these circles are
indecipherable (see Figure 1, where the spheres are simplified to two dimensions).
If any circles overlap we have a poor code, since a distorted codeword x′ appearing
in the intersection of multiple spheres could map back onto any of two or more
points.

Since we can correct up to t errors, by Theorem 5, this sphere is of radius t.
The two spheres in Figure 1 are too close together to be useful, since y appears
in the spheres centered at both x and x′. We are looking for our spheres to be
“packed” closely in space without touching, as in Figure 2. No two spheres overlap,
but the space not enclosed in a circle is minimized. The idea of perfect codes, codes
in which every distorted codeword is within r units of a codeword, is described
in Section 5. We wish to determine the maximum number of spheres that can be
packed into our codespace, (Fq)n. This gives us a reasonable upper bound for how
many codewords are in any code, although it will not give us the actual maximum.

In order to determine this bound, we determine how many codewords exist inside
each sphere of radius t. To find the number of vectors in each sphere we consider
vectors at distances of d = 0, 1, 2, . . ., t. Working out from the codeword at the
center of each sphere, there is

(
n
0

)
= 1 vector at 0 distance, the codeword itself.

There are
(
n
1

)
= n vectors at distance 1 in a binary code. For larger alphabets,

there are
(
n
1

)
(q − 1), since there are now q − 1 ways for an entry to be different,

instead of just one. Building a pattern, we can determine that the upper bound for
a q-ary (n, M, 2t + 1) code. If there are M codewords in our code, then there are
M spheres each containing(

n

0

)
+
(

n

1

)
(q − 1) + . . . +

(
n

t

)
(q − 1)t

codewords. Since there are only qn possible codewords we get

M

[(
n

0

)
+
(

n

1

)
(q − 1) + . . . +

(
n

t

)
(q − 1)t

]
≤ qn

10 LINDA MUMMY

which solved for M gives

(7) M ≤ qn∑t
x=0

(
n
x

)
(q − 1)x

.

Inequality 7 is commonly referred to as the sphere packing bound.
Table 4 shows sphere-packing upper bounds for several lengths of codes and

Hamming distances in a binary code (over F2).

n d=3 d=5 d=7 d=9
4 3 1 1 1
5 5 2 1 1
6 9 2 1 1
7 16 4 2 1
8 28 6 2 1
9 51 11 3 2
10 93 18 5 2
11 170 30 8 3
12 315 51 13 5

Table 4. Length upper bounds of binary codes found using Equa-
tion 7

Table 5 shows upper bounds for codes over F3:

n d=3 d=5 d=7
4 16 7 5
5 40 15 9
6 104 33 17
7 273 75 34
8 729 177 70
9 1968 427 151
10 5368 1054 335
11 14762 2643 763
12 40880 6727 1777

Table 5. Length upper bounds of tercery codes found using the
greedy algorithm

5. Perfect Codes

When the upper bound in (7) is an equality (M is as large as possible) we say
the code satisfies the sphere packing bound. Codes that satisfy the sphere packing
bound are known as perfect codes. For example, the binary code with d = 3 and
n = 7 has a sphere packing bound of 16, from Table 4. We can easily find a (7, 16, 3)

OPTIMIZING SIZES OF CODES 11

code using the greedy algorithm:

C =



0000000
0000111
0011001
0011110
0101010
0101101
0110011
0110100
1001011
1001100
1010010
1010101
1100001
1100110
1111000
1111111

This the (7, 16, 3) code C is perfect because it contains 16 codewords and thus
satisfies the sphere packing bound. We can envision this as 16 spheres of radius 1
filling up all of (F2)7. These spheres partition the set. Consider the binary case
in which d = 1. Since t = 0, we know M = qn. Since

(
n
0

)
= 1, this bound can be

satisfied for any q and n, and the perfect code in this case is all of (Fq)n. There is
another trivial binary case in which n = d. Then

M =
q2t+1∑t

x=0

(
2t+1

x

)
(q − 1)x

.

Since (
2t + 1

0

)
+
(

2t + 1
1

)
+ . . . +

(
2t + 1

t

)
= 22t,

M =
22t+1

22t
= 2.

The code is therefore just

{00 . . . 0︸ ︷︷ ︸
n

, 11 . . . 1︸ ︷︷ ︸
n

}.

We now consider some more interesting perfect codes besides the trivial cases.

Theorem 6. Let q be a prime. q-ary codes which satisfy the sphere packing bound
have size qr, where r ∈ Z+.

Proof. Assume we have a q-ary code which satisfies the sphere packing bound. We
want

M =
q2t+1∑t

x=0

(
2t+1

x

)
(q − 1)x

for our perfect code, we deduce that
∑t

x=0

(
2t+1

x

)
(q− 1)x must be a power of q and

thus M must also be a power of q. Thus all codes which satisfy the sphere-packing
bound have qr elements for some integer r. �

12 LINDA MUMMY

Example 3. Can there be perfect binary code of length 7 and distance 3? Consider
the sphere packing bound for binary codes:

M =
2n∑t

x=0

(
n
x

) .
Thus

M =
27(

7
0

)
+
(
7
1

) =
128
8

= 16.

Since 16 = 24, it is possible that there exists a perfect binary code. This is the
perfect code we found earlier.

Example 4. Can there be a perfect binary code of length 10 and distance 5? We
need M to be a power of 2:

M =
210(

10
0

)
+
(
10
1

)
+
(
10
2

) =
210

56
.

Since M is not an integer, there cannot exist a perfect code of length 10 and mini-
mum distance 5.

6. Finite Fields

For our purposes, the exact properties of fields are less important than under-
standing the general idea of a field and how it relates to the alphabet of a code.

Theorem 7. A field F is a set of elements with two operations + (called addition)
and · (called multiplication) satisfying the following properties.

(1) F is closed under · and +.
(2) If a, b ∈ F , ab = ba and a + b = b + a (F is commutative under addition

and multiplication.
(3) If a, b, c ∈ F , a + (b + c) = (a + b) + c and a(bc) = (ab)c (F is associative

under addition and multiplication).
(4) For a, b, c ∈ F a ·(b+c) = a ·b+a ·c (multiplication distributes over addition

in F .)
(5) There exists 0 ∈ F such that a + 0 = a for all a ∈ F .
(6) There exists 1 ∈ F such that a · 1 = a for all a ∈ F .
(7) If a ∈ F , there exists −a ∈ F such that a + (−a) = 0.
(8) If a ∈ F and a 6= 0 there exists a−1 ∈ F such that aa−1 = 1.

In order to simplify notation and prevent redundancy we will make several as-
sumptions. When q is a prime, Fq = {0, 1, 2, , 3 , . . . , q−1} is a field with operations
addition and multiplication modulo q. We will primarily consider codes on a binary
alphabet. Therefore, unless otherwise specified, q = 2.

6.1. Vector Spaces Over Finite Fields . Before we can begin our discussion of
the properties of vector spaces we must first define the two operations, element-wise
addition and scalar multiplication. Assume x, y ∈ (Fq)n. If x = x1x2 . . . xn and
y = y1y2 . . . yn, then

x + y = (x1 + y1, x2 + y2, . . . , xn + yn).

Additionally, if a ∈ Fq then ax = (ax1, ax2, . . . , axn) It is easy to prove the following
properties which make (Fq)n a vector space, although we will omit the proofs here:

(1) (Fq)n is closed under addition mod n.

OPTIMIZING SIZES OF CODES 13

(2) (Fq)n is associative under addition mod n.
(3) The 0 vector is an additive identity.
(4) There is an additive inverse for every element in (Fq)n.
(5) If a, b ∈ (Fq)n, then a + b = b + a (commutativity).
(6) If a ∈ (Fq)n and c ∈ Fq then ac ∈ (Fq)n.
(7) Distributive laws hold with elements in (Fq)n and scalars in Fq.
(8) Multiplication is associative with elements in (Fq)n and scalars in Fq.
(9) The multiplicative identity in Fq is also the multiplicative identity in (Fq)n.

So (Fq)n is a vector space composed of codeword vectors of length n under
addition modulo q and codes are a subset of (Fq)n.

7. Linear Codes

One type of code which appears frequently throughout coding theory is the
linear code. To understand linear codes we recall that codewords are vectors living
in a vector space. So (Fq)n is a vector space composed of vectors of length n
under addition modulo q and the codes are just subsets of (Fq)n. If there exists
some codewords k1, k2, . . . , ki ∈ (Fq)n such that C =Span {k1, . . . , ki} then C is a
subspace of the vector space (Fq)n and thus is a linear code.

Example 5. Is the code

C1 =

 111
101
001

linear? Since every vector added to itself in binary is 0, every spanning set includes
0 and so the zero vector must be in all linear codes. Since 0 /∈ C1, C1 is not a
linear code.

Example 6. Let

C2 =


000
001
011
010

Is C2 a linear code? There are multiple possible spanning sets, including {000, 001, 011, 010},
{001, 011}, {000, 001, 011}, and {001, 011, 010}. Therefore C2 is a linear code.

In Example 6 there are multiple spanning sets (not all the same size) for C2.
The smallest possible spanning set (the basis for C2) is of size 2, the basis can be
either {001, 011}, {001, 010}, or {011, 010}, since we can easily determine that each
of these pairs of codewords spans C2.

Definition 7. Let C be a linear code. If the rows (vectors) of a matrix G form a
basis for C then G is a generator matrix for C.

To find a generating matrix for a code C, we use standard linear algebra tech-
niques to find a basis for C and use these vectors as the rows of G.

Example 7. [8] Find C, the binary code having the generator matrix

G =

 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .

14 LINDA MUMMY

To determine the set of codewords which is spanned by the rows of G we take every
possible linear combination (using coefficients in F2 = {0, 1}) of the rows of G.

C =



0 0 0 0 0 0 0
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 1 0 0 0 1

Example 8. Suppose C is the tertiary code generated by

G =
[

1 0 1 1
0 1 1 2

]
.

The codewords in C are every possible linear combination of the codewords in the
generator matrix using F3 = {0, 1, 2} as coefficients. They correspond to

C =



0
g1

g2

2g1

2g2

2g1 + g2

g1 + 2g2

g1 + g2

2g1 + 2g2

where g1 and g2 are the rows of G. Thus the codewords in C are

C =



0000
1011
0112
2022
0221
2101
1202
1120
2210

.

We know C is a linear code because it is the spanning set of the rows of G. Since
the minimum distance in a linear code is the same as the minimum weight of non-
zero vectors in the code, d = 3. Since d = 3, we know t = 1 from Theorem 5. In
combination with Equation 7, we can determine that the sphere-packing bound gives

M ≤ 34∑1
x=0

(
4
x

)
(3− 1)x

M ≤ 81(
4
0

)
(2)0 +

(
4
1

)
(2)1

M ≤ 81
1 + 8

= 9.

OPTIMIZING SIZES OF CODES 15

Since the sphere packing bound M = 9 and |C| = 9 coincide, this code is perfect as
well as linear.

8. Encoding

Suppose we have a linear code C ⊆ (Fq)n with a generator matrix G. What does
this have to do with transmitting codes? G allows us to convert messages of length
k to messages of length n. (Since the rows of G are linearly independent, we are
guaranteed that k ≤ n.) These extra digits are the redundancy in the encryption
and serve as the error detection and correction.

Since C is linear we know there are qk codewords in the code, where k is the
number of rows in the generator matrix (k is also commonly referred to as the
dimension of the code). Consider codewords of of length k, rather than length n.
We define encoding a codeword vector x using C as right multiplication by G; the
encoded message is y = xG. This gives us a linear combination of the rows of G
with elements of (Fq)n as weights. Since this is the definition of elements of C, we
know y ∈ C.

Any codeword in (Fq)k can be encoded using the linear code, that is, the message
is mapped to a codeword in C.

Example 9. Suppose C is generated by

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1


To encode the message 0000 we multiply

[
0 0 0 0

] 
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 =
[

0 0 0 0 0 0 0
]

and so we get 0000000 while encoding 0011 gives us

[
0 0 1 1

] 
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 =
[

0 0 1 1 1 0 1
]

8.1. Dual Codes. The dual of C, denoted C⊥, is the set of all vectors in (Fq)n

that are orthogonal to every codeword in C. In symbols,

C⊥ = {v ∈ V (n, q)|v · u = 0 ∀ u ∈ C}

Example 10. Here is an example of a code (C1) and its dual code (C⊥):

C1 =

 100
011
110

,

C⊥1 =
{

000 .

16 LINDA MUMMY

Additionally,

C2 =

 100
110
010

and

C⊥2 =
{

000
001

form a code/dual pair. If

C3 =

 1001
0110
0000

then

C⊥3 =


1111
1001
0110
0000

.

It is interesting to note that in this case, C3 ⊂ C⊥3 .

8.2. Parity Check Matrices.

Definition 8. The parity check matrix for C is a matrix H such that the columns
of H form a basis for C⊥. In symbols, C = {x ∈ V (n, q)| xHT = 0} where H is
the parity check matrix.

9. Cyclic Codes

Recall from basic number theory that the division algorithm for integers states
that given any two integers a and b ≥ 0 there exists integers r and q such that

a = bq + r

with 0 ≤ r < b. The following theorem extends the idea of division algorithm to
polynomials. Let us define Fq[x] as the set of polynomials in x with coefficients in
Fq.

Theorem 8. [10] For any g(x) and nonzero f(x) in Fq[x] there exist unique poly-
nomials q(x) and r(x) such that

g(x) = q(x)f(x) + r(x)

where deg r(x) <deg f(x).

Proof. See Appendix B. �

Using the polynomial division algorithm we can extend our idea of modular
arithmetic to polynomials. We say polynomials a(x) and b(x) are congruent modulo
q(x) if q(x)|(a(x)− b(x)). That is, if r(x) = 0 through the division algorithm.

Definition 9. If f(x) is not the product of some two nonconstant polynomials in
Fq[x], then the set of polynomials in Fq[x] of degree less than deg f(x) is a field
under addition and multiplication modulo f(x). We denote this field as Rn.

Theorem 9. A code C is cyclic if it satisfies the following properties:
(1) C is linear.

OPTIMIZING SIZES OF CODES 17

(2) Any cyclic shift of a codeword is also a codeword (that is, whenever a0a1...an−1 ∈
C, an−1a0a1...an−2 ∈ C.)

Theorem 10. Let C be the set of vectors formed by taking the coefficients from a
set of polynomials, P over Rn. If P satisfies:

(1) a(x), b(x) ∈ C implies a(x) + b(x) ∈ C;
(2) a(x) ∈ C and r(x) ∈ Rn implies r(x)a(x) ∈ C

then C is a cyclic code.

Note that property 2 of Theorem 10 is not the same as C being closed under
multiplication. Property 2 requires that the product of an element in C with any
element in Rn is still in C.

9.1. Generating Cyclic Codes. Let us denote

< f(x) >= {r(x)f(x)|r(x) ∈ Rn}.
Theorem 11. For any f(x) ∈ Rn, the set < f(x) > is the cyclic code generated
by f(x).

Proof. Assuming a(x), b(x) ∈ Rn, this produces the following two implications: If
a(x)f(x) + b(x)f(x) ∈< f(x) > then

a(x)f(x) + b(x)f(x) = (a(x) + b(x))f(x) ∈< f(x) > .

Additionally, if a(x)f(x) ∈< f(x) > and r(x) ∈ Rn then

r(x)(a(x)f(x)) = (r(x)a(x))f(x) ∈< f(x) > .

Thus the set satisfies the two requirements stipulated in Theorem 3, and so
< f(x) > is a cyclic code. �

Example 11. Consider the code C =< 1 + x2 > in the field Rn. Multiplying each
of the elements in R3 = {0, 1, 1 + x, x, 1 + x + x2, x + x2, 1 + x2, x2} by 1 + x2

and reducing modulo x3 − 1 yields the set {0, 1 + x, 1 + x2, x + x2}. Thus the set
C = {000, 110, 101, 011}, formed using the coefficients of the polynomials, is cyclic.

9.2. Hamming Code.

Definition 10. A code G is a Hamming Code if the rows of its parity check matrix
H are (Fq)n \ 0.

Then any Hamming Code G is a perfect code which can correct single errors and
detect two errors, by Theorem 5. The code generated by

G =


1000111
0100110
0010101
0001011


is a Hamming Code because its parity check matrix H is all of (F2)3:

H =



111
110
101
011
100
010
001

,


.

18 LINDA MUMMY

which can be used to generate the entire code C:

C =



0000000
1000111
0100110
0010101
0001011
1100001
1010010
1001100
1110100
1101010
1011001
1111111
0110011
0101101
0111000
0011110

10. Fixed Weight Codes

Recall from Definition 6 that A2(n, d) is the maximum number of codewords
of length n where every codeword is at least d distance away from every other
codeword. All codewords are binary.

Definition 11. Let us define the weight of a binary codeword to be the number of
1s in the codeword. The notation A(n, w, d) is the maximum number of codewords
in Fq which are all at least d distance apart and of weight w.

We can extend this notation and let A(n1, w1, n2, w2, d) be the maximum number
of binary codewords that can exist when, in addition to all being at least d units
apart, the first n1 digits have weight w1 and the next n2 digits have weight w2.
The length of the code is n1 + n2.

10.1. Finding fixed-weight codes. In an attempt to determine the correct value
for A2(8, 3), we again use the greedy algorithm, this time limiting our search to
vectors of weight 3. That is, for all x ∈ C, where C is our code, w(x) = 3. The
greedy algorithm requires an initial vector. We enter a variety of initial vectors into
the MATLAB script, but each time the result in a code of only 11 codewords, like
C:

C =



11010001
00001111
00110011
00111100
01010110
01100101
01101010
10011010
10100110
10101001
11001100

OPTIMIZING SIZES OF CODES 19

Since this is far less than the 16 codewords we found using the regular greedy algo-
rithm, we will discard using the greedy algorithm as a device to find codes of weight
3 which maximize A2(n, w, d). Perhaps the upper bound for A2(n, w, d) is consid-
erably smaller than the upper bound for A2(n, d). This would be an interesting
topic for the reader to explore further.

11. Conclusion

We use ISBN number to introduce the topic of error correcting codes, and then
investigate methods for determining optimal sizes for these codes. Defining vector
spaces over finite fields allows us to determine how many errors codes are culpable
of correcting. We also briefly touched on many different kinds of error correcting
codes, perfect codes, linear codes, cyclic codes, dual codes, Hamming codes, and
fixed weight codes, giving definitions and showing how to find them and decrypt
messages. This paper only scratches the surface of coding theory. Polynomials
play a disproportionally small role in this paper in relation to the role they play
in coding theory as a whole. The interested reader might explore polynomials in
codes other than cyclic codes (see Hoffman et al 1992). Some knowledge of abstract
algebra is required, but a cursory exploration, like that provided by Hill, deals only
with the aspects of algebra necessary to understand basic coding theory (see Hill
1986). An interesting example of a code which uses polynomials but is not cyclic
is the Reed-Solomon codes (see Hoffman et al 1992 p. 139-170).

One might expand on the theory in other ways, such as using weighted codes to
determine upper bounds for codes (see Best, et al. 1978 p. 81-92). Coding theory
techniques and ideas can also be used in cryptography and data compression.

Alternately, if the reader is more interested in applications, he or she might
explore the uses of coding theory in real life applications like music on compact
discs (see Hoffman, et al 1992 p. 182-184, p. 249-252) or numbers on driver’s
licenses (see Gallian 1996 p. 504-517).

20 LINDA MUMMY

References

[1] Best, M.R. et al. “Bounds for Binary Codes of Length Less Than 25.” 1978, 81-92.
[2] Blum, Manuel, Michael Luby and Ronitt Rubinfeld. “Self-Testing/Correcting with Applica-

tions to Numerical Analysis.” Journal of Computer and System Sciences. Volume 47, Issue 3

(December 1993), 73-83.
[3] Connor, Stever. “The invisible border guard.” New Scientist, 5 January 1984, 9-14.

[4] Gallian, Joseph. “Assigning Driver’s License Numbers”. Mathematics Magazine, Vol. 64, No.

1, February 1991 13-22.
[5] Gallian, Joseph. “How Computers Can Read and Correct ID Numbers.” Math Horizons,

Winter 1993, 14-15.

[6] Gallian, Joseph. “The Zip Code Bar Code”. UMAP Journal, 7 (1986) 191-195.
[7] Gallian, Joseph A and Steven Winters. “Modular Arithmetic in the Marketplace.”

The Teaching of Mathematics, v.95 n.6, p.549-551, June/July 1988.

[8] Hill, Raymond. A First Course in Coding Theory. New York: Oxford University Press, 1986.

[9] Hoffman, D.G. et al. Coding Theory: The Essentials. New York: Marcel Dekker, Inc., 1992.

[10] Stewart, Ian. Galois Theory. New York: Chapman & Hall/CRC, 2004.

[11] Tuchinsky, Philip M. “International Standard Book Numbers.” The UMA Journal. 5, 1989,

41-54.

[12] Wood, Eric. “Self-Checking Codes - An Application of Modular Arithmetic”.
Mathematics Teacher, 80, 1987, 312-316

OPTIMIZING SIZES OF CODES 21

12. Appendix A: MATLAB Code for Greedy Algorithm

function numCodes=Aq()

n=5;
d=3;
q=10;

codes(1,1:n)=zeros(1,n);

%check=zeros(1,n);

for i=1:q^n-1

[r,c]=size(codes);
baseq=dec2base(i,q);
x=str2num(baseq);
comp=toArray(x,n)
for j=1:r

%distVect stores the distances of each vector to comp
distVect(j)=hamming(comp,codes(j,1:n));

end

rep=1;
for j=1:r

if (distVect(j)<d)
%rep=0 if this vector is too close to the other vectors
rep=0;

end

end

% adds codeword to the list if it is sufficiently far away
if (rep==1)

codes(r+1,1:n)=comp;
end

end

codes

size(codes)

end

22 LINDA MUMMY

%determines the Hamming Distance between vectors a and b
function y=hamming(a,b)

%makes the vectors the same length, adding 0s to the shorter of the two
%vectors
%aArray=toArray(a);
%bArray=toArray(b);

aArray=a;
bArray=b;

la=length(aArray);
lb=length(bArray);

if (la<lb)
aArray(lb-la+1:lb)=aArray(1:la);
aArray(1:lb-la)=0;

end

if (la>lb)
bArray(la-lb+1:la)=bArray(1:lb);
bArray(1:la-lb)=0;

end

% aArray and bArray are now the same length
ln=length(bArray);

count=0;

for i=1:ln
if (aArray(i)~=bArray(i))

count=count+1;
end

end

y=count;

end

OPTIMIZING SIZES OF CODES 23

13. Appendix B: Proof of Theorem 8

Theorem 8: For any g(x) and nonzero f(x) in Fq[x] there exist unique polyno-
mials q(x) and r(x) such that

g(x) = q(x)f(x) + r(x)

where deg r(x) <deg f(x).

Proof. The existence proof is by induction on the degree of g(x).
Base Case: If deg g(x) = −∞ then g(x) = 0 and so q(x) = r(x) = 0. If deg

g(x) = 0 then g(x) = r(x) and q(x) = 0. If deg f(x) = 0 then f(x) = g(x). Else,
deg f(x) > 0 and thus r(x) = g(x) and q(x) = 0.

Induction Step: Assume the hypothesis is true for cases where deg g(x) < n.
(The degree of g(x) must be positive, 0, or −∞ by the definition of a polynomial.)
Let

g(x) = bnxn + · · ·+ b0

f(x) = amxm + · · ·+ a0

where the leading coefficients are nonzero and deg f(x) < deg g(x). We can now
introduce the polynomial g1(x):

g1(x) = bna−1
m xn−mf(x)− g(x).

The term of highest degree in g(x) cancels and thus deg g1(x) < deg g(x). Then
we can apply the induction hypothesis and write g1(x) in the following unique
factorization:

g1(x) = f(x)q1(x) + r1(x).
Now let

q = bna−1
m xn−m − q1(x)

and

r = −r1.

Then
g = f(x)q(x) + r = f(x)(bna−1

m xn−m − q1(x))− r1

To prove uniqueness, suppose that a polynomial g(x) has two different possible
factorizations:

g(x) = f(x)q1(x) + r1(x)
and

g(x) = f(x)q2(x) + r2(x).
We subtract these polynomials to get

g(x)− g(x) = f(x)q1(x) + r1(x)− f(x)q2(x)− r2(x)(8)
0 = f(x)(q1(x)− q2(x)) + r1(x) + r2(x)

r2(x)− r1(x) = f(x)(q1(x)− q2(x))

Since degf(x)(q1(x)− q2(x)) >degr2(x)− r1(x), the degrees of both must be 0.
Then r1(x) = r2(x) and q1(x) = q2(x) and the division algorithm produces unique
polynomials.

�

