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Abstract. A survey of Differential Geometry is presented with emphasis on sur-
faces in R3. Differentiation on surfaces and a dual approach to normal, Gauss, and
mean curvature involving the Shape Operator and fundamental forms are developed.
Gauss’s Theorem Egregium is proved and a supporting discussion of diffeomorphic and
isomorphic surfaces is included. Minimal surfaces are examined and Aleksandrov’s
“Soap Bubble” Theorem regarding compact surfaces of constant mean curvature is
proved.

1



2 ALEX MASARIE AND DR. ALBERT SCHUELLER (ADVISOR)

1. Introduction

1.1. Motivation. When we contemplate the physical world we often fixate on the
things in it. What affect does this or that have on us as humans? How does time change
the observable aspects of our surroundings? How can we characterize the structure or
shape of objects? Inquiry with intent to satisfy these curiosities represents a vast human
effort, namely the development of scientific thought. However, what if the “this or that”
in these questions is the physical world itself? Beautiful branches of mathematics,
physics, and even astronomy have developed to address this specific subset of questions.
These areas of study probe fundamental properties regarding the physicality, such as
shape, of not only the things in the space around us, but also the space itself.

Columbus said the world is round. In the absence of massive objects Einstein says the
universe is locally flat. Even in our everyday lives it seems rare to deviate from roundness
and flatness. If that is true, then what do these aforementioned, “beautiful” fields of
interest consist of? Of course, we could argue, and argue successfully, the existence of
objects that are neither round nor flat (the canopied rooftop of Denver International
Airport for instance), but we find more complexity and beauty when comparing and
contrasting shapes. Even in the somewhat restrictive context of round versus flat there
exists much to talk about. A very simple example motivates the wealth of questions
that arise.

Let us consider a line, not so much the picture of a line itself, but the process one
performs to construct a line. We equip ourselves with a sturdy meter-stick, place it
flat on the ground, and draw a straight line. Once we run out of straight edge we
pick the meter-stick up and carefully align it with our previous line and draw again.
Assuming we could continue doing this without major obstacles like curbs or the Indian
Ocean, what would happen? Columbus knew. We would eventually place our meter-
stick and see a line already drawn on the pavement. We return to where we began!
Figure 1.1 shows our resulting “line.” The shape of the space we inhabit, the Earth,

Figure 1. A line curves on a curved space. On this sphere our method
of constructing a line by continuous drawing results in a finite, closed
contour.
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has fundamentally affected our simple drawing of a line. What we drew is not infinite,
as true lines ought to be, and is arguably more like a circle than any sort of line. How
can we possibly resolve this ambiguity? We cannot even decide if we drew a line or not!
This basic example illustrates the issues we confront when carefully characterizing the
shape of space itself.

To say the least, the problems evident in this example are troubling. For instance,
they call the entire theory of Calculus into question with all its attempts to assign
mathematical rigor to shape. Suppose we set about calculating the derivative of our
Earth-bound line. From Calculus we know the derivative applied to a line should reveal
a constant slope. Should we set about calculating the derivative on meter-stick scales
where a constant slope seems plausible? Or would it be best to orient ourselves so
that we are looking at the globe where the circle-like properties are evident? These
questions attest to discrepancies when we consider local versus global properties of
a curved surface. Luckily, the beautiful field we have been referring to steps in to
salvage this situation. Differential Geometry addresses these very fundamental issues;
it develops a high level of mathematical rigor to apply to the shape of space.

1.2. Synopsis. We highlight some of the key notions in basic Differential Geometry.
Our intent is to develop enough background to prove Aleksandrov’s “Soap Bubble” The-
orem and, perhaps more importantly, understand its significance. To orient ourselves
and develop some key mathematical tools we first discuss differentiation on arbitrary
surfaces in R3, thus addressing the dilemma outlined in Section 1.1. With the meth-
ods of differentiation firmly in place we begin our investigation of shape by studying
the various types of curvature defined on a surface, such as the principal, Gauss, and
mean curvatures. Next, we demonstrate some computational techniques so we can
draw on curvature to formulate some rudimentary properties of surfaces. We observe
two markedly different approaches to Differential Geometry: the Shape Operator and
the fundamental forms. This exposition reconciles them and draws from the strengths
of each set of ideas for the more advanced theorems. We lead into our more specific
characterizations, Gauss’s Theorem Egregium and ultimately Aleksandrov’s Theorem,
by defining and exploring the features of minimal and other constant mean curvature
surfaces.

2. Differentiation on Surfaces

This section presents a thorough introduction to surfaces and shows how to differen-
tiate both scalar functions and vector fields on a surface. We explore tangent planes and
the unit normal in Section 2.3. Sections 2.4, 2.5, and 2.6 develop the primary surface
derivatives that we use in this paper. We introduce the torus, a surface that serves as
an example for many of our theoretical results, providing a common thread.

2.1. Surface Definition. Our first task is to assign mathematical rigor to the notion
of surface. Much of our discussion of differentiation mirrors that found in John Oprea’s
text: Differential Geometry and Its Applications. 1 Oprea’s exposition of differentia-
tion is geared towards undergraduates and is highly cohesive with our work involving

1J.Oprea. Differential Geometry and Its Applications. The Mathematical Association of America,
Pearson Education, Inc., Washington D.C., 2007.



4 ALEX MASARIE AND DR. ALBERT SCHUELLER (ADVISOR)

the geometry of surfaces in R3 in particular.
Although a surface may inhabit three dimensional space, it possesses an inherent two

dimensionality. If we imagine moving about on a surface, that is on a sphere, soap film,
or inner tube, there is always a dimension in which we are forbidden to move without
leaving the surface. On the surface of the Earth, this is the familiar direction “up.”
This observation is advantageous because we seek to develop Calculus techniques on a
surface and the topic of Calculus is very familiar to us in two dimensions.

Let D be an open set in R2 and let

x : D 7→ R3

be a mapping from D to three dimensional space. Here and throughout, bold face
type denotes a vector, specifically x is a vector-valued function. We routinely use the
parameters u and v in the context of an ordered pair (u, v) ∈ D. Hence, a parallel
notation for the mapping specified by x is

(u, v) 7→ (x1(u, v), x2(u, v), x3(u, v))

where the component functions xi : D 7→ R specify the components of the vector
x(u, v). In this paper we assume the component functions xi are continuous and twice
differentiable.

Reader beware! The xi is not the scalar function x raised to the ith power. We use
superscripts to denote separate component functions. In R3 we are familiar with to
the coordinates (x, y, z), but let us adopt the more general notation (x1, x2, x3). This
notation affords easy generalization to higher dimensions (where we quickly run out of
letters) and allows us to use summation notation where applicable. So the function
x1(u, v) specifies the x1 coordinate of the mapping, the function x2(u, v) gives the x2

coordinate, and the function x3(u, v) gives x3.
The parameters u and v can be made to vary together or independently in D to

generate parameter curves in R3. For instance, if we let v = v0 and vary u, then x(u, v0)
is called a u-parameter curve. A v-parameter curve is defined analogously. Notice,
in R3, the u- and v-parameter curves meet at x(u0, v0). That the u- and v-parameter
curves meet in R3 is of crucial importance because we utilize them to develop information
about the behavior of the vector-valued function x. We often desire to generate the
tangent vectors to the parameter curves at a given point. We obtain such tangent
vectors by applying partial derivatives to the component functions xi,

∂x
∂u

= xu =
(
∂x1

∂u
,
∂x2

∂u
,
∂x3

∂u

)
and

∂x
∂v

= xv =
(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v

)
.

Hence, given a point (u0, v0) ∈ D, tangent vectors to the u- and v-parameter curves,
which we know intersect at x(u0, v0) ∈ R3, are xu(u0, v0) and xv(u0, v0) respectively.

As the reader may have surmised, the primary goal is to produce vector-valued func-
tions x : D ⊆ R2 7→ M ⊆ R3, where M is a surface. Considering u- and v-parameter
curves as well as the associated partial derivatives xu and xv we notice the two dimen-
sionality of a surface we mentioned earlier manifests strongly in the parameters u and
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v. If we hope to use the structure of vector-valued functions to define a surface, then
we must introduce some condition to maintain the linear independence of the tangent
vectors xu(u0, v0) and xv(u0, v0). The following Lemma 2.1 proves the condition we
need is xu × xv 6= 0. This is called regularity.

Lemma 2.1. The tangent vectors xu(u0, v0) and xv(u0, v0) are linearly dependent if
and only if xu × xv = 0.

Proof. Suppose xu and xv are linearly dependent, that is there exists a scalar c ∈ R
such that xu = cxv. Then

xu × xv = (cxv)× xv = c(xv × xv) = 0.

Suppose xu × xv = 0, then xu and xv are parallel meaning xu = ĉxv for some ĉ ∈ R.
Thus, xu and xv are linearly dependent. �

A coordinate patch (or simply patch) is a one-to-one mapping x : D 7→ R3 such
that given any (u0, v0) ∈ D, xu(u0, v0) × xv(u0, v0) 6= 0. If M ⊆ R3 and each point
(x1, x2, x3) ∈ M has a neighborhood, also in M , that is the image of some coordinate
patch x : D 7→ R3, then M is called a surface. The name “patch” is actually quite
descriptive because there are numerous examples of surfaces that require more than one
patch to be completely parametrized. There may be overlap among the patches, but for
M to be a surface there cannot be any “bare spots” where no coordinate patch can be
defined. The stipulation that each coordinate patch in this covering be regular, that
is xu × xv 6= 0, is incredibly important because it prohibits creases. Furthermore, the
coordinate patches that cover a surface M are one-to-one and thus inverse mappings
exist for each patch. For instance, the mapping y−1 : M 7→ D takes a region on the
surface M back to a subset of the original domain D in a one-to-one fashion. We may
now form mappings from D to itself that move first to the surface M and then back.
What does this look like in terms of component functions? Suppose

x : (u, v) 7→
(
x1(u, v), x2(u, v), x3(u, v)

)
,

then we can find functions ū and v̄ such that

x−1 : (x1, x2, x3) 7→ (ū(x1, x2, x3), v̄(x1, x2, x3)) .

Notice that the functions ū and v̄ are not the inverses of the component functions xi.
This fact is often masked when we write x−1 ◦ y : D 7→ D because we can express
x−1 ◦ y = (r(u, v), s(u, v)), where r, s : D 7→ R.

Take any two patches x and y for a surface M with coordinate functions xi and yi.
Suppose for each i and each n ∈ N, the four partial derivatives:

∂nxi

∂un
,

∂nxi

∂vn
,

∂nyi

∂un
, and

∂nyi

∂vn

exist and are continuous. We say x−1 ◦ y : D 7→ D is differentiable. Furthermore, as
x and y are arbitrary patches for M , this indicates M is differentiable or smooth.
All surfaces we examine are smooth. The stipulations of regularity (xu × xv 6= 0) and
smoothness ensure that a differentiable surface has no creases and varies reasonably
nicely in R3. Let us introduce such a surface, the torus.
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Figure 2. A torus with R = 2r.

Example: A Smooth Surface, the Torus

Many examples of smooth surfaces can be created by rotating curves or regions in two
dimensions about some fixed axis allowing a three dimensional shape to “drag” along
through a complete or partial revolution. We can create a torus or inner tube surface
in this manner. Begin with a circle in the x1x3-plane with center (R, 0, 0) and radius
r. Revolution about the x3-axis produces the torus surface, which can be completely
described with the parameters u and v. All points on the torus can be represented as

((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu)) ,

where 0 ≤ u < 2π and 0 ≤ v < 2π. In this expression u traces around the tubular
body of the torus and v traces the position about the x3-axis. To better visualize this
imagine we have a pivoting stem of length r attached to the circle through the middle
of the torus; that is attached to the circle that is formed by revolving the point (R, 0, 0)
about the x3-axis. The parameter u refers to the angle of the pivot above or below the
x1x2-plane and the parameter v refers to the angle of the pivot’s point of attachment
measured from the positive x1-axis. Figure 2 shows an example of a torus with R = 2r.

Appealing to the geometry of the torus as a surface of revolution in this way, we can
define the coordinate patch

(1) T(u, v) = ((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu)) .

To show T is regular, compute

Tu(u, v) = (−r sinu cos v,−r sinu sin v, r cosu)

and
Tv(u, v) = (R+ r cosu)(− sin v, cos v, 0)
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by taking the partial derivatives of the component functions with respect to u and v
respectively. Notice, this patch is regular because for all

Tu ×Tv = −r(R+ r cosu)(cosu cos v, cosu sin v, sinu) 6= 0.

So T is indeed a coordinate patch and covers the entire surface. The domain of u and
v specifies the region D, the square [0, 2π)× [0, 2π). Furthermore, the torus is smooth
because all derivatives of the sine and cosine terms in the component functions exist
and are continuous. We return to the torus, with its very familiar inner-tube shape,
often because it is a strong example of the theoretical concepts we discuss.

2.2. Curves on a Surface. Given a surface M and an open subset D ⊆ R2, a coordi-
nate patch x : D 7→ R3 maps two dimensional space to the surface in three dimensional
space. Remember the surface has a constraint meaning although it exists in R3, it really
only possesses two dimensions or degrees of freedom. This concept is clear when con-
sidering the domain of the coordinate patch is a subset of R2, not R3. Suppose we draw
a curve α on a surface M . Although α exists in R3, it has only one degree of freedom
or a one-dimensionality. Just as for a surface and its associated coordinate patches, we
can define a mapping describing this curve that reflects the limiting of dimensionality
we are discussing. We think of the curve α as a mapping α : I 7→ M where I ⊆ R. A
more suggestive notation is α(t) = (α1(t), α2(t), α3(t)) for t ∈ I and component scalar
functions αi : I → R.

In most cases we have difficulty building functions of the form α(t) directly. The
solution is to use R2 as an intermediate step and make use of the coordinate patch x
to step from R2 up to M . A curve α is differentiable if for each patch x : D 7→ M ,
the composite function x−1 ◦ α : α−1(x(D)) 7→ D is differentiable. In other words, α
is differentiable when the mapping that takes the portion of I to the surface M and
back to the domain D of any coordinate patch x is differentiable. So instead of seeking
an appropriate function on R to map out the curve α on M , we tie properties of the
curve to the coordinate patch so we can tackle the somewhat easier task of defining
parametric equations in D to map α on M . The following existence result ensures we
can always do this when α is differentiable.

Lemma 2.2. Let M be a surface. Suppose α is a differentiable curve on M contained
in the image of some coordinate patch x : D 7→ M , that is for some subset I ⊆ R,
α : I 7→ x(D) ⊆ M . Then there exist unique, differentiable functions u, v : I 7→ R such
that α(t) = x(u(t), v(t)).

Proof. The curve α is differentiable so by definition x−1 ◦ α : I 7→ D is differentiable.
This composition is a differentiable, vector-valued function so its component functions
must also be differentiable. That is, there exists differentiable scalar functions u and v
such that

x−1 ◦α(t) = (u(t), v(t)).
Compose each side of this expression with the coordinate patch x to find

α(t) = x(u(t), v(t)).

Now suppose there were two different scalar functions ũ and ṽ such that α(t) =
x(ũ(t), ṽ(t)). Then

(u(t), v(t)) = x−1 ◦α(t) = x−1 ◦ x(ũ(t), ṽ(t)) = (ũ(t), ṽ(t)).
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Figure 3. Closed circles in D map to closed contours on the surface of
the torus.

Hence u and v are unique. �

As with any parametric equations we can always re-parametrize u and v to suit our
current problem, but Lemma 2.2 shows all such parametrizations must be related.

Example: Surface Curves on the Torus

Let us consider some surface curves on a the torus in Figure 2. Recall from Sec-
tion 2.1 the coordinate patch that covers the inner-tube shape of the torus is T :
[0, 2π)× [0, 2π) 7→ R3. Two basic families of curves on the torus are u- and v-parameter
curves. We fix v = v0 and see the u-parameter curves trace circles about the body of
the inner-tube. Fixing u = u0 leads to v-parameter curves that trace circles about the
central z-axis on the torus. We study these two families of curves when we consider the
Gauss map in Section 3.2.

Perhaps more interesting are the images of circles in [0, 2π)× [0, 2π) under the map-
ping T, shown in Figure 3. Just as in Section 1.1, where the shape of the Earth affected
our ideal of a line, observe the circles in D are distorted when mapped to the surface
of the torus under T. We calculate the circumference of these distorted torus-circles in
Section 3.3.

2.3. The Tangent Plane and Unit Normal. We have already hinted at the useful-
ness of adopting regularity, that is xu × xv 6= 0 for coordinate patch x, but we cannot
emphasize enough the importance of Lemma 2.1 in terms of describing the geometry of
a surface.

In Calculus, the tangent line serves as a local approximation to a curve in R2. In
the Calculus applied to surfaces, a tangent plane serves as a local approximation to a
surface in R3. Notice again the dimensionality analogies; it takes a single-dimensional
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object to approximate a two-dimensional object so naturally, a two-dimensional object
approximates a three-dimensional object. Suppose α is a differentiable curve on a sur-
face M . Fix t0 in the domain of α and notice α(t0) specifies some point p ∈M . What
is the significance of α̇(t0) (where the dot denotes differentiation with respect to the
parameter t)? In terms of component functions αi,

α̇(t) =
(
dα1

dt
,
dα2

dt
,
dα3

dt

)
.

From vector calculus we know α̇(t0) denotes a vector pointing in a direction tangent to
α at the point p. Notice the direction specified by α̇(t0) is also tangent to the surface
M because α is constrained to move on the surface. In fact, we use this notion to
define what it means to be tangent to a surface. A given vector v is tangent to M at
p ∈M if there exists some curve α on M such that α(t0) = p and α̇(t0) = v. Through
re-parametrization of α we can force t0 = 0 so that is typically how we encounter this
definition: α(0) = p and α̇(0) = v.

Recall there exists exactly two unit vectors tangent to a curve in R2 at a point, one
in each direction along the line of tangency. In the case of a surface, there are infinitely
many unit tangent vectors at a point p, one for each curve on the surface (and there
can be a curve through p in every direction). We collect the unit tangent vectors to
form the tangent plane

Tp(M) = {v | v is tangent to M at p}.
Notice there is a serious ambiguity as to which tangent vector we are referring to because
Tp(M) is an infinite collection of vectors. Here is where the linear independence of the
xu and xv patch derivatives becomes useful. Notice the point p is the image under patch
x : D 7→M of some point (u0, v0) ∈ D. Recall from Section 2.1 the u- and v-parameter
curves intersect at x(u0, v0) = p. Lemma 2.3 shows xu and xv form a basis for Tp(M).

Lemma 2.3. The vector v is in Tp(M) if and only if v is a linear combination of the
vectors xu(u0, v0) and xv(u0, v0).

Proof. Suppose v ∈ Tp(M). By definition there exists a curve α : I 7→ M such that
α(0) = x(u0, v0) = p and α̇(0) = v. By Lemma 2.2 there exist differentiable functions
u, v : I 7→ R such that

α(t) = x(u(t), v(t)).
We know u(0) = u0 and v(0) = v0 because α(0) = x(u(0), v(0)) = x(u0, v0). Taking
the derivative with respect to t we have

d

dt
(α(t)) =

d

dt
(x(u(t), v(t))) ,

which according to the vector calculus chain rule is

α̇(t) = u̇ (t)xu(u(t), v(t)) + v̇ (t)xv(u(t), v(t)).

When evaluating this last expression at t = 0 we see

α̇(0) = u̇(0) xu(u(0), v(0)) + v̇(0) xv(u(0), v(0)),

or
v = u̇(0) xu(u0, v0) + v̇(0) xv(u0, v0).
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Therefore, v is a linear combination of xu(u0, v0) and xv(u0, v0), the respective weights
are given by u̇(0) and v̇(0).

Now suppose for constants λ1, λ2 ∈ R, v = λ1xu(u0, v0) + λ2xv(u0, v0). Consider the
function α(t) = x(u0 + λ1t, v0 + λ2t). Note α(0) = x(u0, v0) = p. Also,

α̇(t) =
d

dt
(x(u0 + λ1t, v0 + λ2t))

=
(
d

dt
(u0 + λ1t)

)
xu(u0 + λ1t, v0 + λ2t)

+
(
d

dt
(v0 + λ2t)

)
xv(u0 + λ1t, v0 + λ2t)

= λ1 xu(u0 + λ1t, v0 + λ2t) + λ2 xv(u0 + λ1t, v0 + λ2t)

So α̇(0) = v. Thus, vector v is tangent to M by definition. �

Given a surface M and a point p, the tangent plane Tp(M) serves two very important
purposes. One, it is a local approximation to M at p, so we can approximate even the
most bizarre surfaces by forming tangent planes. Two, we can easily construct the unit
normal direction to M at p by finding the unit normal direction to the tangent plane
at p as

Û =
xu × xv
|xu × xv|

.

This new quantity U is one of the many keys that allow us to characterize the shape of
surfaces. Again, we see why regularity (xu × xv 6= 0) is included in the very definition
of surface. As a result, the existence of Û is never a concern so it is an exceedingly
robust tool.

Example: Tp and Û on the Torus

Refer to Section 2.1 for the form of the torus patch T. Using Tu and Tv we compute

Û =
Tu ×Tv

|Tu ×Tv|
= −(cosu cos v, cosu sin v, sinu).

Note the unit normal does not depend on the inner radius R nor the tube radius r. In
order to develop a concrete example of the unit normal and tangent plane pick a point
on the torus in Figure 2 (where R = 2r). Say

p = T
(
π

3
,
7π
6

)
= r

(
−5
√

3
4
,−5

4
,

√
3

2

)
.

Compute the unit normal

Û(p) =

(
−
√

3
4
,−1

4
,

√
3

2

)
.

Finally, form the tangent plane Tp(T) represented by a function of (x1, x2, x3) ∈ R3 as

((x1, x2, x3)− p) · Û(p) = 0.

Figure 4 shows the torus, the point p, and the tangent plane together.
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Figure 4. On this torus R = 2r. The tangent plane Tp(T) is a local
approximation of the torus.

2.4. Directional Derivatives. We are finally ready to introduce the concept of deriv-
ative on a surface. There are many flavors of differentiation that make sense on a surface
in R3, but share a similar motivation, namely the rate of change of some quantity on
the surface. Of course, we start with the basics and develop the familiar directional
derivative, which translates easily from vector calculus to a surface.

As expected, the directional derivative applies to scalar functions defined on a sur-
face M ; ū and v̄ from Section 2.1 are such functions. Suppose g : M 7→ R. If, for each
coordinate patch x defined on M , the composition g ◦ x : D 7→ R is differentiable, then
we say g is differentiable on M . Note, g is a function of points p ∈ M so we denote
g = g(x1, x2, x3). When we discuss the rate of change of g on the surface we must
specify a direction of travel. Calculus students are accustomed to considering direction
when computing derivatives, think about elevation functions and the slope of a trail de-
pending on which direction we hike. We set about computing the derivative of g along
some curve α : I 7→ M with component functions αi(t) for i = 1, 2, 3. As in Section
2.2 α is parametrized with t. Consider the composition g ◦ α : I 7→ R. The curve α
specifies the way in which the coordinates (x1(t), x2(t), x3(t)) change with respect to
the parameter t:

dxi
dt

=
dαi

dt
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for i = 1, 2, 3. Using an index such as i allows us to adopt summation notation for
organization and clarity. Using the vector calculus chain rule we compute

d

dt
(g(α(t))) =

3∑
i=1

∂g

∂xi

dxi
dt

=
3∑
i=1

∂g

∂xi

dαi

dt

=
(
∂g

∂x1
,
∂g

∂x2
,
∂g

∂x3

)
·
(
dα1

dt
,
dα2

dt
,
dα3

dt

)
where · denotes the dot product. Notice, the vector on the right is α̇(t). The left hand
vector is recognizable as the gradient of g, in fact, we adopt the familiar vector calculus
definition

∇ .=
(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

With this notation we can write the derivative

d

dt
(g(α(t))) = ∇g(α(t)) · α̇(t).

Recall from Section 2.3 the notion of direction on M is completely analogous to the
directions on associated tangent planes Tp(M). So, what is the rate of change of g
in some direction v ∈ Tp(M)? We simply define a curve α such that α(0) = p and
α̇(0) = v and evaluate the above expression for t = 0:

d

dt
(g(α(0))) =

d

dt
(g(p)) = ∇g(p) · v.

The derivative of g in the direction of v is the projection of the gradient of g onto v.
We use the directional derivative so often that it warrants a special notation

(2) v[g](p) .= ∇g(p) · v.

Read equation (2) as “v bracket g at p” and notice we can also use summation notation

(3) v[g](p) =
3∑

i=1

∂g
∂xi

(p) vi,

where v = (v1, v2, v3). This is called the directional or bracket derivative.

Lemma 2.4 (Leibniz’s Product Rule). Suppose v = (v1, v2, v3) ∈ Tp(M) and g, h :
M 7→ R, then v[g h](p) = v[g](p)h(p) + g(p) v[h](p).

Proof. This result follows from the summation form of the directional derivative and
the chain rule of ordinary calculus. We temporarily drop the point of evaluation p for



DIFFERENTIAL GEOMETRY SENIOR PROJECT — MAY 15, 2009 13

clarity,

v[gh] =
3∑
i=1

∂

∂xi
(g h)vi =

3∑
i=1

(
∂g

∂xi
h+ g

∂h

∂xi

)
vi

=
3∑
i=1

∂g

∂xi
h vi +

3∑
i=1

g
∂h

∂xi
vi

= h
3∑
i=1

∂g

∂xi
vi + g

3∑
i=1

∂h

∂xi
vi

= v[g]h+ g v[h]

Hence, v[g h](p) = v[g](p)h(p) + g(p) v[h](p). �

We note in passing that the directional derivative is a linear operator, in other words

v[λ1g + λ2h] = λ1v[g] + λ2v[h]

for constants λ1, λ2 ∈ R.
Lemma 2.5 shows how the directional derivative behaves when applied in the direc-

tions xu and xv.

Lemma 2.5. Suppose p ∈M is in the image of some coordinate patch x, which has u-
and v-parameter derivatives xu and xv. Let g : M 7→ R be a function, then

xu[g](p) =
∂(g ◦ x)
∂u

(p) and xv[g](p) =
∂(g ◦ x)
∂v

(p).

Proof. Suppose x(u0, v0) = p and recall the u-parameter curve on M is x(u, v0). In this
light, we are in a familiar situation, the parameter is now u:

xu[g](p) =
d

du
(g(x(u, v0)))|u=u0 =

∂(g ◦ x)
∂u

(u0, v0) =
∂(g ◦ x)
∂u

(p).

Proceed similarly to find the xv bracket derivative. Instead, use the v-parameter curve
x(u0, v). �

Lemma 2.5 allows us to adopt the shorthand

xu[g] =
∂g

∂u
and xv[g] =

∂g
∂v
.

The u and v partials really only make sense for the composition g ◦ x, but Lemma 2.5
tells us it is acceptable to leave out the composition in practice.

2.5. Covariant Derivatives. Section 2.4 introduces the bracket derivative as a method
of studying the rate of change of scalar functions defined on a surface M , but what about
vector fields defined on M? Through the development in this section keep in mind that
the vector field on M we eventually want to study is the collection of unit normals
Û : M 7→ R3.

For now we maintain generality by assuming a generic vector field Y : M 7→ R3. So
for points p ∈M we can also express Y as

Y(p) = (y1(p), y2(p), y3(p))
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with component functions yi : M 7→ R. Another organizational technique that permits
summation notation involves the unit vectors ê1, ê2, and ê3. These form a basis for R3

pointing along the x1, x2, and x3 axes respectively. We write

Y(p) =
3∑

k=1

yk(p)êk

when convenient.
Puzzling out the rate of change of Y, a vector field, over a three-dimensional surface

M requires a bit more thought than a basic directional derivative. In Section 2.4, we
observe the directional derivative essentially depends on three other derivatives, those in
each of the coordinate directions (wrapped up in the gradient ∇). A covariant derivative
expands on this and depends on nine other derivatives: three coordinate directions for
each of the three components of the field vectors. Picture standing on some surface
(held down by gravity or some sort of force) with a magic divining rod that always
points up (our very own unit normal Û). As we navigate the terrain of our surface, the
rod wiggles around maintaining the “up” direction. Not only can the rod move in three
directions, its orientation depends on the direction we travel, of which we have three
degrees of freedom (in the context of R3, the two dimensional constraint still applies).
There are the nine derivatives!

We apply the bracket derivative to the scalar component functions yi to define the
covariant derivative of Y in the direction of some vector v ∈ Tp(M),

∇vY .= (v[y1],v[y2],v[y3]) =
3∑

k=1

v[yk]êk.

This new derivative is also linear because the bracket derivative is. The covariant deriv-
ative leads to our first method of studying the shape of surfaces themselves: the Shape
Operator and the associated Gauss Map.

Example: Differentiation on the Torus

In Section 2.3 we calculated the unit normal for the torus,

Û = −(cosu cos v, cosu sin v, sinu).

Figure 4 shows Û(p) where p = T(π/3, 7π/6), but Û is really a vector field defined
for all points on the torus. Using our new covariant derivative, we can differentiate it
over the whole torus. Let p be an arbitrary point on the torus now and suppose we
want to know the derivative of Û for some direction v ∈ Tp(T). Lemma 2.3 shows that
v is a linear combination of Tu and Tv (the basis vectors) so we apply the covariant
derivative in the basis vector directions and observe

∇vÛ = ∇(λ1Tu+λ2Tv)Û = λ1∇TuÛ + λ2∇TvÛ.
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We have

∇TuÛ = (Tu[− cosu cos v],Tu[− cosu sin v],Tu[− sinu])

=
(
∂

∂u
(− cosu cos v),

∂

∂u
(− cosu sin v),

∂

∂u
(− sinu)

)
= (sinu cos v, sinu sin v,− cosu)

and similarly ∇TvÛ = (cosu sin v,− cosu cos v, 0). Notice the use of Lemma 2.5 as we
take u and v partials for the bracket derivatives.

2.6. Second Derivatives. In Sections 2.4 and 2.5 we present two notion of “first
derivative” on a surface: the directional derivative, a scalar value, and the covariant
derivative, a vector value. Although we present two types of second derivatives in this
section, both are scalar-valued. Vector-valued second derivatives exist, indeed they are
of great interest, but we do not use them here.

Again we consider a scalar function g : M 7→ R. Our first type of second derivative
is induced from the definition of the directional derivative using our bracket notation
(see equations (2) and (3)),

v[v[g]](p) .= ∇(∇g(p) · v) · v =
3∑
j=1

3∑
i=1

∂2g

∂xj∂xi
(p) vi vj ,

where v = (v1, v2, v3). We call this the second directional derivative because it
gives the second derivative of g is a specific direction v at a point p ∈M .

We also use the Laplacian, another scalar-valued second derivative. Suppose W ⊆ R3,
we start by defining the Laplacian for a scalar function G : W 7→ R3 as

(4) ∆G
.= ∇ · ∇G =

3∑
i=1

∂2G

∂x2
i

.

The function G is certainly related the function g we have used before, g can be thought
of as the restriction of G to M .

There is a subtle, yet important, comment that is specific to this type of differentiation
on surfaces in R3. While ∆G is the Laplacian in R3, a different Laplacian is required
when we think about the restrictions of a two dimensional surface because once we
restrict G to M , as g, x1, x2, and x3 are constrained. A similar phenomenon occurs
in vector calculus when computing the second derivative along a curve; we must take
curvature into account. Since we have yet to begin our discussion about the curvature
of a surface, we make the following definition and return to this problem in Section
5.3. Take p ∈ M and let α and απ/2 be curves on M that pass through p and are
perpendicular to each other at p. Let s and s̃ denote arc length along α and απ/2
respectively. If we adopt arc length parametrizations, then the scalar function g can be
differentiated on M with respect to s or s̃ along either α or απ/2. This derivative is
different than our familiar directional derivative because it is taken with respect to arc
length. The surface Laplacian of g at p ∈M is

(5) ∆M g (p) .=
∂2g

∂s2
(p) +

∂2g

∂s̃2
(p).
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Equation (5) is of theoretical use only (we never use it to actually compute a surface
Laplacian) because so much about the curvature of the underlying surface is hidden
in the arc length parameters s and s̃. The problem is really computational because
equation (4) is difficult to use because of the restrictions on x1, x2, and x3 and equation
(5) has arc length, which requires the curvature of M .

For now, we consider a basic example. This example comes from the introduction to
Robert Reilly’s 1982 paper Mean Curvature, The Laplacian, and Soap Bubbles, which
we discuss in greater depth in Section 5.3 because it provides an elegant proof of Alek-
sandrov’s Theorem. 2 Suppose M is a sphere. The Laplacian in spherical coordinates
(r, θ, φ) is

∆G =
1

r2 sin2 θ

∂2G

∂φ2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
+

2
r

∂G

∂r
+
∂2G

∂r2

and the surface Laplacian is

∆M g =
1

r2 sin2 θ

∂2g

∂φ2
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂g

∂θ

)
.

Notice the r derivatives just drop out for the surface Laplacian because a sphere has
fixed radius. Once again, this reflects the two dimensionality of a spherical surface,
although it sits in three dimensional space.

3. Curvature

We apply the theory of differentiation from Section 2 to explore the curvature of sur-
faces. Sections 3.1 and 3.2 sample Oprea’s text, while Sections 3.3 and 3.4 fundamental
forms, which mirrors Andrew Pressley’s approach in his text Elementary Differential
Geometry. 3 Oprea’s and Pressley’s approaches are notably disjoint reflecting the two
distinct methods of building the fundamentals of Differential Geometry. On one hand,
there is the Shape Operator approach, which emphasizes differentiation and gives the
discussion a Calculus-like feel. On the other hand, there are fundamental forms and
a matrix-based approach. We draw from the strengths of both methods and show the
differences are more notational than theoretical by reconciling the Shape Operator with
the fundamental form matrices in Lemmas 3.6 and 3.7.

3.1. The Shape Operator. Two rudimentary ways to characterize the shape of a
surface M are to watch how the unit normal Û behaves as we move around (recall the
divining stick example of Section 2.5) and to compare M to a sphere. The former of
these methods is accomplished using the Shape Operator and the latter using the Gauss
Map.

Define the Shape Operator of M at a point p ∈M in the direction of v ∈ Tp(M)
as

Sp(v) = −∇vÛ.

2R. Reilly. Mean curvature, the Laplacian, and Soap Bubbles. Amer. Math. Monthly 89 (1982), no.
3, 180-188+197-198.

3A. Pressley. Elementary Differential Geometry. Springer Undergraduate Mathematics Series,
Springer, London, U. K., 2008.
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What does this mean? Over the surface M , we consider the unit normal Û : M 7→ R3

to be a vector field with component functions ui : M 7→ R. Let α be a curve on M with
α(0) = p ∈ M and α′(0) = v ∈ Tp(M). By the definitions of the bracket (directional)
and covariant derivatives

∇vÛ =
3∑

k=1

v[uk] êk =
3∑

k=1

d

dt
(uk(α(t)))|t=0 êk.

So we are examining the component functions of Û alongα. The curveα is parametrized
by t, and ∇vÛ involves the partial derivative with respect to t. Put these ideas together
and we see ∇vÛ shows how the unit normal Û changes in the direction of α, a direction
also specified by the vector v.

The Shape Operator does exactly what we hinted at: Sp describes how the unit nor-
mal changes over the surface. This alone is somewhat unsatisfying because we are still
left to puzzle out the covariant derivative, but Sp’s utility extends much further. We
can recast Sp as a transformation of the vector space Tp(M). After all, ∇v is simply a
special type of vector-mapping. So the interpretation of Sp(v) as some representative
matrix (call it Sp) mapping, under matrix multiplication, vectors in Tp(M) to R3 is
entirely reasonable and moreover will prove very illuminating. Our intuition tells us a
mapping of vectors in R3 requires a 3 × 3 transformation matrix. However, the Shape
Operator acts on vectors v ∈ Tp(M) and even though Tp(M) exists in three dimensional
space (see Figure 4), Lemma 2.3 demonstrates only two vectors form a basis for Tp(M),
namely xu and xv. Hence, Sp will be a 2× 2 matrix and act on the basis {xu,xv}.

Recall from basic linear algebra a transformation T : R2 7→ R2 is called linear if for
vectors v1,v2 ∈ R2 and any constants c1, c2 ∈ R,

T (c1v1 + c2v2) = c1T (v1) + c2T (v2).

Also, T is symmetric if for all v1v2 ∈ R2,

T (v1) · v2 = v1 · T (v2).

Lemma 3.1. The Shape Operator Sp is a symmetric, linear transformation mapping
Tp(M) to itself.

Proof. Consider vectors v,w ∈ Tp(M) for some point p ∈M and constants c1, c2 ∈ R.
Suppose Û = (u1, u2, u3) is normal to the surface at p. Linearity follows from the
linearity of the bracket derivative of Section 2.4 (or more fundamentally the linearity of
all the partial derivatives represented in the covariant derivative):

Sp(c1v + c2w) = −∇(c1v+c2w)Û = −
3∑

k=1

(c1v + c2w)[uk]êk

= −c1
3∑

k=1

v[uk]êk − c2
3∑

k=1

w[uk]êk = c1Sp(v) + c2Sp(w).
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To show Sp maps Tp(M) to itself first consider

v[Û · Û] = v

[
3∑
i=1

(
ui
)2] = 2

3∑
i=1

uiv[ui]

= 2(u1, u2, u3) · (v[u1],v[u2],v[u3])

= 2 Û · (∇vÛ) = −2 Û · Sp(v).

But Û · Û = 1, as Û is a unit normal so v[Û · Û] = v[1] = 0. This shows Û · Sp(v) = 0,
which means Sp(v) is perpendicular to Û and therefore Sp(v) must lie in Tp(M). Note
this technique of applying the derivative to a constant dot product, we use it repeatedly
in Differential Geometry.

All that remains is to show Sp is symmetric. Recall Lemma 2.3 shows {xu,xv} form
a basis for Tp(M) so it is sufficient to demonstrate symmetry for the basis vectors, that
is show

Sp(xv) · xu = xv · Sp(xu).

Again, consider the dot product identity Û · xu = 0, which holds because Û is per-
pendicular to Tp(M). On one hand, we have xv[Û · xu] = v[0] = 0 and on the other,
compute

xv[Û · xu] = xv

[
3∑
i=1

ui
∂xi

∂u

]
=

3∑
i=1

xv

[
ui
∂xi

∂u

]

=
3∑
i=1

(
uixv

[
∂xi

∂u

]
+ xv[ui]

∂xi

∂u

)

=
3∑
i=1

(
ui
∂

∂v

(
∂xi

∂u
◦ x
)

+ xv[ui]
∂xi

∂u

)

=
3∑
i=1

(
ui
∂2xi

∂v∂u

)
+

3∑
i=1

(
xv[ui]

∂xi

∂u

)
= Û · xuv + (∇xvÛ) · xu = Û · xuv − Sp(xv) · xu.

Notice we have used the product rule of Lemma 2.4 and the result of Lemma 2.5 in
some of the steps of this computation. Hence, Sp(xv) · xu = Û · xuv. Starting with the
dot product identity Û · xv = 0 an analogous computation shows Sp(xu) · xv = Û · xvu.
Mixed partials are equal (xuv = xvu) therefore Sp(xv) ·xu = xv ·Sp(xu) as required. �

Lemma 3.1 has two important corollaries that we use in Sections 3.3 and 4.1.

Corollary 3.2. The following identities hold:

Sp(xu) · xu = Û · xuu and Sp(xv) · xv = Û · xvv.

Proof. Apply analogous calculations from the proof of Lemma 3.1 starting with xu[Û·xu]
and xv[Û · xv]. �
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Corollary 3.3. The Shape Operator has real eigenvalues.

Proof. From basic linear algebra we know a symmetric, linear 2× 2 transformation has
real eigenvalues. �

These basic results regarding the Shape Operator are quite technical and we have not
mentioned much about why the symmetric, linear transformation Sp(M) is even called
the “Shape” Operator.

Suppose v = u̇xu + v̇ xv ∈ Tp(M). Lemma 2.3 shows the weights are u̇ and v̇ for
some function u and v. Once we incorporate matrix machinery the concept of a basis
becomes paramount. Specifically, the standard basis for Tp(M) is

{xu,xv}.
As a vector in the standard basis we can write

(6) (v)s =
(
u̇
v̇

)
s

, (xu)s =
(

1
0

)
s

, and (xv)s =
(

0
1

)
s

,

where the subscript s indicates the standard basis. Notice (xu)s · (xv)s = 0, but in
terms of our x1, x2, x3 coordinate system xu and xv need not be orthogonal. In fact,
the standard basis reflects the notion of two dimensionality on the surface because even
though v,xu,xv ∈ R3, we can use a basis with two elements to describe them.

By the part of Lemma 3.1 that shows Sp is a mapping from Tp(M) to itself, we know
for some constants a, b, c, d ∈ R,

Sp(xu) = −∇xuÛ =
(
a
b

)
s

and Sp(xv) = −∇xvÛ =
(
c
d

)
s

.

The linearity of Sp implies

Sp(v) = Sp(u̇xu + v̇ xv) = u̇Sp(xu) + v̇ Sp(xv)
= u̇ (axu + bxv) + v̇ (cxu + dxv)
= (u̇ a+ v̇ c)xu + (u̇ b+ v̇ d)xv.

Two observations follow. We deduce the form of the Shape Operator’s representative
matrix

(Sp)s(v)s =
(
a c
b d

)
s

(
u̇
v̇

)
s

=
(
u̇ a+ v̇ c
u̇ b+ v̇ d

)
s

.

We also see how Sp involves the rate of change of Û in the basis xu and xv directions.
For small deviations from p, Û will “twitch” in amounts given by the weights in the
matrix Sp. The coefficients a, b, c, and d are far from arbitrary and we discover their
specific meanings in Section 3.5.
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Example: The Shape Operator Applied to the Torus

Most of the computation for the Shape Operator acting on the torus can be found in
Section 2.5. For p ∈ T and v = λ1Tu + λ2Tv ∈ Tp(T),

Sp(Tu) = −∇TuÛ = (− sinu cos v,− sinu sin v, cosu) =
1
r
Tu

Sp(Tv) = −∇TvÛ = (− cosu sin v, cosu cos v, 0) =
cosu

R+ r cosu
Tv.

To be more specific let us consider the point from the torus example in Section 2.3,
p = T(π/3, 7π/6) = r(−5

√
3/4,−5/4,

√
3/2), where Sp(Tu) = (3/4,

√
3/4, 1/2) and

Sp(Tv) = (1/4,−
√

3/4, 0). Notice in accordance with Lemma 3.1, which says Sp maps
Tp(T ) to itself, both Sp(Tu) and Sp(Tv) are orthogonal to Û(p) = (−

√
3/4,−1/4,

√
3/2)

(as given in Section 2.3).

3.2. The Gauss Map. Much of the rich, qualitative information the Shape Operator
provides is captured by the Gauss Map. As we mention in Section 2.3 the discussion of
the shape of a surface M often begins with the unit normal Û. Regularity (xu×xv 6= 0)
guarantees a unit normal Û(p) exists for every point p ∈M . How can we characterize
the collection of all unit normals defined on M?

To get an idea of the information held in Û consider the plane, infinite cylinder, and
sphere of Figure 5. These surfaces are called orientable because given any surface curve
we can define a continuous unit normal direction. For instance, we orient the plane by
defining the Û direction to always point to the same side. Thus, we never encounter
a point where the unit normal suddenly flips direction (by 180◦ to be specific) or is
discontinuous. In this light, the plane has only one possible unit normal direction. In
contrast, the cylinder has many unit normal directions: there is a band of outward unit
normals about the body of the cylinder. By the symmetry along the cylinder’s infinite
dimension, we only need one such band to get all possible directions. The sphere has a
unit normal in every possible direction. If we seek a standard to use universally when
describing the collection of unit normal directions on an arbitrary surface M , then the
sphere is the ideal candidate. Specifically, we elect to use the surface of a unit sphere
S2 = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1}.
We accomplish this comparison by defining the Gauss Map G : M 7→ S2 as

G(p) = Û(p) for all p ∈ M . Given an arbitrary surface M , the image under the
Gauss Map G(M) corresponds to an area on S2. The image of a plane under the Gauss
Map is really just a point and the infinite cylinder maps to a great circle on S2 (both are
regions of zero area). In fact, the plane and infinite cylinder are fundamental examples
of how the Gauss Map reveals similarities between surfaces. Notice, a plane can be
transformed into a cylinder quite easily. It is not a coincidence that they both have the
same area under the Gauss Map!

Example: The Gauss Map of the Torus

How does a torus behave under this mapping? Figures 6, 7, and 8 demonstrate
how the Gauss Map is helpful, especially as a basic characterizing tool for surfaces. For
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Figure 5. The Gauss Map G : M 7→ S2 concerns the collection of all
unit normals defined on a surface. A cylinder and a plane have the same
area on the unit sphere under G.

Figure 6. Apply G to v-parameter curves on the torus and we see lines
of latitude on the sphere.

instance, in Figure 6 we start with a v-parameter curve on the torus and see that it
maps to a line of latitude on the sphere. Likewise, in Figure 7, u-parameter curves map
to lines of latitude. Taken together, this indicates G applied to the torus S2 covers the
entire surface area of the sphere. Thus, a torus, like a sphere, has all available unit
normal directions. Contrast this to a cylinder in particular, which only maps to a single
band of unit normals under G. We encounter a further difference between a torus and
cylinder in Section 4.4.

3.3. The First Fundamental Form. The Gauss Map represents a useful application
of the Shape Operator, but the utility is somewhat limited because many different
classes of surfaces have the same area under the Gauss Map. Our hope is to compare
surfaces in more detail and we begin by investigating the mathematical objects that the
Shape Operator is based on: fundamental forms. Here is where our discussion veers
away from Oprea’s presentation and draws more heavily from Pressley’s text.
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Figure 7. Apply G to u-parameter curves on the torus and we see lines
of longitude on the sphere.

Figure 8. Apply G to any surface curve on the torus and we see a
corresponding curve on the sphere. We can learn about the shape of the
torus by using the sphere as a clear description of the torus’s unit nor-
mals.

Recall our meter-stick construction of Section 1.1. Locally, we are able to lay our
meter-stick flat on the ground, but what if we use a rigid measurement device of length
on the order of, say the radius of the Earth? We find the curvature of Earth forbids
us from ever laying this device “flat.” So measurement of length is clearly surface
dependent. We begin by discussing arc-length computations.

Suppose the curve α is on a surface M . Suppose α(t), where t is a parameter, is
in the image of some coordinate patch x. Lemma 2.2 ensures α(t) = x(u(t), v(t)) for
some scalar functions u and v. Compute the arc length along α from t1 to t2 using an
integral:

L =
∫ t2

t1

||α̇(t)|| dt.
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We use α̇, u̇, and v̇ to denote derivatives with respect to t and ||α̇(t)|| is the usual
Euclidean norm of α̇. We compute ||α̇||2 explicitly using the Chain Rule:

||α̇||2 =
∣∣∣∣∣∣∣∣ ddt(x(u, v))

∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣∣∣∣∂x
∂u

du

dt
+
∂x
∂v

dv

dt

∣∣∣∣∣∣∣∣2
= ||xuu̇+ xvv̇||2 = (xuu̇+ xvv̇) · (xuu̇+ xvv̇)
= (xu · xu) u̇2 + 2 (xu · xv) u̇v̇ + (xv · xv) v̇2.

The norm of α̇ squared is related to the first fundamental form of the surface M :

(xu · xu) du2 + 2(xu · xv) du dv + (xv · xv) dv2.

The three dot products in the coefficients involving the partial derivatives of patch x
are of enormous importance in Differential Geometry and get their own names:

(7) E
.= xu · xu, F

.= xu · xv, and G .= xv · xv.

So the first fundamental form is

(8) E du2 + 2F du dv +Gdv2.

With this new notation the arc length integral can be written

(9) L =
∫ t2

t1

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt.

Using formal manipulations of the differential element dt, such as u̇ dt = (du/dt) dt =
du, we rewrite the integrand√

(Eu̇2 + 2Fu̇v̇ +Gu̇) dt2 =
√
Edu2 + 2F dudv +Mdv2 =

√
dl2 = dl.

We interpret this integrand as a differential element of length dl along the curve α.
The first fundamental form is a profound computational notation and affords a

method of integrating curves on arbitrary surfaces. We will not delve extensively into
these integration properties, but two examples show the elegance of the first fundamen-
tal form.

Consider a sphere with radius r. This sphere has coordinate patch

(10) x(u, v) = (r sinu cos v, r sinu sin v, r cosu).

Compute the u and v partials:

(11) xu = (r cosu cos v, r cosu sin v,−r sinu) , xv = (−r sinu sin v, r sinu cos v, 0) ,

and further

E = xu · xu = r2 cos2 u cos2 v + r2 cos2 u sin2 v + r2 sin2 u = r2(12)
F = xu · xv = r2 sinu cosu sin v cos v − r2 sinu cosu sin v cos v = 0(13)
G = xv · xv = r2 sin2 u sin2 v + r2 sin2 u cos2 v = r2 sin2 u.(14)

Thus, the first fundamental form is dl2 = r2 du2 + r2(sin2 u) dv2 and the integral

L =
∫ t2

t1

√
r2u̇2 + r2(sin2 u)v̇2 dt

gives arc length from t1 to t2 for a curve α on the sphere with the parameter functions
u(t) and v(t).
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What is the first fundamental form of a plane? A patch for a plane through the origin
with orthonormal basis {b1,b2} is x(u, v) = ub1 + vb2 (all linear combinations of the
basis vectors). Hence, xu = b1 and xv = b2 so E = xu · xu = 1, F = xu · xv = 0, and
G = xv · xv = 1. The first fundamental form is dl2 = du2 + dv2 as expected.

We collect the coefficients E, F , and G into a 2×2 symmetric matrix called the first
fundamental form matrix,

F1 =
(
E F
F G

)
.

The matrix F1 is used to move vectors in Tp(M) to the standard basis {xu,xv}.

Lemma 3.4. Suppose F1 is the first fundamental form matrix for a surface M with
coordinate patch x. Given a point p ∈M and a vector v ∈ Tp(M),

(v)s = F−1

(
v · xu
v · xv

)
.

Proof. Suppose v = u̇xu + v̇ xv and examine(
v · xu
v · xv

)
=
(
u̇xu · xu + v̇ xv · xu
u̇xu · xv + v̇ xv · xv

)
=
(
u̇ E + v̇ F
u̇ F + v̇ G

)
=
(
E F
F G

)(
u̇
v̇

)
.

Hence,

(v)s =
(
u̇
v̇

)
s

=
(
E F
F G

)−1( v · xu
v · xv

)
.

�

Lemma 3.4 enables us to find the decomposition v = u̇xu + v̇ xv using properties of
the surface only, that is without ever defining a curve α(t) = x(u(t), v(t)) through p.

Example: The First Fundamental Form of the Torus

Given the partial derivatives Tu and Tv from Section 2.1 we can compute the coef-
ficients E,F, and G for the torus

E = Tu ·Tu = r2(sin2 u cos2 v + sin2 u sin2 v + cos2 u) = r2(15)
F = Tu ·Tv = r(R+ cosu)(sinu sin v cos v − sinu sin v cos v) = 0(16)
G = Tv ·Tv = (R+ r cosu)2(sin2 v + cos2 v) = (R+ r cosu)2.(17)

Putting E,F, and G into the first fundamental form of the torus we find

(18) dl2 = r2du2 + (R+ r cosu)2dv2.

Contrast this to the sphere’s first fundamental form, both r and R are required to
compute arc length on the torus.

As promised in Section 2.2, we now compute the circumference of the torus-circle
marked α in Figure 3. This problem, which is baffling without the first fundamental
form, becomes a single, albeit tricky, integral computation. In the uv-plane the closed
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curve α has parametrization u(t) = 1/2 + sin t and v(t) = 1/2 + cos t for t ∈ [0, 2π).
Recall R = 2r for the torus we are studying. We get

L =
∫ 2π

0

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt

=
∫ 2π

0

(
r2 cos2 t+ (R+ r cosu)2 sin2 t

)1/2
dt

= r

∫ 2π

0

(
cos2 t+ (2 + cos(u(t)))2 sin2 t

)1/2
dt

This integral is not easy to evaluate exactly because of the nested trigonometric func-
tions, but numeric integration yields an approximate value of 11.85 r. Notice the cir-
cumference of the torus-circle not only depends on the original radius in the uv-plane,
but also r, which is part of the torus geometry. The circumferences for circles marked
β, γ, and δ in Figure 3 are about 9.90 r, 11.85 r, and 9.90 r respectively. These circum-
ference examples reflect torus symmetries; the length of α matches γ and β matches δ
due to the relative positions of their centers along v-parameter curves.

3.4. Normal Curvature. Thus far, our work with surface curves α : I 7→M (I ⊆ R)
has involved α̇ or ∂α/∂t, where t is the parameter for α(t). Recall from vector calculus
α̈ or ∂2α/∂t2 is related to the curvature κ of α, and hence, the curvature of M as well
because α is constrained to move on the surface. Specifically, if we picture α̈ as a vector
at p ∈M , then κ = ||α̈||.

How does α̈ relate to α̇ and Û? Figure 9 is adapted from Pressley’s book (Section
6.2) and provides a visualization of this decomposition of κ. The vector w ∈ Tp(M) is
called the binormal vector and w = Û× α̇. By definition, Û is perpendicular to Tp(M)
so we can express α̈ as a linear combination

α̈ = λ1Û + λ2w

for some scalars λ1, λ2 ∈ R. Notice, the square of the curvature κ2 = ||α̈||2 = λ2
1 + λ2

2.
The constants λ1 and λ2 are projections of α̈ onto the normal and binormal directions
respectively. We call λ1 the normal curvature κn. According to the projection,
κn = α̈ · Û.

To this point we have not addressed the length of tangent vectors α̇ = v ∈ Tp(M).
Looking at Figure 9 we see κn will depend on both the direction of α̈ and its magnitude,
which in turn depend upon α̇ = v. To discuss the normal curvature in a given direction
we must assume ||v|| = 1. We are free to choose an arc length parametrization for α so
we may assume ||v|| = 1, or that α is a unit speed curve.

Notice κn requires us to perform computations involving the curve α, while this is
acceptable, we can find κn using coordinate patches instead, which is preferable because
we already use patch functions for so much. Thus, when prompted for κn at a point
p ∈ M we can sidestep the tedium of finding a curve through p and differentiating it.
As in Section 3.3, we use Lemma 2.2, which says α = x(u(t), v(t)) for unique functions
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Figure 9. Projecting α̈ onto Û yields normal curvature κn.

u and v to write

κn = Û · α̈ = Û ·
(
d2

dt2
(x(u, v))

)
= Û ·

(
d

dt
(xuu̇+ xvv̇)

)
= Û · (xuü+ (xuuu̇+ xuvv̇)u̇+ xvv̈ + (xvuu̇+ xvvv̇)v̇)

= (Û · xuu) u̇2 + 2(Û · xuv) u̇v̇ + (Û · xvv) v̇2

κn = l u̇2 + 2mu̇v̇ + n v̇2,(19)

where

(20) l
.= Û · xuu, m

.= Û · xuv, and n
.= Û · xvv.

The terms containing Û · xu and Û · xv are zero because Û is perpendicular to Tp(M).
Just as we gave the coefficients E, F , and G their own names in equation (7), we define
the coefficients l, m, and n in equation (20). Furthermore, these coefficients appear in
the second fundamental form of surface M ,

l du2 + 2mdudv + ndv2.

Equipped with the coefficients E, F , G, l, m, and n we can characterize any surface in
R3, perhaps one of the most remarkable aspects of Differential Geometry.

For a basic example of the second fundamental form, take the sphere of radius r with
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patch x(u, v) = (r sinu cos v, r sinu sin v, r cosu) and derivatives

xu = (r cosu cos v, r cosu sin v,−r sinu)

and
xv = (−r sinu sin v, r sinu cos v, 0).

Compute the unit normal

Û =
xu × xv
|xu × xv|

= (sinu cos v, sinu sin v, cosu)

and second derivatives

xuu = −(r sinu cos v, r sinu sin v, r cosu)
xuv = (−r cosu sin v, r cosu cos v, 0)
xvv = −(r sinu cos v, r sinu sin v, 0).

Hence, the coefficients l, m, and n are given by

l = Û · xuu = −r(21)

m = Û · xuv = 0(22)

n = Û · xvv = −r sin2 u,(23)

which implies the second fundamental form is −(r du2 + r sin2 u dv2).
While it is not yet intuitive how to succinctly and rigorously indicate the connection

between the Shape Operator Sp and our current, fundamental form-based approach,
these concepts are intertwined. To attain this rigor collect these new coefficient terms
into the 2× 2, symmetric second fundamental form matrix,

F2 =
(

l m
m n

)
.

In Lemma 3.4 we observe the first fundamental form matrix F1 is useful when chang-
ing to the standard basis. The second fundamental matrix F2 is used to compute this
unique normal curvature κn.

Lemma 3.5. Suppose F2 is the second fundamental form matrix for a surface M with
coordinate patch x. Given a point p ∈ M and vector v ∈ Tp(M), the normal curvature
in the v-direction is κn = F2(v)s · (v)s.

Proof. A simple calculation shows

F2(v)s · (v)s =
(

l m
m n

)(
u̇
v̇

)
s

·
(
u̇
v̇

)
s

=
(

l u̇+mv̇
m u̇+ n v̇

)
·
(
u̇
v̇

)
s

= l u̇2 + 2mu̇v̇ + n v̇2 = κn.

�
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Example: The Second Fundamental Form of the Torus

Notice to compute the coefficients l, m, and n for the torus we can use Sp(Tu),
Sp(Tv), Tu, and Tv from Sections 2.1 and 3.1 or Û, Tuu, Tuv, and Tvv from Sections
2.3 and 2.6. We elect the latter and find

l = Û ·Tuu = (r cos2 u cos2 v + r cos2 u sin2 v + r sin2 u) = r(24)

m = Û ·Tuv = −(r sinu cosu sin v cos v − r sinu cosu sin v cos v) = 0(25)

n = Û ·Tvv = (R+ r cosu)(cosu cos2 v + cosu sin2 v) = (R+ r cosu) cosu.(26)

Thus, the second fundamental form of the torus is

l du2 + 2mdudv + ndv2 = r du2 + (R+ r cosu) cosu dv2.

Compare this to the sphere’s second fundamental form −(r du2 + r sin2 u dv2). Notice
the similarities specifically in the powers of r and sinusoidal dependence on dv2. Of
course, the main contrast is the second fundamental form of the torus incorporates
both r and R.

3.5. The Weingarten Equations. Section 3.4 hints at the connection between the
Shape Operator Sp and the fundamental forms (both first and second) of a surface M .
There are many ways to discover this connection but the strongest is the derivation
of the Weingarten equations established by German mathematician Julius Weingarten.
While Oprea does not name them such, his text presents a similar derivation. Our
familiarity with forms gives us a slightly deeper insight into what appears to be just
algebraic manipulation. The overall task is quite simple: compute Sp(xu) and Sp(xv)
using the form coefficients E, F , G, l, m, and n. These coefficients are (in summary
from equations (7) and (20)):

E = xu · xu , F = xu · xv , G = xv · xv ,

l = Sp(xu) · xu = Û · xuu ,
m = Sp(xu) · xv = Sp(xv) · xu = Û · xuv , and

n = Sp(xv) · xv = Û · xvv.
Given v ∈ Tp(M), we can apply the Shape Operator to the standard basis vectors

xu and xv,
Sp(xu) = −∇xuÛ = −Ûu = axu + bxv

and
Sp(xv) = −∇xvÛ = −Ûv = cxu + dxv,

where a, b, c, and d populate the representative matrix of Sp. The only new introduction
is the shorthand Ûu and Ûv to represent the covariant derivatives of Û in the u and v
directions respectively. Making careful use of the form coefficients we find the following
system of four equations in the four unknowns a, b, c, and d:

l = Sp(xu) · xu = −Ûu · xu = aE + bF

m = Sp(xu) · xv = −Ûu · xv = aF + bG

m = Sp(xv) · xu = −Ûv · xu = cE + dF
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n = Sp(xv) · xv = −Ûv · xv = cF + dG.

This system completely determines a, b, c, and d:

a =
lG−mF
EG− F 2

, b =
mE − lF
EG− F 2

, c =
mG− nF
EG− F 2

, d =
nE −mF
EG− F 2

.

Do not be deceived by the simple letters in these expressions, they disguise a mess of
partial derivatives and dot products! The Weingarten equations follow

(27) Sp(xu) = axu + bxv =
lG−mF
EG− F 2

xu +
mE − lF
EG− F 2

xv

and

(28) Sp(xv) = cxu + dxv =
mG− nF
EG− F 2

xu +
nE −mF
EG− F 2

xv.

At this juncture we can puzzle out the form of the Shape Operator’s representative
matrix in terms of the form matrices F1 and F2.

Lemma 3.6. Suppose EG 6= F 2, that is F1 is non-singular. The representative matrix
of the Shape Operator Sp is

Sp = F−1
1 F2.

Proof. Compute

F−1
1 =

1
det(F1)

(
G −F
−F E

)
=

1
EG− F 2

(
G −F
−F E

)
.

Perform matrix multiplication to see

F−1
1 F2 =

1
EG− F 2

(
G −F
−F E

)(
l m
m n

)
=

1
EG− F 2

(
lG−mF mG− nF
−lF +mE −mF + nE

)
.

Compare these to the Weingarten Equations by projecting F−1
1 F2 onto the standard

basis vectors xu:
1

EG− F 2

(
lG−mF mG− nF
mE − lF nE −mF

)(
1
0

)
s

=
1

EG− F 2

(
lG−mF
mE − lF

)
s

and xv:
1

EG− F 2

(
lG−mF mG− nF
mE − lF nE −mF

)(
0
1

)
s

=
1

EG− F 2

(
mG− nF
nE −mF

)
s

.

These match the Weingarten Equations so Sp = F−1
1 F2. �

We now have the matrix form of the Shape Operator that can act on any vector in
Tp(M):

Sp =
(
a c
b d

)
=

1
EG− F 2

(
lG−mF mG− nF
mE − lF nE −mF

)
.

Notice we have not specified that Sp is in the standard basis; it certainly acts on vectors
in the standard basis as a 2×2 matrix. If we are to claim an operator is in the standard
basis of equation (6), then we introduce some ambiguity because the coefficients E, F ,
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G, l, m, and n are defined using xu, xv, Û, xuu, xuv, and xvv, which have different
forms in the standard basis. For instance

(E)s = (xu)s · (xu)s =
(

1
0

)
s

·
(

1
0

)
s

= 1,

(F )s = (xu)s · (xv)s =
(

1
0

)
s

·
(

0
1

)
s

= 0,

and

(G)s = (xv)s · (xv)s =
(

0
1

)
s

·
(

0
1

)
s

= 1,

which implies

(F1)s =
(

1 0
0 1

)
s

.

Taken together, Lemmas 3.4, 3.5, and 3.6 suggest an algorithm for computing the normal
curvature in a given direction v. First, project v into the standard basis {xu,xv} using
Lemma 3.4

(v)s = F−1
1

(
v · xu
v · xv

)
.

Next, use Lemma 3.5 to compute

(29) κn = F2(v)s · (v)s = F2F−1
1

(
v · xu
v · xv

)
· F−1

1

(
v · xu
v · xv

)
.

Equation (29) represents a combination of many of our ideas thus far concerning the
fundamental forms, standard basis, and tangent plane. It gives the normal curvature
at a point in any given direction v ∈ Tp(M), without the tedium of defining surface
curves.

There is another way to compute normal curvature. We demonstrate it here not
because one way is more useful than another, but because it serves as yet another
concrete tie between fundamental forms and the Shape Operator. The key concept is
that the dot product of two vectors v,w ∈ Tp(M) involves F1. Write v and w in the
standard basis as v = v1xu + v2xv and w = w1xu +w2xv and compute the dot product

v ·w = v1w1(xu · xu) + v1w2(xu · xv) + v2w1(xv · xu) + v2w2(xv · xv)
= v1w1E + v1w2F + v2w1F + v2w2G

=
(
v1
v2

)T (
E F
F G

)(
w1

w2

)
= vTF1w.

This realization is troublesome considering the typical method for computing dot prod-
ucts component-wise in an introductory vector calculus course. On an arbitrary surface
with form coefficients E, F , and G the dot product must be defined as

(30) v ·w = vTF1w

because the standard basis is not always orthonormal. In introductory vector calculus,
we assume an orthonormal basis ({ê1, ê2, ê3} for instance) so E = G = 1 and F = 0, in
which case F1 is just the identity and we need not include it. So we must approach the
dot products very carefully and always check the basis before performing a component-
wise dot product.
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Lemma 3.7. Given a surface M , the normal curvature κn at a point p ∈ M in the
direction v ∈ Tp(M) is

κn(v) = Sp(v) · v.

Proof. Express v in the standard basis (v)s. By Lemma 3.1 Sp(v) ∈ Tp(M) as well so
we can express it in the standard basis too:

Sp(v) = Sp(v)s = (Sp(v)s)s = (F−1
1 F2(v)s)s.

With this piece of information compute

Sp(v) · v = (F−1
1 F2(v)s)s · (v)s.

Notice this is a dot product in the standard basis so we must use equation(30) to
compute

(F−1
1 F2(v)s)s · (v)s = (F−1

1 F2(v)s)Ts F1(v)s.
Since (AB)T = BTAT for all matrices A and B, we have

Sp(v) · v = (v)Ts FT2 (F−1
1 )TF1(v)s = (v)Ts F2F−1

1 F1(v)s.

The last equality is true because F−1
1 and F2 are symmetric matrices. Cancel F−1

1 F1

and finally, by Lemma 3.5

Sp(v) · v = (v)Ts F2(v)s = F2(v)s · (v)s = κn(v).

Let us stop to ask why we did not need to insert F1 for this final dot product step. The
answer: this dot product is not performed in the standard basis. �

Oprea uses the Shape Operator method from Lemma 3.7 in his computations while
Pressley uses the method in equation (29). Both yield the normal curvature.

At a given point p ∈M there is a normal curvature associated with every direction of
travel from p. Imagine standing at p with some sort of normal curvature measuring tool.
You would start by pointing the tool in some direction and could obtain a continuous
reading as you rotate through the 360◦ or 2π radians of directions of travel. Given a
patch for the surface, we can do the “measurement” mathematically using (29) and a
clever choice of (v)s to represent all directions. Let

(v(t))s =
(

cos t
sin t

)
s

,

where t ∈ [0, 2π). This way we have (v(0))s = (1, 0)s = (xu)s and (v(π/2))s = (0, 1)s =
(xv)s, as well as unit tangent vectors ||v|| = 1 for each t. With this set-up

κn(t) =
(

l m
m n

)(
cos t
sin t

)
s

·
(

cos t
sin t

)
s

=
(

l cos t+m sin t
m cos t+ n sin t

)
s

·
(

cos t
sin t

)
s

κn(t) = l cos2 t+ 2m sin t cos t+ n sin2 t.(31)

This agrees with the definition of κn in (19) with u(t) = sin t and v(t) = − cos t.
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Example: Normal Curvature of the Torus

Using the coefficients l, m, and n for the torus from equations (24), (25), and (26)
we can compute normal curvature κn at any point p = T(u0, v0) ∈ T as a function of
the direction of travel t. Remember, in our example R = 2r so we write equation (31)
as

(32) κn(t) = r cos2 t+ (R+ r cosu0) cosu0 sin2 t = r(cos2 t+ (2 + cosu0) cosu0 sin2 t).

One interesting feature is the lack of v0 in equation (32), which is not surprising as the
torus is a surface of revolution so there is a symmetry in the v parameter. Also, observe
the varying magnitude and distinct maxima and minima of κn(t) as this is the topic of
Section 4.1.

Example: F1, F2, and Sp of the Torus

We compute the form coefficients E, F , G, l, m, and n for the torus in equations (15),
(16), (17), (24), (25), (26) respectively. We can organize these into the form matrices

F1 =
(
r2 0
0 (R+ r cosu)2

)
and F2 =

(
r 0
0 (R+ r cosu) cosu

)
.

Using Lemma 3.6 we can use F−1
1 and F2 to define the Shape Operator matrix

Sp = F−1
1 F2

=
1

r2(R+ r cosu)2

(
(R+ r cosu)2 0

0 r2

)(
r 0
0 (R+ r cosu) cosu

)
=

1
r2(R+ r cosu)2

(
r(R+ r cosu)2 0

0 r2(R+ r cosu) cosu

)
Sp =

(
1/r 0
0 cosu/(R+ r cosu)

)
.(33)

In the previous example we compute normal curvature of the torus from the definition.
We get the same result when we solve the problem with the matrix approach from
Lemma 3.7. Recall the dot product definition from equation (30) because we need it
for this calculation. Compute

Sp(v(t)) · v(t) = (v(t))Ts F1Sp(v(t))s

=
(

cos t
sin t

)T
s

(
r 0
0 (R+ r cosu0) cosu0

)(
cos t
sin t

)
s

= r cos2 t+ (R+ r cosu0) cosu0 sin2 t

= r (cos2 t+ (2 + cosu0) sin2 t),

where the last step follows for our specific torus (R = 2r). Notice, we get the same
answer for normal curvature regardless of our approach.
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Figure 10. For this torus R = 2r. The bottom right plot shows three
points for which we compute the normal curvature in the other plots.
The top left shows normal curvature over all directions of travel 0 to 2π
for the point on the outside of the torus. Notice κn > 0 for all t and
there is a clear dependence on direction. The top right shows the normal
curvature over all directions for the point on the top of the torus. Of
particular interest are the directions where κn = 0 because they are easy
to find on the torus. If we start at the top point, then there are two flat
directions in which we can move. The bottom left plot shows the normal
curvature over all directions for the point on the inside of the torus. At
this point there are directions of both positive and negative curvature.

4. Curvature II

Now that we have reconciled the Shape Operator approach (of Oprea’s text) and
fundamental form approach (of Pressley’s text), we can let the differences move from
the forefront of our discussion and focus on some theorems. In Section 4.1 we define the
principal curvatures κ1 and κ2 and use them to define Gauss curvature K and mean
curvature H. Lemma 4.3 demonstrates the utility of the form coefficients in calculating
K and H. In Section 4.3 we explore parallel surfaces and show a nice theoretical result
involving transforming between surfaces of constant Gauss curvature and surfaces of
constant mean curvature. Section 4.4 provides a proof and explanation of Gauss’s
Theorem Egregium, one of the cornerstone theorems of basic Differential Geometry.
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4.1. Principal Curvatures. In the example of Section 3.5 we observe a varying normal
curvature at a given point on the surface of a torus. Normal curvature κn is a function of
unit tangent directions given by v. If we seek to characterize the overall “curviness” of
a surface, then we need to pay attention to the extreme values of κn. Let the principal
curvatures κ1 and κ2 be the maximum and minimum normal curvatures at a given
point

κ1 = κn(v1) = maxv κn(v) and κ2 = κn(v2) = minv κn(v).

Vectors v1 and v2 are called principal vectors. Recall we assume ||v|| = 1 for all
v ∈ Tp(M) so v1 and v2 are unit vectors. Look at Figure 10 and we see two directions
for which the maximum normal curvature is attained. So there is some flexibility in
our choice of κ1, but as we demonstrate in Lemma 4.1 once we pick κ1, then we also
determine κ2. Of course, there are points on surfaces where κ1 = κ2, these points are
called umbilic. A plane is an umbilic surface because every point is umbilic. Just as
any other vector in Tp(M) we can express the principal vectors in the standard basis
(v1)s and (v2)s. Lemma 3.7, which parallels a theorem from Oprea’s book, reconciles
the principal curvatures with the matrix formalism we have been developing. In short,
the principal curvatures are eigenvalues of the Shape Operator.

Lemma 4.1. Let M be a surface and suppose v ∈ Tp(M).
1. If p ∈M is umbilic, then Sp(v)s = κ(v)s, where κ = κ1 = κ2.
2. If p ∈M is not umbilic, then Sp has exactly two perpendicular, unit eigenvectors,

the principal vectors (v1)1 and (v2)s, and eigenvalues κ1 and κ2 respectively.

Proof. We show the eigenvectors and eigenvalues of Sp must be as stated. Suppose
Sp(ξ1) = λ1ξ1 and ξ1 · ξ1 = 1, that is ξ1 is a unit eigenvector of Sp with eigenvalue λ1.
Construct the unit vector ξ2 by rotating counterclockwise by π/2 from ξ1 in Tp(M).
Notice {ξ1, ξ2} is an orthonormal basis for Tp(M). From Lemma 3.1 we know, for some
real scalars c1 and c2, Sp(ξ2) = c1ξ1 + c2ξ2. Remember Lemma 3.1 also states Sp is a
symmetric linear transformation. Compute

c1 = Sp(ξ2) · ξ1 = Sp(ξ1) · ξ2 = λ1ξ1 · ξ2 = 0.

Hence, Sp(ξ2) = c2ξ2, meaning ξ2 is an eigenvector of Sp with eigenvalue λ2 = c2. The
eigenvectors ξ1 and ξ2 are perpendicular by construction.

Next, use Lemma 3.7 to compute normal curvatures in the directions ξ1 and ξ2:

κn(ξ1) = Sp(ξ1) · ξ1 = λ1ξ1 · ξ1 = λ1

and

κn(ξ2) = Sp(ξ2) · ξ2 = λ2ξ2 · ξ2 = λ2.

This shows the eigenvalues λ1 and λ2 are normal curvatures.
We take the case λ1 = λ2 = λ first. For any ξ ∈ Tp(M) Sp(ξ) = λξ so p is umbilic.
So suppose, without loss of generality, λ2 < λ1. Let ξ be any unit vector in Tp(M)

and write ξ = cos θξ1 + sin θξ2, where θ is the angle between ξ and ξ1. Compute the
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normal curvature using Lemma 3.7 making careful use of the linearity of Sp
κn(θ) = Sp(ξ) · ξ = Sp(cos θ ξ1 + sin θ ξ2) · (cos θ ξ1 + sin θ ξ2)

= (cos θ Sp(ξ1) + sin θ Sp(ξ2)) · (cos θ ξ1 + sin θ ξ2)

= cos2 θ λ1 ξ1 · ξ1 + sin θ cos θ (λ1 ξ1 · ξ2 + λ2 ξ2 · ξ1) + sin2 θ λ2 ξ2 · ξ2
= cos2 θ λ1 + sin2 θ λ2.

From this we discern the maximum normal curvature (principal curvature κ1 and prin-
cipal vector v1) occurs at θ = 0 because sin2 θ, cos2 θ ≥ 0 and λ1 > λ2. When θ = 0,
ξ = ξ1 meaning κ1 = λ1 and v1 = ξ1. Similarly the minimum normal curvature
(principal curvature κ2 and principal vector v2) occurs when θ = π/2, so κ2 = λ2 and
v2 = ξ2. �

The proof of 4.1 implies yet another way to compute the normal curvature in a given
direction, specifically when the principal curvatures κ1 and κ2 are known.

Corollary 4.2 (Euler’s Formula). Given a surface M , point p ∈ M , and v ∈ Tp(M).
Let κ1 and κ2 be the principal curvatures of M at p, with non-zero principal vectors v1

and v2. Then

(34) κn(v) = κ1 cos2 θ + κ2 sin2 θ,

where θ is the angle between v and v1.

These results are really quite remarkable. All the information about normal curvature
lies in the Shape Operator, in particular its eigenvalues. Most striking is the orthogo-
nality of the resulting eigenvectors, the principal vectors. This means if we stand at any
point on a surface and find the direction of maximum normal curvature, the direction
of minimum normal curvature will be 90◦ away! Regardless of how exotic a surface we
conjure up, as long as it satisfies our regular surface definition this relationship holds.
Suddenly, the enormous variety of surfaces seems less complex because of this common
property.

Before we move onto the Gauss and mean curvatures, we examine how the principal
curvatures relate to the form matrices. Lemma 3.7 shows the principal curvatures are
the eigenvalues of the Shape Operator, which we know in terms of the form matrices
(see Lemma 3.6). Hence, the normal curvatures are the roots of the equation

det(F−1
1 F2 − κI) = 0,

where I is the 2× 2 identity matrix. We can manipulate this equation as follows:

det(F1) det(F−1
1 F2 − κI) = 0,

det(F1(F−1
1 F2 − κI)) = 0,

det(F2 − κF1) = 0.
In terms of the form coefficients, we find the principal curvatures by solving the qua-
dratic expression

(35) det
(

l − κE m− κF
m− κF n− κG

)
= 0.
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Example: The Principal Curvatures of the Torus

The form coefficients for the torus are given in equations (15), (16), (17), (24), (25),
and (26). In summary,

E = r2, F = 0, G = (R+ r cosu)2,

l = r, m = 0, and n = (R+ r cosu) cosu,

where R is in the inner radius and r is the radius of the inner-tube portion of the
torus. Equation (35) gives the quadratic equation that we must solve for the principal
curvatures:

det
(
r − κr2 0

0 (R+ r cosu) cosu− κ(R+ r cosu)2

)
= 0.

The roots of the resulting quadratic are

(36)
1
r

and
cosu

R+ r cosu
.

One of these is the the maximum normal curvature κ1 and the other is the minimum
κ2. For our torus we set R = 2r and conclude

κ1 =
1
r

and κ2 =
cosu

r(2 + cosu)
.

Neither principal curvature depends on the parameter v, which is a consequence of the
symmetry of the torus as a surface of revolution.

Example: A Sphere is Umbilic

Equation (10) gives the coordinate patch for a sphere and equation (11) gives the
associated partials. We compute the set of coefficients E, F , G, l, m, and n in equations
(12), (13), (14), (21), (22), and (23) respectively. In summary,

E = r2, F = 0, G = r2 sin2 u,

l = −r, m = 0, and n = −r sin2 u,

where r is the radius of the sphere. Given these form coefficients we search for the roots
of equation (35):

det
(
−r − κr2 0

0 −r sin2 u− κr2 sin2 u

)
= 0

r2 sin2 u(1 + κr)2 = 0,

which has repeated root κ = −1/r. The sphere is umbilic by definition because for
all points the principal curvatures are equal: κ1 = κ2 = −1/r. Of course, κ exhibits
neither u nor v dependence so the normal curvature is really −1/r at every point on
the sphere and in any direction. We say the sphere has constant curvature, a notion we
will explore further in Section 4.3
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4.2. Gauss and Mean Curvatures. While both the Gauss and mean curvatures are
based on the principal curvatures of a surface M , they are slightly more geometrically
accessible than the principal curvatures.

Let κ1 and κ2 be the principal curvatures ofM . The Gauss curvature (or Gaussian
curvature) of M is

K = κ1κ2.

The mean curvature of M is

H =
1
2

(κ1 + κ2).

The name “mean” curvature is indicative of its significance as the average curvature
at a given point. Recall κ1 is the maximum normal curvature and κ2 is the minimum
normal curvature, so H literally is the average. Gauss curvature is named in honor of
Carl Freidrich Gauss who proved one of the most “remarkable” theorems in Differential
Geometry, the Theorem Egregium. Egregium actually translates as “remarkable” and
the contents of Gauss’s result are certainly that. He proved that Gauss curvature K is
preserved under isometries, which we discuss further in Section 4.4.

Lemma 4.3 presents the explicit formulas for K and H in terms of the form coefficients
E, F , G, l, m, and n.

Lemma 4.3. Let M be a surface with first fundamental form E du2 + 2F du dv+Gdv2

and second fundamental form l du2 + 2mdudv + ndv2, then
1. Gauss curvature

K =
ln−m2

EG− F 2
,

2. Mean curvature

H =
lG− 2mF + nE

2(EG− F 2)
,

3. and the principal curvatures are H ±
√
H2 −K.

Proof. Start with equation (35) to see

det
(

l − κE m− κF
m− κF n− κG

)
= 0

(l − κE)(n− κG)− (m− κF )2 = 0

(37) (EG− F 2)κ2 − (lG− 2mF + nE)κ+ lN −M2 = 0.

The principal curvatures κ1 and κ2 are the roots of this equation, which is of the form
Aκ2+Bκ+C = 0. We can sidestep computing the roots by remembering for an equation
of this form, the sum of the roots is −B/A and the product of the roots is C/A (think
completing the square). Hence,

K = κ1κ2 =
ln−m2

EG− F 2

and

H =
1
2

(κ1 + κ2) =
1
2
lG−mF + nE

EG− F 2
.
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Using equation (37) we have
κ2 −Hκ+K = 0,

which indicates the principal curvatures are H ±
√
H2 −K. �

The Gauss and mean curvatures are so important and useful because they are asso-
ciated with the intrinsic geometry of a surface. Oprea even calls them “two computable
‘invariants’ of a surface.” Oprea then points out the tie between these geometric in-
variants and linear algebra ideas, we do the same. In Lemma 3.1 we prove the Shape
Operator is a linear transformation. From Linear Algebra we know two invariants as-
sociated with a linear transformation are the sum of its eigenvalues, the trace, and the
product of its eigenvalues, the determinant. In this light,

K = κ1κ2 = det(Sp) and H =
1
2

(κ1 + κ2) =
1
2

trace(Sp).

We now introduce another basis for Tp(M). The principal vector basis uses the
orthonormal principal vectors {v1,v2} and is denoted by a p subscript. This basis
is useful because the principal vectors are eigenvectors of the Shape Operator, which
indicates

(Sp)p(v1)p = (Sp)p

(
1
0

)
p

= κ1

(
1
0

)
and

(Sp)p(v2)p = (Sp)p

(
0
1

)
p

= κ2

(
0
1

)
.

Thus, in the principal vector basis, the Shape Operator is

(Sp)p =
(
κ1 0
0 κ2

)
p

.

Now the Linear Algebra “invariant” analogy is clear because Gauss curvature is obvi-
ously the determinant and mean curvature is the trace of the Shape Operator matrix
in the principal vector basis.

Example: Gauss and Mean Curvature for the Torus

We can compute the Gauss and mean curvature for the torus by referring to equation
(36)

K =
cosu

r(R+ r cosu)
and H =

R+ 2r cosu
2r(R+ r cosu)

.

4.3. Constant Curvatures. In this section we present an interesting correspondence
between surfaces with constant mean curvature H and constant, positive Gaussian
curvature K > 0. Specifically, one can obtain a constant Gaussian curvature surface
starting with a surface of constant mean. The converse is also true. Pressley presents a
particularly concise exposition of this idea.

Given a surface M we have studied tangent plane approximations Tp(M) at points
p ∈ M in great detail. We now investigate another type of approximation to M .
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Suppose M has coordinate patch x and let ε ∈ R be some constant scalar. The parallel
surface M ε to M is given by

xε = x + εÛ.

Geometrically speaking to get parallel surface to M , we displace each point p ∈ M a
distance ε in the direction of Û(p). This process is easy to visualize if M is a sphere.
If ε > 0, then M ε is a sphere of larger radius. If ε < 0, then M ε is a sphere of smaller
radius. If the radius of sphere M is R, then the radius of sphere M ε is R+ ε.

Lemma 4.4. Suppose the surface M has patch x. Let κ1 and κ2 be the principal
curvatures of M and suppose there exists constant c ∈ R such that |κ1|, |κ2| ≤ c. Take
ε ∈ R such that |ε| ≤ 1/c and construct the parallel surface M ε to M .

1. The mapping xε : D 7→M where D ⊆ R2 and xε = x+εÛ is a regular, coordinate
patch.

2. At any point (u, v) ∈ D, M and M ε have the same unit normal, that is Ûε = Û.

Proof. To show 1 we compute the u and v partial derivatives of x. Recall from Section
3.1 taking partial derivatives of Û means applying the Shape Operator to the vector Û
and, as a matrix, the Shape Operator is

Sp =
(
a c
b d

)
.

Although we already know a, b, c, and d (see Section 3.5), their specific values are not
important for this proof. Compute

xεu = xu + εÛu = xu − εSp(xu)
= xu − ε(axu + bxv)

xεu = (1− εa)xu − εbxv(38)

xεv = xv + εÛv = xv − εSp(xv)
= xv − ε(cxu + dxv)

xεv = −εcxu + (1− εd)xv.(39)

Next, compute the cross product

xεu × xεv = (1− ε(a+ d) + ε2(ad− bc)) xu × xv
= (1− ε trace(Sp) + ε2 det(Sp)) xu × xv

= (1− ε(κ1 + κ2) + ε2(κ1κ2)) xu × xv
= (1− εκ1)(1− εκ2) xu × xv

This shows xεu × xεv and xu × xv are parallel. By choice |ε| < 1/c and |κ1|, |κ2| ≤ c, so
|εκ1|, |εκ2| < 1, which implies (1−εκ1)(1−εκ2) > 0. Thus, xεu×xεv 6= 0 so xε is regular
by definition (see Section 2.1). To show part 2 calculate

Ûε =
xεu × xεv
|xεu × xεv|

=
xu × xv
|xu × xv|

= Û.

�
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Lemma 4.4 motivates the use of parallel surfaces to explore properties of a given
surface. Notice how simple it is to obtain a new patch xε and additionally M ε has all
the same unit normals as M . The next lemma show the curvatures of M and M ε are
also closely related.

Lemma 4.5. Suppose κ1 and κ2 are the principal curvatures (with principal vectors v1

and v2) of a surface M and |κ1|, |κ2| ≤ c. Let K, H be the Gauss and mean curvatures
of M . Take ε < c and construct the parallel surface M ε.

1. The principal curvatures of M are

κε1 =
κ1

1− εκ1
and κε2 =

κ2

1− εκ2
.

2. The principal vectors of M ε are the same as those for M , that is

vε1 = v1 and vε2 = v2.

3. The Gauss and mean curvatures of M ε are

Kε =
K

1− 2εH + ε2K
and Hε =

H − εK
1− 2εH + ε2K

.

Proof. Our goal might be to write the Weingarten equations for Sp(xεu) and Sp(xεv),
but as Section 3.5 shows this will involve tedious algebra computing all the six form
coefficients. If we were to do this, then we would eventually write the matrix Sεp and
find its eigenvalues. According to Lemma 4.1 these will be the principal curvatures.
However, our work so far allows us to prove this at a higher level than the basic algebra
and we can find Sεp without the Weingarten equations.

First, observe the T εp(M ε), the tangent plane to the parallel surface, has its own
standard basis {xεu,xεv}. The Shape Operator will map T εp(M ε) to itself and so for some
constants aε, bε, cε, and dε

Sp(xεu) = aεxεu + bεxεv
Sp(xεv) = cεxεu + dεxεv.

The coefficients tell us how to move from xεu and xεv to Sp(xεu) and Sp(xεv). Notice,
from the proof of Lemma 4.4 equations (38) and (39) tell us how to move from xu and
xv to xεu and xεv. As a matrix we can write this as

I − εSTp =
(

1− εa −εb
−εc 1− εd

)
,

where I is the 2× 2 identity matrix. From Lemma 4.4 we know Ûε = Û, which means
we can use Sp to move from xu and xv to Sp(xεu) and Sp(xεu). The following diagram
summarizes these observations:

{xu and xv}
↙ ↘

I − εSTp ↙ ↘ Sp
↙ ↘

{xεu and xεv} {Sp(xεu) and Sp(xεv)}
Hence,

Sεp = (I − εSTp )−1Sp.
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It follows that
Sεpv1 = (I − εSTp )−1Spv1

The eigenvalues of Sp are κ1 and κ2 so the eigenvalues of Sεp are

(40) κε1 =
κ1

1− εκ1
and κε2 =

κ2

1− εκ2
,

as stated in part 1.
The eigenvectors of Sp are the same as those of Sεp so vε1 = v1 and vε2 = v2, as stated

in part 2.
Lastly, straightforward algebra using the expressions in (40) proves part 3. �

With expressions Kε and Hε in hand in terms of K, H, and ε, creating parallel
surfaces with constant mean curvature from surfaces with constant Gauss curvature
(and vice-verse) is an algebraic, rather than geometric, problem.

Lemma 4.6. Suppose M is a surface with constant mean curvature H 6= 0, then for
ε = 1/(2H) the parallel surface M ε has constant Gauss curvature. Conversely, suppose
M has constant Gauss curvature K > 0, then for ε = 1/

√
K the parallel surfaces M ε

and M−ε have constant mean curvature.

Proof. Let M be a surface of constant mean curvature H 6= 0 and let ε = 1/(2H).
Compute

Kε =
K

1− 2εH + ε2K
=

K

1− 2
(

1
2H

)
H +

(
1

2H

)2
K

= 4H2.

Hence, M ε has constant Gauss curvature 4H2.
Now, let M be a surface of constant Gauss curvature K > 0 and let ε = 1/

√
K.

Compute

Hε =
H − εK

1− 2εH + ε2K
=

H −
(

1√
K

)
K

1− 2
(

1√
K

)
H +

(
1√
K

)2
K

=
H −

√
K

(2
√
K − 2H)

(
1√
K

) = −1
2

√
K.

Hence, M ε has constant mean curvature −
√
K/2. A similar calculation shows M−ε has

constant mean curvature
√
K/2. �

We might initially expect a wealth of examples that demonstrate this theorem, but
this is a false hope. The problem is obtaining surfaces with constant K > 0 or H 6= 0
to start with. Furthermore, to apply Lemma 4.6 it becomes necessary to find patch
functions for these rare surfaces in order to compute the form coefficients, which is also
difficult. We can rest slightly easier by examining a trivial case. A sphere has constant
Gauss curvature K = 1/r2 and constant mean curvature H = −1/r (see Section 4.1).
Indeed, when we form parallel surfaces to the sphere, we obtain spheres of different
radii and they too have constant curvatures. Oprea coauthors a work, with Mariana
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Hadzhilazova and Iväılo M. Mladenov on a class of surfaces called unduloids, which are
less trivial examples of the result from Lemma 4.6. 4

4.4. Gauss’s Theorem Egregium. We are now ready to state and prove Gauss’s
“Remarkable” Theorem. The proof itself is not particularly remarkable, as it mostly
takes patient and careful organization. We present Oprea’s proof here because it agrees
most closely with our notation, but Pressley presents a similar one. We start by intro-
ducing the useful shorthand to denote the partial derivatives of the form coefficients E
and G:

Ev =
∂

∂v
E =

∂

∂v
(xu · xu) and Gu =

∂

∂u
G =

∂

∂u
(xv · xv).

In this section we assume F = 0, that is xu · xv = 0. The formulas we prove are thus a
special case of a larger framework, but all the important ideas are present in our proofs.

Lemma 4.7. Gauss curvature depends only on the form coefficients E, F , and G.
Suppose M is a surface with F = 0, then the Gauss curvature is given by

(41) K = − 1
2
√
EG

(
∂

∂v

(
Ev√
EG

)
+

∂

∂u

(
Gu√
EG

))
Proof. From Lemma 4.3 we know the Gauss curvature is given by

K =
ln−m2

EG
,

when F = 0. Lemma 4.4 implies l, m, and n can somehow be written in terms of E, G,
Ev, Gu. Remember l = xuu · Û, m = xuv · Û, and n = xvv · Û, so we search for a way
to express the second derivatives in terms of xu, xv, and Û. To this end we write

xuu = Γuuuxu + Γvuuxv + l Û

xuv = Γuuvxu + Γvuvxv +m Û

xvv = Γuvvxu + Γvvvxv + n Û.

Remember xu and xv are in Tp(M) and Û is perpendicular to Tp(M) so l, m, and n

appear as the coefficients of Û because xuu · Û = l and so forth. The Γ coefficients are
called Christoffel symbols and our goal is to solve for them. First compute

xuu · xu = Γuuuxu · xu + Γvuuxv · xu + lÛ · xu
= ΓuuuE + ΓvuuF = ΓuuuE,

which implies
Γuuu =

xuu · xu
E

.

Notice,

Eu =
∂

∂u
(xu · xu) = xuu · xu + xu · xuu = 2 xuu · xu

so

Γuuu =
Eu
2E

.

4M. Hadzhilazova et. al. Unduloids and Their Geometry (English summary). Arch. Math (Brno)
43 (2007), no. 5, 417-429.
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Performing a similar trick with xvv · xv and the coefficient G we find

Γvvv =
xvv · xv
G

=
Gv
2G

.

Next, we compute

xuu · xv = Γuuuxu · xv + Γvuuxv · xv + lÛ · xv
= ΓuuuF + ΓvuuG = ΓvuuG,

and

xuv · xu = Γuuvxu · xu + Γvuvxv · xu + lÛ · xu
= ΓuuvE + ΓvuvF = ΓuuvE,

which imply

Γvuu =
xuu · xv
G

and Γuuv =
xuv · xu
E

.

We need a slightly different strategy here so start with xu · xv = F = 0 and take the
partial with respect to u

0 =
∂

∂u
(0) =

∂

∂u
(xu · xv) = xuu · xv + xu · xuv,

which implies xuu ·xv = −xuv ·xu. Now take the partial of the coefficient E with respect
to v to find

Ev =
∂

∂v
(xu · xu) = xuv · xu + xu · xuv = 2 xuv · xu = −2 xuu · xv.

Hence,

Γvuu =
xuu · xv
G

= −Ev
2G

and Γuuv =
xuv · xu
E

=
Ev
2E

.

The last two Christoffel symbols are obtained by applying a v partial derivative to the
identity xu · xv = F = 0 to find −xuv · xv = xvv · xu. Also, compute

Gu =
∂

∂u
(xv · xv) = xuv · xv + xv · xuv = 2xuv · xv = −2 xvv · xu.

Finally, we obtain

Γvuv =
xuv · xv
G

=
Gu
2G

and Γuvv =
xvv · xu
E

= −Gu
2E

.

We also use formulas for Ûu and Ûv, which can be computed for the F = 0 case from
the Weingarten equations (27) and (28) from Section 3.5:

Ûu = −Sp(xu) = − l

E
xu −

m

G
xv

and

Ûv = −Sp(xv) = −m
E

xu −
n

G
xv.
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Taken together, Oprea calls the xuu, xuv, xvv, Ûu, and Ûv equations the funda-
mental acceleration formulas for the F = 0 case. In summary,

xuu =
Eu
2E

xu −
Ev
2G

xv + l Û(42)

xuv =
Ev
2E

xu +
Gu
2G

xv +m Û(43)

xvv = −Gu
2E

xu +
Gv
2G

xv + n Û

Ûu = − l

E
xu −

m

G
xv

Ûv = −m
E

xu −
n

G
xv.

As with many of our previous proofs, we start with a seemingly trivial identity and
implicitly derive the relationship we seek. Our formula will come from third derivatives
of the patch x. We know the order of partial differentiation does not matter so xuuv =
xuvu or xuuv − xuvu = 0. Compute these partials starting with equation (42)

xuuv =
∂

∂v
xuu =

∂

∂v

(
Eu
2E

xu −
Ev
2G

xv + l Û
)

=
(
Eu
2E

)
v

xu +
Eu
2E

xuv −
(
Ev
2G

)
v

xv −
Ev
2G

xvv + lvÛ + l Ûv

and equation (43)

xuvu =
∂

∂u
xuv =

∂

∂u

(
Ev
2E

xu +
Gu
2G

xv +m Û
)

=
(
Ev
2E

)
u

xu +
Ev
2E

xuu −
(
Gu
2G

)
v

xv −
Gu
2G

xuv +muÛ +m Ûu.

According to the fundamental acceleration formulas, we can write these third derivatives
solely in terms of xu, xv, and Û. For this proof we are only interested in the xv term so
we examine it the closest with an understanding that we can compute the other terms
in a similar fashion. We have

xuuv = (. . .)xu +
(
EuGu
4EG

−
(
Ev
2G

)
v

− EvGv
4G2

− ln

G

)
xv + (. . .)Û

and

xuvu = (. . .)xu +
(
−EvGv

4EG
+
(
Gu
2G

)
u

+
GuGu
4G2

− m2

G

)
xv + (. . .)Û

Subtracting these highlighted xv terms we have

0 =
EuGu
4EG

− EvGv
4EG

−
(
Ev
2G

)
v

−
(
Gu
2G

)
u

− GuGu
4G2

− EvGv
4G2

− ln−m2

G
.

Notice (the last term) we have built an expression for K in terms of E, G, and the
associated partials

K =
ln−m2

EG
=
EuGu − EvGv

4E2G
− 1
E

(
Ev
2G

)
v

− 1
E

(
Gu
2G

)
u

− GuGu + EvGv
4EG2

.
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Some careful algebra, which is not illuminating as it is mostly careful book-keeping,
shows this is indeed equivalent to equation (41). �

At this point the reader should be looking for some convincing evidence that Lemma
4.7 is actually amazing. All we did was demonstrate a new way of computing Gauss
curvature. However, the “remarkable” tag is justified when we think about this result in
terms of mappings between different surfaces. The discussion is certainly more abstract
than the proof of Lemma 4.7 and we delve primarily into Pressley’s text.

Every time we use a patch function, we are mapping from two dimensional domains to
surfaces. We have yet to discuss mappings between surfaces, which are not only possible,
but also interesting and useful. Two surfaces M1 and M2 are said to be diffeomorphic
if there exists a differentiable, one-to-one, and onto function Ω : M1 7→M2, where Ω−1 :
M2 7→ M1 is also smooth. The vector-valued function Ω is called a diffeomorphism.
Lemma 4.8 shows us how coordinate patches for M1 and M2 relate.

Lemma 4.8. Let M1 and M2 be diffeomorphic surfaces with diffeomorphism Ω : M1 7→
M2. Let D1 and D2 be open subsets of R2 and suppose x : D1 7→M1 and y : D2 7→M2

are regular coordinate patches for M1 and M2 respectively. Then Ω ◦ x : D1 7→M2 is a
regular patch for M2 and Ω ◦ y : D2 7→M1 is a regular patch for M1.

Proof. Let the coordinates of D2 be ũ and ṽ. Let x̃ = Ω◦x, we must show x̃ũ× x̃ṽ 6= 0.
Using the chain rule compute

x̃ũ =
∂u

∂ũ
xu +

∂v

∂ũ
xv

and
x̃ṽ =

∂u

∂ṽ
xu +

∂v

∂ṽ
xv,

which gives

(44) x̃ũ × x̃ṽ =
(
∂u

∂ũ

∂v

∂ṽ
− ∂u

∂ṽ

∂v

∂ũ

)
xu × xv.

Thus, we must show the scalar in equation (44) is non-zero, for we know xu × xv 6= 0.
Since Ω is a diffeomorphism

Ω ◦ x(u, v) = Ω(x(u, v)) = y(G(u, v)),

where G : D1 7→ D2 is smooth and bijective, with G−1 : D2 7→ D1 smooth as well.
Notice (u, v) = G(ũ, ṽ) because G is bijective. The scalar term in equation (44) is the
determinant of the Jacobian matrix of G−1, which is given by

J(G−1) =

 ∂u
∂ũ

∂v
∂ũ

∂u
∂ṽ

∂v
∂ṽ

 .

From Calculus we know the following about the Jacobian of G and G−1:

I2 = J(G−1 ◦G) = J(G−1) J(G),

where I2 is the 2 × 2 identity matrix. Hence, J(G−1)−1 = J(G),which implies J(G−1)
is an invertible matrix with non-zero determinant, so x̃ũ × x̃ṽ 6= 0.

An analogous proof is valid for ỹ = Ω ◦ y. �
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Lemma 4.8 proves patch functions for diffeomorphic surfaces relate nicely by function
composition.

Next, we investigate isometric surfaces. As a general comment “isometric” is more
strict than “diffeomorphic” in terms of surface mappings. Suppose Ω : M1 7→ M2 is a
diffeomorphism that takes curves in M1 to curves of the same length in M2, then M1

and M2 are said to be isomorphic. If Ω preserves lengths in this way, then we call
it an isometry. Given two surfaces we check for such an isometry using their first
fundamental forms.

Lemma 4.9. Diffeomorphic surfaces, M1 and M2, are isometric if and only if they
have the same first fundamental form.

Proof. Suppose Ω : M1 7→M2 is a diffeomorphism. Suppose D1 ⊆ R2 and let x1 : D1 7→
M1 be a coordinate patch for M1.

First, suppose M1 and M2 have the same first fundamental form, equation (8) says
this common first fundamental form is E du2 +2F du dv+Gdv2. For I ⊆ R let α1 : I 7→
M1 such that for t ∈ I, α1(t) = x1(u(t), v(t)) be a surface curve on M1. By Lemma 4.8
Ω ◦ x is a patch for M2 so the image curve α2 on M2 can be found by computing

Ω(α1(t)) = Ω(x1(u(t), v(t))) = Ω ◦ x1(u(t), v(t)) = α2(t).

The arc length formula given in equation (9) is the same for α1 and α2 because not
only are the form coefficients the same, the functions u and v are the same. So for any
t1, t2 ∈ I

L(α1) =
∫ t2

t1

√
E u̇2 + 2F u̇ v̇ +Gv̇2 dt = L(α2).

Thus, α1 and α2 have the same length, which means M1 and M2 are isomorphic by
definition.

Now suppose Ω is an isometry. For t ∈ I suppose the functions u(t) and v(t) param-
etrize a curve in D1. The curves α1(t) = x1(u(t), v(t)) and α2(t) = Ω ◦ x1(u(t), v(t))
have equal length because Ω is an isometry. According to equation (9) for any t1, t2 ∈ I
we have

L(α1) =
∫ t2

t1

√
E1 u̇2 + 2F1 u̇ v̇ +G1v̇2 dt

= L(α2) =
∫ t2

t1

√
E2 u̇2 + 2F2 u̇ v̇ +G2v̇2 dt,

where E1, F1, and G1 are the form coefficients of M1 and E2, F2, and G2 are the form
coefficients of M2. The integrands on these expressions must be equal, that is (after
squaring)

(45) E1 u̇
2 + 2F1 u̇ v̇ +G1v̇

2 = E2 u̇
2 + 2F2 u̇ v̇ +G2v̇

2.

This expression is true for any parameter functions u(t) and v(t), so it is true for three
specific choices of u and v. Fix t1 ∈ I and for each choice, let u1 = u(t1) and v1 = v(t1):

• u(t) = u1 + t − t1 and v(t) = v1 so that u̇(t) = 1 and v̇(t) = 0, which implies
E1 = E2 in equation (45).
• u(t) = u1 and v(t) = v1 + t − t1 so that u̇(t) = 0 and v̇(t) = 1, which implies
G1 = G2.
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• u(t) = u1 + t− t1 and v(t) = v1 + t− t1 so that u̇ = 1 and v̇ = 1, which implies
E1 + 2F1 +G1 = E2 + 2F2 +G2 in equation (45). From what we have already
learned this in turn shows F1 = F2.

Hence, M1 and M2 have the same first fundamental form. �

Perhaps now we see more clearly why Gauss’s result is so remarkable. Corollary
4.10 puts together the abstract result of Lemmas 4.8 and 4.9 with the Gauss curvature
formula from equation (41) in Lemma 4.7.

Corollary 4.10 (Gauss’s Theorem Egregium). Isometric surfaces have the same Gauss
curvature.

Proof. By Lemma 4.9 isometric surfaces have the same first fundamental form E du2 +
2F du dvG dv2. Since we can compute Gauss curvature K from the first fundamen-
tal form coefficients only (see equation (41)), isometric surfaces have the same Gauss
curvature. �

This result indicates an enormous bound in our characterization of the huge number
of surfaces. We can categorize isometric surfaces into a single class because they all
have the same Gauss curvature.

Example: Diffeomorphic, Non-Isometric Surfaces

The torus and a cylinder of height 2π and unit radius are diffeomorphic, but not
isomorphic. We use a plane as an intermediary in the process. Recall our example
in Section 3.3 and Figure 3 where we compute the circumference of torus circles. We
observed that the circumferences were different than in flat space. We are now ready
to show this discrepancy is not a coincidence because the torus is not isomorphic to the
plane.

First, recall the coordinate patch for the torus is (equation (1))

T(u, v) = ((R+ r cosu) cos v, (R+ r cosu) sin v, r sinu)) .

The domain in R2 is D = [0, 2π) × [0, 2π) so that we get the whole torus shape and a
cylinder of height 2π and unit radius. A coordinate patch for the cylinder is C : D 7→ R3

such that
C(u, v) = (cosu, sinu, v).

To define a diffeomorphism Ω : C 7→ T label the cylinder coordinates (c1, c2, c3). Notice
one way to define C−1, which maps from the cylinder back to the domain D is

C−1(c1, c2, c3) = (arccos c1, c3).

Thus,

Ω(c1, c2, c3) = T(C−1(c1, c2, c3)) = ((R+ rc1) cos c3, (R+ rc1) sin c3, rc3)

and the torus and this particular cylinder are diffeomorphic.
Recall from Section 3.3, specifically equation (18), the first fundamental form of the

torus is
r2du2 + (R+ r cosu)2dv2.
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For the cylinder we compute

Cu(u, v) = (− sinu, cosu, 0)

and
Cv(u, v) = (0, 0, 1)

so that

E = Cu ·Cu = 1
F = Cu ·Cv = 0
G = Cv ·Cv = 1,

(46)

which implies the first fundamental form of the cylinder is different than that of the
torus: du2 + dv2. Note, this is the same first fundamental form as a plane so a cylinder
is isomorphic to a plane.

This example is particularly nice because the visualizations of the required trans-
formations to get from the planar domain D to the cylinder to the torus are easily
visualized. We wrap D upon itself, match up the u = 0 with the u = 2π edge, and
the result is a cylinder. Furthermore, we do not change the Gauss curvature K in this
process. To make the torus however, we must align the top of the cylinder with the
bottom forming the inner-tube. We can imagine doing this experiment with paper and
we would find it necessary to crinkle the cylinder to form the torus. This reflects that
the cylinder and torus are not isomorphic and there is a change in Gauss curvature
when we try to force one to become the other.

5. Minimal Surfaces

5.1. Minimal Surface Definition. Before we define minimal surface, we present
Lemma 5.1, which not only justifies the name “mean curvature,” but also calibrates
our intuition about the quantity H. Recall we have already entertained the idea of
mean curvature as an average because by definition

H =
1
2

(κ1 + κ2),

where κ1 and κ2 are the principal curvatures. The next two Lemmas develop our
intuition about mean curvature, both follow directly from Euler’s formula of Corollary
4.2.

Lemma 5.1. Suppose M is a surface. At the point p ∈ M the mean curvature H is
the average normal curvature over all possible directions of travel, that is

(47) H =
1

2π

∫ 2π

0
κn(θ) dθ.

Proof. From Euler’s formula (equation (34) of Corollary 4.2) we know

κn(θ) = κ1 cos2 θ + κ2 sin2 θ.
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Basic integration proves equation (47);

1
2π

∫ 2π

0
κ(θ) dθ =

1
2π

∫ 2π

0
(κ1 cos2 θ + κ2 sin2 θ) dθ

=
κ1

2π
π +

κ2

2π
π =

1
2

(κ1 + κ2) = H

�

Lemma 5.2. Suppose M is a surface and let ξ1 and ξ2 be perpendicular unit vectors
in Tp(M). Then,

(48) H =
1
2

(κn(ξ1) + κn(ξ2)).

Proof. Let φ be the angle from the principal vector v1 to ξ1 so the angle from v1 to
ξ2 is φ + π/2 because ξ1 and ξ2 are perpendicular. Also, work in the principal vector
basis so that the coordinate axes align with the principal vectors v1 and v2. Again, by
Euler’s formula of equation (34) we have

κn(ξ1) + κn(ξ2) = κn(φ) + κn

(
φ+

π

2

)
= κ1 cos2 φ+ κ2 sin2 φ+ κ1 cos2

(
φ+

π

2

)
+ κ2 sin2

(
φ+

π

2

)
= κ1(cos2 φ+ sin2 φ) + κ2(sin2 φ+ cos2 φ)
= κ1 + κ2 = 2H

Hence, equation (48) is valid. �

Given this result we may imagine being on a surface and actually computing mean
curvature. Have two options. We could perform a survey of the normal curvature in
many directions of travel 0◦ to 360◦ and then average them to approximate the integral
in equation (47) and thus, the mean curvature H. Alternately, we could sample the
normal curvature in one direction, spin 90◦, sample normal curvature, and average the
measurements using equation (48) to get H.

A minimal surface M has zero mean curvature at all points, that is H = 0 for all
p ∈ M . Lemma 5.1 helps to motivate just how special minimal surfaces are. Suppose
we stand at a point on our surface and measure a mean curvature H = 0. This scenario
is entirely feasible and, in fact, easy to picture. At this special point of zero mean
curvature we scan the surface (again 0◦ to 360◦) and see it sloping up just as much as
it slopes down. For a minimal surface, this is true at all points!

The trivial minimal surface is a plane. A plane has no curvature whatsoever so it
must be minimal. A sphere is not minimal because, see Section 4.1, it has constant
mean curvature −1/r, where r is its radius. Likewise a torus is not minimal. Even the
common examples of minimal surfaces (many are covered in Oprea’s book and some in
Pressley’s) are not intuitive. In fact, it is for this reason that minimal surfaces are still
an interesting subfield of Differential Geometry. For instance, the Hoffman surface and
an associated family of minimal surfaces were discovered in the latter half of the 20th

century. 5 We must incorporate a vast number of techniques from partial differential

5T. Hern et. al. Looking at Order of Integration and a Minimal Surface. The College Mathematics
Journal 29 (1998), no. 2, 128-133.



50 ALEX MASARIE AND DR. ALBERT SCHUELLER (ADVISOR)

equations, topology, and other fields to study minimal surfaces. Likewise, minimal
surfaces appear unexpectedly in some fields of mathematics. Additionally, minimal
surfaces have strong physical relevance because a minimal configuration turns out to
minimize the energy of various real-world systems. Soap films, for instance, assume
minimal surface configurations when they form across fixed boundaries. We explore the
physicality of minimal surfaces in Sections 5.2 and 5.3.

Given a surface M in R3 whose graph can be given by a scalar function of two
variables x3 = f(x1, x2), we can form a coordinate patch

x(u, v) = (u, v, f(u, v)).

This is called a Monge patch. For this special case, Oprea presents a concise summary
of what we have developed so far, which we reproduce here. The partial derivatives are

xu = (1, 0, fu) , xv = (0, 1, fv) ,

xuu = (0, 0, fuu) , xuv = (0, 0, fuv) , and xvv = (0, 0, fvv).

From these, compute the unit normal

Û =
xu × xv
|xu × xv|

=
(−fu,−fv, 1)√

1 + f2
u + f2

v

.

The form coefficients follow

E = 1 + f2
u , F = fufv , G = 1 + f2

v ,

l =
fuu√

1 + f2
u + f2

v

, m =
fuv√

1 + f2
u + f2

v

, and n =
fvv√

1 + f2
u + f2

v

.

Finally, we compute Gauss and mean curvature according to Lemma 4.3:

K =
ln−m2

EG− F 2
=

fuufvv − f2
uv

(1 + f2
u + f2

v )2

and

(49) H =
(1 + f2

v )fuu + (1 + f2
u)fvv − 2 fufvfuv

2 (1 + f2
u + f2

v )3/2
.

Equation (49) implies a condition, albeit a complicated one, on f that will make M
minimal. The surface M is minimal if and only if

(50) (1 + f2
v )fuu + (1 + f2

u)fvv − 2 fufvfuv = 0.

Equation (50) is called the minimal surface equation; notice, it is a second order,
partial differential equation that couples u and v.

To find examples we use various techniques; here we present four minimal surfaces:

• a catenoid,
• a helicoid,
• Scherk’s surface,
• Enneper’s surface.
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Figure 11. This catenoid is a minimal surface. Physicists use the
catenoid to model the optimal configuration of a soap film between two
concentric rings separated by a given distance along an axis through
their centers.

These examples reflect the slightly bizarre history of minimal surfaces. The only known
minimal surfaces until 1835 were the catenoid and helicoid. Then in 1835 Polish-born
mathematician Heinrich Ferdinand Scherk discovered a new class of minimal surface
(named in his honor). Since, many minimal surfaces have been discovered, but they
arose from various mathematical contexts, not just modifications of Scherk’s or any one
category of ideas. Our fourth example was discovered by German mathematician Alfred
Enneper in 1863.

Example: A Catenoid

Like the torus, the catenoid is a surface of revolution. We obtain a catenoid surface
by rotating the curve x2 = cosh(x1) about the x3 axis. A patch for the catenoid is

x(u, v) = (coshu cos v, coshu sin v, u),

where v ∈ [0, 2π). Figure 11 shows a rendering of the catenoid. The catenoid solves a
basic problem in the mathematics and physics of soap films. If we separate two rings
by a fixed distance and orient them so they face each other, then a soap film with the
rings as a boundary will assume the shape of a catenoid. This is a specific example of
soap films as minimal surfaces, we argue this is the case in general in Section 5.2.
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Figure 12. A helicoid is formed by filling the space between a helix
and its central axis.

Example: A Helicoid

The helicoid shape is the other minimal surface known during the 1700s. To construct
the helicoid we begin with a helix, which is a space curve given byα(u) = (cosu, sinu, u),
and sweep out a surface from the central axis of the helix to the curve itself. Figure 12
shows a helicoid.

Example: Scherk’s Surface

Some minimal surfaces are obtained by searching for solutions to the minimal surface
equation (50). If we look for solution of the form f(u, v) = g(u) + h(v) , then equation
(50) becomes

d2g

du2

(
1 +

(
dh

dv

)2
)

+
d2h

dv2

(
1 +

(
dg

du

)2
)

= 0.

This can be solved by separation of variables, as it is no longer a partial differential
equation, to find

f(u, v) = ln(cosu)− ln(cos v) = ln
(cosu

cos v

)
,

is a solution. Figure 13 displays part of Scherk’s surface. This is a particularly in-
teresting minimal surface because it is periodic. Pressley quantifies the periodicity by
noting

cos(u+ nπ)
cos(v +mπ)

=
cosu
cos v

,
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Figure 13. Scherk’s surface for the domain (u, v) ∈ [0, 2π) × [0, 2π).
The surface is actually infinite and periodic defined on all squares in
uv-space such that the center of the square is at (mπ, nπ), where m and
n are integers and m+ n is even.

for integers m and n such that m+n is even. Hence, for such m and n, Scherk’s surface
is defined for any square domain in uv-space with center at (mπ, nπ).

Example: Enneper’s Surface

Enneper’s surface has patch

x(u, v) =
(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
.

Enneper’s surface is a remarkable minimal surface for two reasons. One, its patch only
involves the product of u and v as well as integer powers of u and v. It is interesting
that such a surface would have zero mean curvature at every point. Two, Enneper’s
surface is self-intersecting. Figure 14 shows Enneper’s surface intersecting itself.

5.2. The Laplace-Young Equation. In this Section we provide a physical justifi-
cation of why soap bubbles should assume minimal (mean curvature H = 0) config-
urations. Both Oprea and Pressley provide justifications, but the demonstration is
particularly clear in The Science of Soap Films and Soap Bubbles by Cyril Isenberg. 6

Figure 15 shows the basic physical set-up. We take a small portion of surface area
on some given surface and study the physical work required to expand the surface. We
can represent the expansion by an outward displacement δu when the surface is subject
to a pressure P .

The dimensions of the smaller surface are measured by x and y and we assume the
sides come together at right angles, so the shape is approximately rectangular. This bit
of surface area is curved and we approximate the curving by letting x and y be chord
lengths on circles of radius Rx and Ry respectively. The centers of these circles would

6C. Isenberg. The Science of Soap Films and Soap Bubbles. Tieto Ltd., Cleveland, Avon, England,
1978.
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Figure 14. At left we show the general shape of Enneper’s surface near
(u, v) = (0, 0). At right we see the self-intersection of Enneper’s surface.

Figure 15. The set-up for the derivation of Laplace-Young equation.

be at points Cx and Cy respectively. To form the expanded piece we picture these radii
extended by δu to yield a surface area with dimensions x+ δx and y + δy. Hence, the
change of surface area

(51) δS ≈ (x+ δx)(y + δy)− xy.
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Note, to compute δS we approximate the surfaces pieces as rectangles, so that the area
is simply the product of their dimensions.

Based on the geometry of our set-up, we derive expressions relating the side lengths
of two pairs of similar triangles

x+ δx

Rx + δu
=

x

Rx
and

y + δy

Ry + δu
=

y

Ry
,

which imply

x+ δx = x

(
1 +

δu

Rx

)
and y + δy = y

(
1 +

δu

Ry

)
.

Plugging these into equation (51) gives

δS = x

(
1 +

δu

Rx

)
y

(
1 +

δu

Ry

)
− xy

= xy δu

(
1
Rx

+
1
Ry

)
+ xy

(δu)2

RxRy

We ignore the (δu)2 term because δu is assumed to be a small displacement. Hence,
the change of surface area is

(52) δS ≈ xy δu
(

1
Rx

+
1
Ry

)
.

Now we turn our attention to the physics of this set-up. The work done by the
pressure P to expand the film must go to increase the surface tension T , that is

(53) WP = WT ,

where WP is the work done by the pressure and WT is the work done by surface tension.
We can rationalize this by considering a molecular model for a soap film as charged
particles. A film is held together by the intermolecular forces between these charged
particles so it requires work to separate them, which we do upon expanding the film.
For our purposes it is sufficient to approximate the surface tension with T (which has
units force per unit length), so the work done separating the molecules is just

WT = T δS ≈ T xy δu
(

1
Rx

+
1
Ry

)
,

where the approximation comes from equation (52). Pressure P is force per unit area
and work is force times displacement so we have

WP = P xy δu.

Setting WP = WT as in equation (53) gives the Laplace-Young Equation:

(54) P ≈ T
(

1
Rx

+
1
Ry

)
.

Recall that the normal curvature of a sphere is 1/R, where R is the radius of curvature.
With our approximations, 1/Rx and 1/Ry can be thought of as normal curvatures in
perpendicular directions so Lemma 5.2 applies and

(55) P ≈ T (2H).
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Physically, we see the pressure and surface tension balancing according to the mean
curvature.

If we specifically consider a soap film help stationary on some boundary, then P = 0
as the air pressure on one side equals the air pressure on the other. Hence, soap bubbles
must assume zero mean curvature, H = 0, configurations. Once we see soap films are
minimal, then all the associated mathematical theory applies these physical systems.
For example, the integral curvature condition of equation (47) must apply, that is∫ 2π

0
κn(θ) dθ = 0,

and any equation f that models a soap film must satisfy the minimal surface equation
(50).

5.3. Aleksandrov’s “Soap Bubble” Theorem. What if the soap film is closed?
That is suppose we wish to study soap bubbles rather than films on frames. Russian
mathematician Pavel Sergeevich Aleksandrov (1896 to 1982) had a long and successful
career in topology and we examine one of his results in this section. Aleksandrov’s
Theorem is often called the “Soap Bubble” Theorem because it shows soap bubbles
are spherical! Throughout the exposition here, keep in mind how a simple physical
property as “being spherical” requires quite difficult mathematics to concretely prove.
There are many ways to organize this proof, but we adopt the overall structure of Robert
C. Reilly’s proof of Aleksandrov’s Theorem, who presents a fantastic exposition in his
1982 (the year of Aleksandrov’s death) paper “Mean Curvature, The Laplacian, and
Soap Bubbles.” 7

In Section 5.2, we see soap films have mean curvature H = 0. While the Laplace-
Young equation (54) applies to soap bubbles, we can no longer say P = 0 because a
bubble is closed. The overall effect of this is to give a soap bubble constant, albeit
nonzero, mean curvature. If we consider equation (55), then we have

H ≈ P

2T
.

Aleksandrov’s Theorem is sufficient to show soap bubbles are spherical because it essen-
tially says compact surfaces of constant mean curvature must be spherical. A surface
is compact if it is closed and bounded.

Reilly’s version of the proof rests on eight propositions, which are from markedly
different areas of undergraduate-level (with one exception) mathematics. We present
most of the propositions without proof and in some cases refer the reader to sources
where proofs can be found.

Proposition A (The Divergence Theorem). Let M be a compact surface that en-
closes W ⊆ R3. Assume W includes M . If F : W 7→ R is a differentiable function on
W , then

(56)
∫ ∫ ∫

W
∆F dx1 dx2 dx3 =

∫ ∫
M

Û[F ] dA,

7R. Reilly. Mean curvature, the Laplacian, and Soap Bubbles. Amer. Math. Monthly 89 (1982), no.
3, 180-188+197-198.
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where Û is the unit normal of M .

Proof. This is slightly different than the typical vector calculus Divergence Theorem,
which states for some vector-valued function G : W 7→ R3∫ ∫ ∫

W
∇ ·G dx1 dx2 dx3 =

∫ ∫
M

G · Û dA.

To get equation (56) simply let G = ∇F . �

Proposition B (Newton’s Inequality). Suppose A is an n × n matrix with elements
aij ∈ R for 1 ≤ i, j ≤ n. Define the norm ||A|| by

||A||2 .=
n∑
j=1

n∑
i=1

a2
ij ,

this is called the Frobenius matrix norm. Let trace(A) denote the sum of the diagonal
elements of A, that is

trace(A) =
n∑
i=1

aii.

Then

||A||2 ≥ 1
n

(trace(A))2.

Equality occurs if and only if for some c ∈ R A = c In, where In is the n × n identity
matrix.

Proposition C (The Cauchy-Schwarz Inequality for Integrals). Given a surface M ,
for integrable functions f and g we have(∫ ∫

M
f2 dA

)(∫ ∫
M
g2 dA

)
≥
(∫ ∫

M
f g dA

)2

.

Proposition D is an existence theorem, which, as with many other such theorems,
has a simple result, but an incredibly complicated proof.

Proposition D. Suppose compact surface M encloses W ⊆ R3. Assume W includes
M . Then there exists a differentiable, scalar function F : W 7→ R such that

(57) ∆F = 1 and F |M = 0,

where F |M is the restriction of F to M .

Proof. The proof can be found in Sections 6.3 and 6.4 of the book Elliptic Partial
Differential Equations of the Second Order by Gilbarg and Trudinger. 8 �

8D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-
Verlag, New York, 1977.
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Notice, this is essentially a statement about the existence of solutions to a certain
boundary value problem, given in equation (57).

Propositions E and F refer to the Laplacian ∆ and surface Laplacian ∆M of Section
2.6.

Proposition E. Let G : W 7→ R be a twice differentiable function on W ⊆ R3. Suppose
the surface M ⊆W . Denote the restriction of G to M with g. Take p ∈M and define
Û(p), the unit normal at p, as well as the mean curvature at p, H(p). Then

(58) ∆G(p) = ∆M g(p)− 2H(p) Û[G](p) + Û[Û[G]](p).

Proof. We refer the reader to Reilly’s paper for a proof of this result. �

Proposition F. Suppose for surface M that g : M 7→ R is a twice differentiable function.
• If g is constant, then ∆M g = 0.
• If M is compact, then

∫ ∫
M ∆M g dA = 0.

Proof. If g is constant, then ∆M g = 0 by definition, found in equation (5). A proof of
the second part can be found in the appendix of Reilly’s paper. �

Reilly introduces the Minkowski support function for a surface as the dot product
between p ∈M and the unit normal at p, Û(p), that is

P (p) .= p · Û(p) = (x1, x2, x3) · Û.

Formally, the support function P : M 7→ R is a natural function to define, but it has
little physical relevance in our context. Reilly uses at a tool in his proof based on
Propositions G and H.

Proposition G. Suppose that M is a compact surface and P : M 7→ R is the Minkowski
support function. Then ∫ ∫

M
(H P + 1) dA = 0,

where H is the mean curvature of M .

Proof. Define G : M 7→ R, such that G(x1, x2, x3) = (x2
1+x2

2+x2
3)/2 so that ∆G(p) = 3

for all p ∈M . Let Û(p) = (û1(p), û2(p), û3(p)) and compute

Û[G](p) = ∇G(p) · Û(p) = (x1, x2, x3) · Û(p) = P (p)

and

Û[Û[G(p)]] = Û[x1 u
1(p) + x2 u

2(p) + x3 u
3(p)]

= ∇(x1 u
1(p) + x2 u

2(p) + x3 u
3(p)) · Û(p)

= (u1(p), u2(p), u3(p)) · Û(p) = Û(p) · Û(p) = 1.

Putting these expressions into equation (58) yields

3 = ∆M g − 2H P + 1,



DIFFERENTIAL GEOMETRY SENIOR PROJECT — MAY 15, 2009 59

which we rearrange to find

H P + 1 =
1
2

∆M g.

Integrate both sides of the surface and apply the second part of Proposition F (since
M is compact) to find∫ ∫

M
(H P + 1) dA =

1
2

∫ ∫
∆M g dA = 0.

�

Proposition H. Suppose M encloses W ⊆ R3 and let P : M 7→ R be the support
function, then ∫ ∫

M
P dA = 3V,

where V is the volume of W .

Proof. Let G : M 7→ R be defined as in Proposition G, that is G(x1, x2, x3) = (x2
1 +

x2
2 + x2

3)/2. Also, recall from the proof of Proposition G that Û[G] = P and ∆G = 3.
By the Divergence theorem in Proposition A∫ ∫

M
P dA =

∫ ∫
M

Û[G] dA =
∫ ∫ ∫

W
∆GdV =

∫ ∫ ∫
W

3 dV = 3V.

�

We are now ready to state and give a proof of Aleksandrov’s Theorem using Propo-
sitions A through H.

Lemma 5.3 (Aleksandrov’s Theorem). Suppose a surface M encloses a domain W ⊆
R3. If M has constant mean curvature, then M is the surface of a sphere and W is a
ball.

Proof. By Proposition D there exists a function F : W 7→ R such that

∆F = 1 and F |M = 0.

By the first part of Proposition F and the fact that F is constant when restricted to
M , we have ∆M F = 0. Putting the function F in equation (58) gives

(59) 1 = −2H(p) Û[F ](p) + Û[Û[F ]](p)

for all p ∈ M . Multiply both sides of (59) by Û[F ](p) and integrate over the entire
surface

(60)
∫ ∫

M
Û[F ] dA =

∫ ∫
M
−2H (Û[F ])2 dA+

∫ ∫
M

(Û[F ]) (Û[Û[F ]]) dA.

We investigate each of these terms separately.
Take the left-hand side first. By the Divergence Theorem of Proposition A, ∆F = 1

implies

(61)
∫ ∫

M
Û[F ] dA =

∫ ∫ ∫
W

∆F dV =
∫ ∫ ∫

1 dV = V,
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where V is the volume of W .
Next, consider the first term on the right-hand side of equation (60). According to

Proposition G

0 =
∫ ∫

M
(H P ) dA =

∫ ∫
M

1 dA+H

∫ ∫
M
P dA = A+H

∫ ∫
M
P dA,

where A is the surface area of M and we use the fact that M has constant mean
curvature H. Rearranging we find

H = − A∫ ∫
M P dA

= − A

3V

by Proposition H. Notice, this is an interesting expression for the mean curvature of the
surface as a ratio of surface area to volume enclosed. Next, we use the Cauchy-Schwarz
inequality from Proposition C to put a lower bound on the surface integral of (Û[F ])2.
Observe (∫ ∫

M
12 dA

) (∫ ∫
M

(Û[F ])2 dA
)
≥
(∫

∈ tM (1) (Û[F ])
)2

,

which implies

(62)
∫ ∫

M
(Û[F ])2 dA ≥

(∫ ∫ ∫
W ∆F dV

)2∫ ∫
M dA

=
V 2

A

The last inequality in (62) follows from Proposition A, our version of the Divergence
Theorem. Combining the equality in equation (61) with the inequality in equation (62)
we write

(63)
∫ ∫

M
−2H (Û[F ])2 dA ≥

(
2A
3V

)(
V 2

A

)
=

2
3
V.

We now turn our attention to the second term on the right-hand side of (60). Rewrite
the integrand using Leibniz’s product rule for the bracket derivative (see Lemma 2.4)
as

(64) (Û[F ]) (Û[Û[F ]]) = Û
[

1
2

(Û[F ]) (Û[F ])
]

= Û
[

1
2

(Û[F ])2
]
.

Hence, we can use the Divergence Theorem in Proposition A yet again to write

(65)
∫ ∫

M
Û
[

1
2

(Û[F ])2
]
dA =

∫ ∫ ∫
W

∆
(

1
2

(Û[F ])2
)
dV.

Reilly’s next step is to rewrite the integrand using the gradient of F (∇F ) so we can
use summation notation more easily. The following, somewhat arbitrary manipulation
achieves this end

∆
(

1
2

(Û[F ])2
)

= ∆
(

1
2

(Û[F ])2 Û · Û
)

= ∆
(

1
2

(Û[F ]) Û · (Û[F ])Û
)

= ∆
(

1
2

∣∣∣Û[F ] Û
∣∣∣2) .
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Now it becomes clear how to use the summation notation

∆
(

1
2

∣∣∣Û[F ] Û
∣∣∣2) = ∆

(
1
2

3∑
i=1

(
∂F

∂xi

)2
)

=
3∑
j=1

∂2

∂x2
j

(
1
2

3∑
i=1

(
∂F

∂xi

)2
)

We carry out this differentiation to get
3∑
j=1

∂2

∂x2
j

(
1
2

3∑
i=1

(
∂F

∂xi

)2
)

=
3∑
j=1

3∑
i=1

(
Fjii

∂F

∂xj
+
(

∂2F

∂xj∂xi

)2
)
,

where Fjii is shorthand for third partial derivatives of F . Mixed third partial derivatives
are equal so

3∑
i=1

Fjii =
3∑
i=1

Fiij =
∂

∂xj
(∆F ) =

∂

∂xj
(1) = 0

because ∆F = 1 by assumption (from Proposition D). Hence,

(66) ∆
(

1
2

∣∣∣Û[F ] Û
∣∣∣2) =

3∑
j=1

3∑
i=1

(
∂2F

∂xj∂xi

)2

.

Now the right-hand side is the Frobenius matrix norm of the 3 × 3 matrix with the
nine second partial derivatives of F as its entries. We apply Newton’s Inequality of
Proposition B to see

3∑
j=1

3∑
i=1

(
∂2F

∂xj∂xi

)2

≥ 1
3

 3∑
j=1

∂2F

∂x2
j

2

=
1
3

(∆F )2 =
1
3

(1)2 =
1
3
.

Thus, by equations (64), (65), and (66) we see

(67)
∫ ∫

M
(Û[F ]) (Û[Û[F ]]) dA ≥ 1

3
V

and

(68)
∫ ∫

M
(Û[F ]) (Û[Û[F ]]) dA =

1
3
V

if and only if

(69)
∂2F

∂xj∂xi
=

1
3
δij

for 1 ≤ i, j ≤ 3, where δij is the usual Kronecker delta function. The if and only if
portion follows from Proposition C.

Look back at equation (60). Using equations (61), (63), and (67) we have

V =
∫ ∫

M
Û[F ] dA(70)

=
∫ ∫

M
−2H (Û[F ])2 dA+

∫ ∫
M

(Û[F ]) (Û[Û[F ]]) dA

≥ 2
3
V +

1
3
V = V.
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Notice equation (70) shows that equality must hold, which means equation (68) must
be true. This implies equation (69) is valid. Equation (69) is a system of nine partial
differential equations, only three of which are non-zero. So we have

∂2F

∂x2
1

=
1
3
,

∂2F

∂x2
2

=
1
3
, and

∂2F

∂x2
3

=
1
3
,

a system that we can integrate easily (all are separable) to find

F (x1, x2, x3) =
1
6

(x2
1 + x2

2 + x2
3) + a1 x1 + a2 x2 + a3 x3 + b,

for some real scalar constants a1, a2, a3 and b. By assumption, from Proposition D
again, F |M = 0 so for all (x1, x2, x3) ∈M

0 =
1
6

(x2
1 + x2

2 + x2
3) + a1 x1 + a2 x2 + a3 x3 + b.

This is the explicit form of a sphere. Hence M is a sphere. �

Aleksandrov’s theorem represents an amazing physical manifestation of the basic Dif-
ferential Geometry, and other pieces of supporting mathematics, we discuss throughout
this paper. Notice, such a simple observation about the shape of a soap bubble requires
a significant body of mathematical foundation to prove! Yet, our mathematics works,
that is we get an actual proof. Is this a reflection of our mathematical development or
is there some inherent math-based structure in nature?

6. Conclusion

Our introductory survey into Differential Geometry builds a strong foundation, but
only serves to scratch the surface of this intriguing field of mathematics. Despite being
only a scratch, the material we present here represents deep and powerful mathemat-
ics by itself. Section 2 presents a fairly complete outline of differentiation on surfaces,
concepts on which much of this paper rest. Our primary topic of study is curvature of
surfaces in R3 and we introduce three types: the normal curvature κn in Section 3.4 as
well as the Gauss K and mean H curvatures in Section 4.2. Throughout our exposi-
tion we refer repeatedly to two texts; one is by John Oprea and the other by Andrew
Pressley. While both are undergraduate level books they take remarkably dissimilar
approaches. Oprea uses the Shape Operator, to which we also devote Section 3.1, and
makes no mention of fundamental forms. Pressley builds exclusively from the first and
second fundamental forms and only introduces the Shape Operator once much of the
theory is already in place. We reconcile the Shape Operator with the fundamental
forms throughout our theoretical build-up, in particular Lemma 3.7 joins the two ideas.
Regardless of approach, perhaps the most basic ideas of Differential Geometry lie in the
coefficients E, F , G, l, m, and n. As we note in Section 3.4 one of the most amazing
aspects of this field is just how much information is contained in or can be derived
using these coefficients. Two major results we present are Gauss’s Theorem Egregium
in Corollary 4.10 and Aleksandrov’s Soap Bubble Theorem in Section 5.3. Each result
has an important physical manifestation.

There are a wealth of directions which to take the study of Differential Geometry if
the material here has caught the reader’s interest. Basically all of what we present in
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terms of differentiation on surfaces in R3 generalizes to manifolds in Rn. The study
of manifolds is relevant in many areas of mathematics (both pure and applied) and
theoretical physics. Of course, one can continue to develop results in a similar vein
to those we have already discussed. For instance, both Pressley’s and Oprea’s books
have compelling chapters concerning geodesics, that is distance-minimizing paths that
connect two points on a surface. For a reader familiar with basic topology, there are
many sources that approach Differential Geometry in that light. One relatively recent
development, the discovery of an entire family of minimal surfaces called Hoffman sur-
faces, serves as a great springboard into the aspects of Differential Geometry grounded
in topology. For applied mathematicians and physicists there is much room to explore
minimal surfaces in the context of material interfaces and soap films. The theory of
soap bubbles in particular lends itself nicely to Differential Geometry, in fact Oprea
authors a book called The Mathematics of Soap Films: Explorations with Maple. On
the theoretical physics side, much of the supporting mathematics for Einstein’s theory
of general relativity can be understood in terms of curvature of manifolds and geodesic
equations.

Differential Geometry, and certainly the portion of it we present, begins to answer
some of the questions we mention in Section 1.1 about the fundamental shape and na-
ture of space. Little in our physical universe is more basic than shape and although
it is surprisingly difficult to get a mathematical handle on such general concepts, the
pursuit is exceedingly beautiful.
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