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1. Introduction

The purpose of this paper is to develop an understanding of the
theory underlying Markov chains and the applications that they have.
To this end, we will review some basic, relevant probability theory.
Then we will progress to the Markov chains themselves, and we will
conclude with a case study analysis from two related papers.

2. Review of Probability

2.1. Initial Definitions. Markov chain analysis has its roots in prob-
ability theory, so we begin with a review of probability. The review
will be brief and will focus mainly on the areas of probability theory
that are pertinent to Markov chain analysis.

As with any discipline, it is important to be familiar with the lan-
guage of probability before looking at its applications. Therefore, we
will begin with a few definitions and a few more will be introduced
later as necessary. In probability, the sample space, S, is the set of
all possible outcomes for an experiment. Any subset, F , of the sample
space S is known as an event. For example, Sheldon Ross explains in
his text that if the experiment consists of a coin toss, then

S = {(H)eads, (T )ails}

is the sample space [4]. F = {H} is the event that the outcome of the
flip is heads and E = {T} would be the event that the outcome of the
toss is tails. Alternatively, if the experiment consists of two successive
coin flips, then

S = {(H, H), (H, T ), (T, H), (T, T )}

is the sample space (where (H, T ) denotes that the first coin came up
heads and the second coin came up tails). F = {(H, H)} is the event
that both flips came up heads, E = {(H, H), (H, T ), (T, H)} is the
event that heads shows up on at least one of the coins and so on.

The union of two events E and F of a sample space S, denoted
E ∪ F , is defined as the set of all outcomes that are in either E or
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Figure 1. Venn Diagrams that represent (clockwise
from top left): the events E and F , the intersection E∩F ,
the complement Ec, and the union E ∪ F

F or both. The intersection of E and F , denoted E ∩ F , is defined
as the outcomes that are in both E and F . The complement of an
event E is the set of all points in the sample space that are not in
E. The complement is written Ec. So if we reexamine the experiment
of flipping two coins, then every outcome in either E or F or both is
F ∪ E = {(H, H), (H, T ), (T, H)}. The only outcome simultaneously
in both E and F is F ∩ E = {(H, H)}. Lastly, the set of outcomes in
S that are not in E is Ec = {(T, T )}. These ideas can be represented
visually by a Venn diagram. In the Venn diagram we can say that the
entire area in the box is the sample space. Then the interior of each of
the circles represents an event. The part where the two interiors overlap
is the intersection. The area that both the circles enclose together in
Figure 1 is the union, and the area that is outside one of the circles is
the complement to the event represented by that circle.

2.2. Probability of Events. In both of the coin flipping experiments,
the experimenter has very little control over the outcome of the flip (al-
though I hear that one of the chemistry professors can make a coin come
up heads every time by flipping it in such a way that it doesn’t actu-
ally rotate end over end, it just oscillates back and forth creating the
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illusion that it is rotating [7]). Thus it is often desirable to determine
the probability that a specific event or outcome will occur. Probability
is essentially the fraction of times that we expect a specific event to oc-
cur. Explicitly, we write the probability of an event F in the sample
space S as P (F ), and we assume that P (F ) is defined, along with the
following three conditions:

(i) 0 ≤ P (F ) ≤ 1,

(ii) P (S) = 1,

(iii) For any sequence of events F1, F2, . . . , Fn that are

mutually exclusive (i.e. their intersection is empty),

then P

(

∞
⋃

n=1

Fn

)

=

∞
∑

n=1

P (Fn).

The first of these conditions simply states that the event can’t happen
less than never or more than every time the experiment is run. The
second one notes that the experiment will have some result every time.
The third condition tells us that the probabilities of all the events that
don’t overlap add up to give us the probability that one of these events
is going to occur. So with this definition of probability we can look at
the first coin flip experiment and say that if the coin is well balanced
and the flip is fair, then P ({H}) = 1

2
(If the flipper is that chemistry

professor then P ({H}) = 1). In the second coin flip experiment, with a
fair flip the probability that each flip will yield a tail is P ({(T, T )}) = 1

4
.

From our definition of probability, we can derive the probabilities of
unions and complements as

(i) P (E ∪ F ) = P (E) + P (F ) − P (E ∩ F )

(look at the Venn Diagram (Figure 1) for visual

confirmation of this)

(ii) P (Ec) = 1 − P (E).

2.3. Conditional Probability. The idea behind conditional proba-
bility is that we sometimes need to figure out how likely it is that an
event E will happen assuming or given that another event F happens
first. For example, imagine that I have eight tootsie pops, three red,
three blue and two brown. Obviously you want one of my tootsie pops,
but I say that in order to get one you need to pick, without looking, one
that has an Indian shooting a star on it. To give you a better chance at
winning the game, I tell you that one of the brown ones has the Indian,
two of the red ones have him and one of the blue ones does. Naturally,
you would pick one of the red tootsie pops because you have a two
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out of three chance of getting to keep the sucker, and that instinctive
calculation is an example of conditional probability. The probability of
the sucker having an Indian on it at all is 4

8
= 1

2
, but the probability of

the the wrapper having an Indian on it given that it is red is 2
3
. Now

we just have to make that instinctive calculation explicit so that we
can use it on more complicated examples. If E and F are events from
a sample space S, we denote the conditional probability of E given
F as P (E|F ) and it is calculated using the formula

(1) P (E|F ) =
P (E ∩ F )

P (F )
.

As Ross notes, this formula makes the most sense if you think about
it as follows. If the event F occurs, then in order for E to also occur
the actual occurrence must be a point in the intersection, E ∩ F [4].
Also, since we know that F has occurred, it becomes our new sample
space so we take the probability of E ∩F relative to the probability of
F as is shown in Equation 1. So now we have an equation that requires
us to know what P (E ∩ F ) is. The probability of the intersection of
two events is usually not very obvious, but fortunately we can usually
figure out the P (E|F ) term intuitively just like we did with the tootsie
pops. If that is the case then we can rewrite Equation 1 as

(2) P (E|F )P (F ) = P (E ∩ F ).

With the tootsie pops, E was the event that the wrapper had a picture
of an Indian on it, and F was the event that the wrapper was red.
Therefore we can calculate the probability of the intersection of these
two events as

P (E ∩ F ) = P (E|F )P (F )

=

(

2

3

)(

3

8

)

=
1

4
.

which makes sense because E∩F represents the event that the wrapper
is both red and has an Indian which happens on two of the eight tootsie
pops (1

4
of the time). In this example it would have been easy to

compute the probability of the intersection directly, but often it is
necessary to use this formula.

It might occur that the conditional probability of an event E given
an event F is the same as the probability of E by itself. This happens
when the events E and F are independent of one another. Events are
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defined as independent when P (E ∩ F ) = P (E)P (F ), and Equation
1 shows that this implies P (E|F ) = P (E) (and also P (F |E) = P (F )).

The definition of independence can be extended to more than two
events. Ross writes that the events E1, E2, . . . , En are said to be inde-
pendent if for every subset E1′ , E2′, . . . , Er′, (r′ ≤ n), of these events

P (E1′ ∩ E2′ ∩ . . . ∩ Er′) = P (E1′)P (E2′) . . . P (Er′)

or the probability of the intersection of all the events in the subset is
equal to the product of the probability of each of the events in the
subset [4]. Intuitively, the events E1, E2, . . . , En are independent if the
knowledge of the occurrence of any of these events has no effect on the
probability of any other event. Using these newfound manipulations of
probability, we can understand an important result known as Bayes’
formula.

2.4. Bayes’ Formula. Suppose that F1, F2, . . . , Fn are mutually ex-
clusive events such that their union is the sample space S. In other
words, exactly one of those events will occur. By writing

E =
n
⋃

i=1

(E ∩ Fi)

and using the fact the the events E
⋂

Fi, i = 1, 2, . . . n, are mutually
exclusive, we obtain that

P (E) =

n
∑

i=1

P (E ∩ Fi)(3)

=

n
∑

i=1

P (E|Fi)P (Fi).(4)

Thus, Equation 4 shows how, for given events F1, F2, . . . , Fn of which
one and only one can occur, we can compute P (E) by first “condition-
ing” upon which one of the Fi occurs. That is, it states that P (E) is
equal to a weighted average of P (E|Fi), each term being weighted by
the probability of the event on which it is conditioned.

Suppose now that E has occurred and we are interested in deter-
mining which one of the Fj also occurred. By Equation 4 we have
that
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Figure 2. A tree diagram to help visualize the problem

P (Fj|E) =
P (E ∩ Fj)

P (E)
(5)

P (Fj|E) =
P (E|Fj)P (Fj)

∑n

i=1P (E|Fi)P (Fi)
.(6)

We call Equation 6 Bayes’ formula.
To help put Bayes’ formula into some context, let’s look at an exam-

ple. Imagine that the Washington State Penitentiary is doing random
drug testing among its inmates. They are testing urine for cocaine and
the specific test that they are using accurately comes up positive for
coke 90% of the time, but it also shows a false positive 5% of the time
when no cocaine is actually present. If 15% of the inmates in the prison
have been using cocaine, what is the probability that any random in-
mate will test positive, and what is the probability that if an inmate
tested positive they were actually clean?

We will call the event that an inmate uses cocaine B1, the event
that the inmate doesn’t use cocaine B2, and the event that the test is
positive A. These events and their probabilities can be visualized using
the tree diagram in Figure 2. Then from Equation 4 the probability
that the test comes up positive is

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2)

= (0.15)(0.90) + (0.85)(0.05)

= 0.1775,
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and the probability that the inmate was actually clean given that they
tested positive is

P (B2|A) =
P (B2)P (A|B2)

P (B1)P (A|B1) + P (B2)P (A|B2)

=
(0.85)(0.05)

(0.15)(0.90) + (0.85)(0.05)

= 0.2394.

2.5. Random Variables. Bayes’ formula is very useful for working
with available data to find the probability of specific outcomes, but
sometimes it is more valuable in the grand scheme of things to analyze
functions of outcomes instead of the specific outcomes. Sheldon Ross
explains the idea with this brief example, “in tossing dice we are often
interested in the sum of the two dice and are not really concerned
about that actual outcome [4]”. In other words, we may be interested
in knowing that the sum is seven and not be concerned over whether the
actual outcome was (1, 6) or (2, 5), etc. These quantities of interest, or
more formally, these real-valued functions defined on the sample space,
are known as random variables.

Since all of the possible values of these random variables are outcomes
of the experiment, it is possible to assign probabilities to the random
variables based on the outcomes that they include. Let’s say that we
have two egg cartons in the refrigerator that each hold four eggs and
we want to whip up a tasty scramble. Assume that if there are fewer
than three eggs, it isn’t worth our time to make the scramble. Since
we are playing NBA Hangtime and on a 21 game win streak, we don’t
want to check the frig unless we have a 60% chance of finding four or
more eggs. What is the probability that there are at least four eggs in
the refrigerator?

To solve our pickle, we can create a random variable. We need the
further assumption that the number of eggs in the cartons is completely
random and there is an equally likely chance of any number being there.
This is a safe assumption because in this example we live in a house
with seven other college-age guys who could have eaten out for the
past week or come in late last night and made a seven-egg omelet with
equal likelihood. Random variables are often represented with a capital
letter, so if we let X represent a random variable that is defined as the
total number of eggs in the refrigerator then we can find the probability
that there are four or more eggs left, P (X > 3).

If we let P{(1, 1)} mean that there is one egg in the first carton and
one in the second, we can spell out the probabilities so that
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P (X = 0) = P{(0, 0)} =
1

25
(7)

P (X = 1) = P{(1, 0), (0, 1)} =
2

25

P (X = 2) = P{(2, 0), (1, 1), (0, 2)} =
3

25

P (X = 3) = P{(3, 0), (2, 1), (1, 2), (0, 3)} =
4

25

P (X = 4) = P{(4, 0), (1, 3), (2, 2), (3, 1), (4, 0)} =
5

25

P (X = 5) = P{(4, 1), (3, 2), (2, 3), (4, 1)} =
4

25

P (X = 6) = P{(4, 2), (3, 3), (2, 4)} =
3

25

P (X = 7) = P{(4, 3), (3, 4)} =
2

25

P (X = 8) = P{(4, 4)} =
1

25
.

Since we want to know if there are at least four eggs,

P (X > 3) = P (X = 4 ∪ X = 5 ∪ X = 6 ∪ X = 7 ∪ X = 8)

= P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7) + P (X = 8)

=
15

25
,

and since this is equivalent to 60%, the probability of having eggs is
large enough for us to get up and try to make some food.

Ordinarily, when taking the probability of a random variable we
look at equations in the form of P (X = a). In the last example, our
equation was of the form P (X > a) so we intuitively used what is
known as a cumulative distribution function to find the answer.
The cumulative distribution function, F , of a random variable X is
defined for any real number b (−∞ < b < ∞), by F (b) = P{X ≤ b}.
Some properties of the cumulative distribution function F are

(i) F (b) is a non-decreasing function of b

(ii) lim
b→∞

F (b) = 1

(iii) lim
b→−∞

F (b) = 0.

This means F is a function whose output is the probability of the
random variable being less than or equal to a value, b. We indirectly



MARKOV CHAINS: ROOTS, THEORY, AND APPLICATIONS 9

used a cumulative distribution function to find the likelihood of their
being eggs in the refrigerator. First we found the probability that there
was less than or equal to three eggs. Then we interpreted part (ii) of the
definition of a probability to say that the probability of there not being
less than or equal to three eggs was 1−P (X ≤ 3). Since 1−P (X ≤ 3)
is the same as P (X > 3), we can use a cumulative distribution function
just as we did.

It is worth noting that in the egg example, we had a finite num-
ber of outcomes for the random variable. This is not always the case.
When the random variable has a finite (or countably infinite) number
of possible values, it is called a discrete random variable, and when
the possible values are uncountable it is known as a continuous ran-
dom variable. The cumulative distribution function can be used to
represent both types of random variables and all probability questions
about a random variable X can be answered in terms of the cumulative
distribution function, F . For example,

P (a < X ≤ b) = F (b) − F (a) for all a < b.

The cumulative distribution function is not the only way of gaining
information about a random variable. For a discrete random variable
X we define the probability mass function, p(a), of X by

p(a) = P (X = a).

This function tells us the probability of our random variable taking
on a specific value. Equation 7 essentially gives the probability mass
function for the random variable in that example. Since the random
variable is discrete, there are only a countable number of values for
a such that p(a) is positive. If we let xi represent these values for
i = 1, 2, . . . then we can say

∞
∑

i=1

p(xi) = 1,

and we can write the equation for the cumulative distribution function
in terms of the probability mass function so

F (a) =
∑

xi≤a

p(xi).

To help visualize the probability mass function and the cumulative
distribution function let’s look at a brief example. Say that Y is a
discrete random variable that is defined to be the number of pieces of
candy you pick up in one try of the crane game that they often have
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at grocery stores and pizza places. Let us also say that Y has the
probability mass function

p(0) = 1/2, p(1) = 1/4, p(2) = 1/6, p(3) = 1/12,

and nobody ever wins more than three pieces of candy. Then we graph
p(y) as can be seen in Figure 3.

Figure 3. Graph of p(y)

Then from this probability mass function we can assemble the cu-
mulative distribution function

F (y) =















1/2 y < 1
3/4 1 ≤ y < 2
11/12 2 ≤ y < 3
1 3 ≤ y,

and represent it graphically as in Figure 4.
The probability mass function and the cumulative distribution as

we used them work only for discrete random variables. However, they
both have analogous functions for continuous random variables. We
have not seen any continuous random variables in the examples so far
but think of them this way: If we were to make a random variable
X that was defined to be the height of every person in the world it
would be convenient to group people into categories such as 5 feet
6 inches, 5 feet 7 inches, 5 feet 8 inches, etc. because we usually
only measure people to the nearest inch. In this case, Y would be a
discrete random variable, because there would be a countable number
of possible heights. However, if we could measure height exactly, then
we would find that nobody is the same height and that there are an
infinite number of different heights. In this scenario, Y would be a
continuous random variable.
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Figure 4. Graph of F (y)

Formally, we call a random variable, X, a continuous random vari-
able if there exists a non-negative function, f(x), defined for all real
numbers x in the set (−∞,∞), having the property that for any set B
of real numbers P{XεB} =

∫

B
f(x)dx. The function f(x) is called the

probability density function of the random variable X, and is the
continuous random variable’s version of the probability mass function.
As such, all probability statements about X can be answered in terms
of f(x). If B is the interval [a, b] then

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx,

and if we let a = b then

P (X = a) =

∫ a

a

f(x)dx

= F (a) − F (a)

= 0.

So we see that in the continuous case, the probability of achieving any
particular value is zero (because there are uncountably many) [4].

In the continuous case, the cumulative distribution function behaves
the same as it does in the discrete case. From the preceding equations
you may guess how it differs from the function in the discrete case.
Since the probability density function is a continuous function, F (a)
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becomes an integral from −∞ to a instead of a summation from 0 to
a and it is represented graphically as a smooth curve instead of the
step-wise function that is shown in Figure 4.

In this section, there has been much talk about random variables
without many examples of actual random variables in action. For the
purpose of this paper, it suffices to say that there are some common
random variables of both the discrete and continuous types that appear
frequently in mathematics and daily life. If they come up they will be
introduced, but for those who are curious please refer to Sheldon Ross’
excellent text on probability models [4].

2.6. Expectation of a Random Variable. Remember back to the
example where we were trying to win candy in the crane game. Using
the probability mass function, we were able to determine the proba-
bility of each of the possible outcomes; the probability of getting zero,
one, two or three pieces of candy. What if we were instead concerned
with how many pieces of candy we could actually expect to get on one
quarter? The most natural way to figure this out would be to take
a weighted average; to multiply each outcome by its individual prob-
ability and add up those values. Conveniently, this is precisely how
we compute expected value in probability. The expected value of a
discrete random variable, X, that has the probability mass function,
p(x), is

(8) E[X] =
∑

x

xp(x).

The expected value is also sometimes referred to as the mean, in which
case it is represented by µ. If we spend our one quarter on the crane
game, then we can expect to get

E[X] =

3
∑

x=0

xp(x)

= (0)

(

1

2

)

+ (1)

(

1

4

)

+ (2)

(

1

6

)

+ (3)

(

1

12

)

= 0 +
1

2
+

1

3
+

1

4

=
13

12
pieces of candy.

To adapt this function for the continuous case we need to replace
the probability mass function, p(x), of the discrete random variable
with the probability density function, f(x), of the continuous random
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variable. Then we need to change the summation to integration to
ensure continuity. The new equation is

(9) E[X] =

∫ ∞

−∞

xf(x)dx

for a continuous random variable.
Both discrete and continuous random variables were broadly de-

scribed as real-valued functions defined on the sample space. This
definition seems to imply that we should be able to create new random
variables that are functions of the old random variables (as long as they
are still real-valued and defined on the sample space). This turns out
to be true, and as a result we can find the expected value of functions
of random variables.

Suppose g(X) is some function of the random variable X, then g(X)
is itself a random variable and its expected value is

E[g(X)] =
∑

x

g(x)p(x) if X is discrete

or

E[g(X)] =

∫ ∞

−∞

g(x)f(x)dx if X is continuous.

2.7. Jointly Distributed Random Variables. Sometimes we can
gain more interesting information from our data if we look at prob-
ability statements concerning two or more random variables instead
of single ones. This will become more apparent when we begin our
discussion of Markov chains. To deal with such probabilities, Ross de-
fines, for any two random variables X and Y , the joint cumulative

probability distribution function of X and Y by

(10) F (a, b) = P (X ≤ a, Y ≤ b), −∞ < a, b < ∞ [4].

Jointly distributed random variables behave much like the single
ones do, with the difference being that operations with two random
variables need a double integral or a double summation. For instance,
a probability for jointly distributed random variables X and Y can be
represented as

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

b
∑

X=a

d
∑

Y =c

p(x, y)

where p(x, y) is the joint probability mass function, or

P (X ∈ A, Y ∈ B) =

∫

B

∫

A

f(x, y)dxdy

where f(x, y) is the joint probability density function.
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The analogous formulas for expectation in the case of jointly dis-
tributed random variables are

E[g(X, Y )] =
∑

y

∑

x

g(x, y)p(x, y),

and

E[g(X, Y )] =

∫ ∞

−∞

∫ ∞

−∞

g(x, y)f(x, y)dx.

If it turns out that you actually wanted the distribution of one vari-
able, but are stuck with two, you can find distribution of one, (X in
this case), as follows:

FX(a) = P (X ≤ a)

= P (X ≤ a, Y < ∞)

= F (a,∞).

Similarly the cumulative distribution of Y is given by FY (b) = F (∞, b).
To get a better idea of what it means for random variables to be

jointly distributed, let us look at an example that Ross presents on
pages 50 and 51 of his text. Say that at a party, N men throw their
hats into the center of a room. The hats are mixed up and each man
randomly selects one. Let X denotes the number of men that select
their own hats. Then we can use jointly distributed random variables
to find the expected number of men who select their own hats. E[X]
can be best computed by noting that

X = X1 + X2 + · · ·+ XN ,

where

Xi =

{

1, if the ith man selects his own hat
0, otherwise.

Now, because the ith man is equally likely to select any of the N hats,
it follows that

P (Xi = 1) = P (ith man selects his own hat) =
1

N
,

and so

E[Xi] = (1)P (Xi = 1) + (0)P (Xi = 0) =
1

N
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from the definition of expected value. Hence, we obtain that

E[X] = E[X1 + X2 + · · ·+ XN ]

= E[X1] + E[X2] + · · ·+ E[XN ]

=

(

1

N

)

N

= 1.

So no matter how many men are at the party, Ross shows us that on the
average exactly one of the men will select his own hat [4]. Many texts
on probability transition from random variables to a discussion of a
group of limit theorems that are very important to probability theory.
These theorems give us approximations for the expected value and
distribution of our random variables as the number of random variables
that we have goes to infinity. For our purposes, this discussion will bog
us down so readers are referred to Ross [4] or Samuel Karlin’s text “A
First Course in Stochastic Processes” [3] for further information.

2.8. Conditional Probability and Conditional Expectation. It
was previously defined that for any two events E and F , the conditional

probability of E given F was P (E|F ) = P (E∩F )
P (F )

as long as P (F ) > 0.

Now conditional probability will be used with the discrete random vari-
ables X and Y to define the conditional probability mass function

of X given that Y = y, by

pX|Y (x|y) = P (X = x|Y = y)

=
P (X = x, Y = y)

P (Y = y)

=
p(x, y)

pY (y)
,

for all values of y such that P{Y = y} > 0. Following from this
definition of the conditional probability mass function, it is easy to
make the jump to the conditional probability distribution function and
the conditional expectation. The conditional probability distribu-

tion function of X given that Y = y is defined, for all y such that
P{Y = y} > 0, by

FX|Y (x|y) = P (X ≤ x|Y = y)

=
∑

a≤x

pX|Y (a|y).
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Finally, the conditional expectation of X given that Y = y is
defined by

E[X|Y = y] =
∑

x

xP (X = x|Y = x)

=
∑

x

xpX|Y (x|y).

These definitions say in essence exactly the same thing as before
with the exception that everything is now conditional on the event
that Y = y. If X is independent of Y , then these equations are the
same as the unconditional ones. If X is independent of Y , then

pX|Y (x|y) = P (X = x|Y = y)

= P (X = x).

It is important to note that conditional expectations possess all of
the properties of ordinary expectations. After looking at the condi-
tional probabilities in the discrete case, the transition to conditional
probabilities for the continuous case is very smooth. The conditional

probability density function of the continuous random variable X
given that the continuous random variable Y = y is written as

fX|Y (x|y) =
f(x, y)

fY (y)
,

when the random variables have the joint probability density function
f(x, y) and the conditional probability density function is defined for
all values of y such that fY (y) > 0. Also the conditional expectation
in the continuous case, defined for all values of y such that fY (y) > 0,
is

E[X|Y = y] =

∫ ∞

−∞

xfX|Y (x|y)dx.

Using these definitions Ross goes on to prove a result that allows
the expectation of an unconditional random variable, X, to be found
using the conditional expectation of X given that the random variable
Y = y. In the text Ross proves for the discrete case that

E[X] = E
[

E[X|Y ]
]

(11)
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as follows:

E
[

E[X|Y ]
]

=
∑

y

E[X|Y = y]P (Y = y)

∑

y

E[X|Y = y]P (Y = y) =
∑

y

∑

x

xP (X = x|Y = y)P (Y = y)

=
∑

y

∑

x

x
P (X = x, Y = y)

P (Y = y)
P (Y = y)

=
∑

y

∑

x

xP (X = x, Y = y)

=
∑

x

x
∑

y

P (X = x, Y = y)

=
∑

x

xP (X = x)

= E[X] [4].

This result is to be referred to as the conditional expectation

identity, and we can begin to see its use in the following example
which also comes from Ross’ text [4].

Say that a crotchety old prospector is holed up in his personal mine,
when suddenly his canary dies from the noxious fumes. The prospector
realizes that he too will die if he doesn’t get out of the mine in time. The
fumes are starting to affect his brain, and the years of toiling beneath
the earth left him with a slight case of dementia so the prospector is
unsure which way will lead him to safety. The room he is in has three
doors. Although he does not know it, the first door leads to a tunnel
that will take him to safety after two hours of travel. The second door
leads to the gold pit that will bring him back to his original location
after three hours. The third door leads to the furnace room and back to
his original location after five hours. If we assume that in his confused
state the prospector is equally likely to choose any one of the doors
each time he is in that room, we can use the conditional expectation
identity to find the expected length of time until the miner reaches
safety. For a picture of the prospector’s predicament, see Figure 5.

To set up the problem, let X denote the time until the miner reaches
safety, and let Y denote the door he initially chooses. This gives us:

E[X] = E[X|Y = 1]P (Y = 1) + E[X|Y = 2]P (Y = 2)

+E[X|Y = 3]P (Y = 3)

=
1

3
(E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3]).(12)
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Figure 5. Diagram of the miner’s escape options

However, we can also write

E[X|Y = 1] = 2,

E[X|Y = 2] = 3 + E[X],

E[X|Y = 3] = 5 + E[X],

because if the prospector chooses the second door, he spends three
hours in that tunnel and then returns to the main room. But once he
returns to the mine the problem is as before, and hence his expected
time until safety is just E[X]. This makes E[X|Y = 2] = 3 + E[X],
and the same argument works for E[X|Y = 3]. If we substitute these
equalities into Equation 12, we get

E[X] =
1

3
(2 + 3 + E[X] + 5 + E[X])

(3)(E[X]) = 10 + (2)(E[X])

E[X] = 10 hours until he reaches safety.

2.9. Computing Probabilities by Conditioning. Not only can we
obtain expectations by first conditioning on an appropriate random
variable, but we can also use this approach to compute probabilities.
To see this, let E denote an arbitrary event and define the indicator
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random variable, X, by

X =

{

1, if E occurs
0, if E does not occur

It follows from the definition of X that

E[X] = P (E),

E[X|Y = y] = P (E|Y = y), for any random variable Y.

Therefore, we obtain that

P (E) =
∑

y

P (E|Y = y)P (Y = y), if Y is discrete(13)

=

∫ ∞

−∞

P (E|Y = y)fY (y)dy, if Y is continuous.

2.10. Applications of Conditional Probability. This method for
computing probability using conditioning is quite useful in a number
of real world applications. One such application is to a list model.
Imagine that we have a stack of reference books that are available for
borrowing. At each unit of time a book is randomly selected and then
is returned to the top of the stack. The probability that any individual
book is requested may not be known, but if we are going to start at
the top of the stack and look down until we find the requested book, it
might be useful to know the expected position of the book in the stack.
We can compute this by conditioning on which book is selected.

Another application given in Ross’ text is to Ploya’s Urn Model [4].
Before we examine that general model, suppose that a coin may be
chosen at random from a huge bin of coins representing a uniform
spread over all possible values of p, the coin’s probability of coming up
heads. The chosen coin is then flipped n times. That experiment is a
specific example of the following model.

Let’s suppose that n independent trials, each of which is a success
with probability of p, are performed. Let us compute the conditional
probability that the (r + 1)st trial will result in a success given a total
of k success (and r−k failures) in the first r trials. However, let us now
suppose that whereas the trials all have the same success probability
p, its value is not predetermined but is chosen according to a uniform
distribution on (0, 1). In this case, by conditioning on the actual value
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of p, we have that

P{(r = 1)st trial is a success|k successes in first r trials}

=
P{(r = 1)st trial is a success, k successes in first r trials}

P{k successes in first r trials}

=

∫ 1

0
P{(r + 1)st trial is a success, k successes in first r|p}dp

1/(r + 1)

(To reach the next step, we used the standard representation

of a binomial distribution. For an explanation of this

distribution, please refer to Ross [4].)

= (r + 1)

∫ 1

0

(

r

k

)

pk=1(1 − p)r−kdp

= (r + 1)

(

r

k

)

(k + 1)!(r − k)!

(r + 2)!

=
k + 1

r + 2
.

This says that if the first r trials result in k successes, then the next
trial will be a success with probability (k + 1)/(r + 2).

Using this equation we can describe the model as follows: There is
an urn which initially contains one white and one black ball. At each
stage a ball is randomly drawn and is then replaced along with another
ball of the same color. Thus, for instance, if of the first r balls drawn,
k were white, then the urn at the time of the (r + 1)st draw would
consist of k +1 white and r−k +1 black, and thus the next ball would
be white with probability (k + 1)/(r + 2). If we identify the drawing
of a white ball with a successful trial, then we see that this yields an
alternate description of the original model. This description is what
Ross and others are referring to when they talk about “Ploya’s Urn
Model” [4].

Using a generalization of the preceding application to situations in
which each trial has more than two possible outcomes, we can derive the
Bose-Einstein Distribution. In it we suppose that n independent trials,
each resulting in one of m possible outcomes 1, . . . , m with respective
probabilities p1, . . . , pm, are performed. For example, using another
urn model, consider that this time the urn starts with one of each of m
types of balls. Balls are then randomly drawn and are replaced along
with another of the same type. Hence, if in the first n drawings there
have been a total of xj type j balls drawn, then the urn immediately
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before the (n + 1)st draw will contain xj + 1 type j balls out of a total
of m+n, and so the probability of a type j on the (n+1)st draw will be

given by
xj+1

n+m
according to the Bose-Einstein Distribution which will

not be derived here. According to Ross, the Bose-Einstein Distribution
basically says that for one of these situations, each possible outcome is
equally likely [4].

3. Markov Chains

3.1. Initial Definitions. From the idea of jointly distributed ran-
dom variables, we get the following definition. A stochastic process

{X(t), tεT} is a collection of random variables. That is, for each tεT ,
X(t) is a random variable. The index t is often interpreted as time
and, as a result, we refer to X(t) as the state of the process at time
t. The set T is called the index set of the process. If T is countable
then the stochastic process is said to be a discrete-time process and
if T is an interval of the real line, then the stochastic process is said
to be a continuous-time process. The term stochastic process is used
in the definition of a Markov chain, but the ideas of states and their
associated times will become clearer when we see some examples of
Markov chains.

According to Wolfram’s MathWorld, a Markov Chain is a stochas-
tic process {Xn, n = 0, 1, 2, . . .} having the property that given the
present state, the future is conditionally independent of the past [6].
This stochastic process takes on a finite or countable number of possible
values or states. Unless otherwise noted, this set of possible values will
be written as the set of nonnegative integers {1, 2, 3, . . .}. If Xn = i,
then the process is said to be in state i at time n. If we suppose that
whenever the process is in state i, there is a fixed probability Pij that
it will be in state j next, then we can write the defining property of
Markov chains as

(14) P{Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0} = Pij

for all states i0, i1, . . . , in−1, i, j and all n ≥ 0. Since probabilities are
nonnegative and the process must make a transition into some state,
we have that

Pij ≥ 0, for i, j ≥ 0 and
∞
∑

j=0

Pij = 1, for i = 0, 1, . . .
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The basic idea behind Markov chains can be explained with a sim-
plistic model for weather prediction. Suppose that every day can be
classified as either rainy or sunny, then those would be the two states of
our stochastic process. In order for this process to be a Markov chain
with those states, we would have to be able to say that the probability
that it would rain or be sunny tomorrow depended only on whether it
was rainy or sunny today. In that case, our model would be a Markov
chain and we would assemble the different probabilities into a transition
matrix.

For any Markov chain, we will let P represent the matrix of one-step
transition probabilities Pij, so that

P =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

P00 P01 P02 . . .
P10 P11 P12 . . .
...

...
...

Pi0 Pi1 Pi2 . . .
...

...
...

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

To help understand how the matrix P works, let’s look at an example
that is adapted from Ross’ text [4]. Suppose that the Whitman men’s
soccer team is playing in a tournament. In that tournament, the chance
of them winning their next game depends only upon whether or not
they win their current game. Suppose also that if they win their current
game, then they will win their next game with probability 0.4; and if
they do not win their current game then they will win the next one
with probability 0.2.

If we say that the process is in state 0 when they are winning and
state 1 when they are losing, then the preceding is a two-state Markov
chain whose transition probabilities are given by

P =

∥

∥

∥

∥

0.4 0.6
0.2 0.8

∥

∥

∥

∥

.

If we examine P, we can see that the rows of the matrix represent
the state that the team is currently in (winning or losing their current
game), and the columns represent the state that the are going to (win-
ning or losing their next game). So if we want to know the probability
that the team loses their next game given that they lose their current
game, we see that entry P11 = 0.8, which is the probability of that
event. It is also important to note that the sum of the probabilities
along any row of P is equal 1. This makes sense because it means that
from any given state, the team either stays in that same state or moves
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to the other one. Probabilities in this example don’t come from actual
data.

We have already defined the one-step transition probabilities Pij. We
now define the n-step transition probabilities P n

ij to be the proba-
bility that a process proceeds from state i to state j over n additional
steps. Symbolically this is written as

P n
ij = P{Xn+k = j|Xk = i}, for n ≥ 0, i, j ≥ 0.

P 1
ij is equivalent to Pij and using that equivalency, the Chapman-

Kolmogorov equations provide a method for computing the n-step tran-
sition probabilities. These equations are

(15) P n+m
ij =

∞
∑

k=0

P n
ikP

m
kj for all n, m ≥ 0, and for all i, j.

These equations are most easily understood by noting that P n
ikP

m
kj rep-

resents the probability that starting in i, the process will go to state j
in n + m transitions through a path which takes it into state k at the
nth transition. Then when you sum over all intermediate states k, you
end up with the probability that the process will be in state j after
n + m one-step transitions [4].

If we tie this idea of n-step transitional probability into the previous
example, we could use it to find the probability that the soccer team
will win their game after next (their 2nd game from now) given that
they win their current game. The probability that we want to find is
P 2

00. So

P2 = P ∗ P =

∥

∥

∥

∥

0.4 0.6
0.2 0.8

∥

∥

∥

∥

∗

∥

∥

∥

∥

0.4 0.6
0.2 0.8

∥

∥

∥

∥

=

∥

∥

∥

∥

0.36 0.64
0.24 0.76

∥

∥

∥

∥

which tells us that they will win their second game from now with
probability P 2

00 = 0.36.
Examples of Markov chains are not always obvious at first glance.

Thus, one important concept is how to turn things that don’t look
like Markov chains into states that are suitable for treatment as a
Markov chain. The states of most Markov chains can be defined in-
tuitively. Sometimes, however, the probability of moving from one of
these “states” to another depends on more than the current state. This
means we haven’t successfully created a Markov chains and we need
to create states that encompass more than one of these intuitive states
in order for the Markov property to apply. For example, if we con-
tinue with the soccer team example from earlier, but now we say that
the probability of the team winning their next game depends on the
outcome of their current game and the one before it. This might be
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a more realistic model for winning probabilities because it would take
into account hot streaks. But, if we define the states incorrectly then
it won’t be a Markov Chain. In order for it to still follow the Markov
property, we need to define the states as

state 0 if they win both their current game and won the one before it,

state 1 if they win their current game but did not win the one before it,

state 2 if they did not win their current game but they won the one

before it, and

state 3 if they lost both their current game and the one before it.

Then we can assign probabilities based on the outcome of the last
two games. Let’s say that they win with a probability of 0.6 if they
won their last two games, with a probability of 0.4 if they win their
current game but did not win their last game, with a probability of 0.3
if they lose their current game, but won the one previous to that, and
with a probability of 0.2 if they lost their last two games. Using the
above states gives us a transition probability matrix of

P =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0.6 0 0.4 0

0.4 0 0.6 0

0 0.3 0 0.7

0 0.2 0 0.8

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

,

where the zero entries tell us that it is impossible to make that one
step transition. For example, the team can not move from state 0 to
state 1, because of how the states were defined so that transition has a
probability of 0. This is very similar to an example that Ross discusses
in his text [4].

3.2. Definitions About States. We are going to need a larger vo-
cabulary to delve further into the interesting parts of Markov chain
theory, so we will look at a few definitions that all come from Ross
[4]. In a Markov chain or other stochastic process, state j is said to be
accessible from state i if P n

ij > 0 for some n ≥ 0. This implies that
state j is accessible from state i if and only if starting in i, it is possible
that the process will ever enter state j. If two states are accessible to
each other they are said to communicate, which we write as i ↔ j.
Additionally, the relation of communication satisfies the following three
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properties:

(i) State i communicates with state i, for all i ≥ 0.

(ii) If state i communicates with state j, then state j communicates

with state i.

(iii) If state i communicates with state j, and state j communicates

with state k, then state i communicates with state k.

According to these properties, all of the states in the last soccer team
example communicate. Even though you can’t get from state 0 to state
3 in one step, you could potentially go from state 0 to state 2, and from
state 2 to state 3. Similar arguments apply for the communication of
the other states. If two states in a Markov chain communicate, they
are said to be in the same class, and if the chain has only one class it is
said to be irreducible. (Note that classes must be either identical or
disjoint. They cannot overlap.) Since all the states in the last example
communicate, they are all in the same class, and therefore that Markov
chain is irreducible.

The term irreducible refers to the fact that if there is more than
one class in a Markov chain, we can essentially think of the classes as
individual states. As we defined earlier, one state can be accessible from
another one without the two actually communicating, so it is possible
that one class is accessible from another. As long as the two do not
communicate they are still separate classes. Thus, since you cannot
travel freely between them, you can get stuck in one of the classes and
your movement can be restricted to the states in that class. For this
reason the entire class is sometimes called an absorbing state, where
once entered there is a probability of one that you will stay in that
state.

A state i is said to be recurrent if and only if there is a probability
of 1 that a process, starting in state i, will at some point return to state
i. And finally, in a related definition, a state i is said to be transient if
the probability that the process, starting in state i, will at some point
return to state i is less than 1. In the terms that we have already
defined, for a state i to be transient there exists another state j that is
accessible from i, but the two states do not communicate and therefore
are not in the same class.

3.3. Limiting Probabilities. From the first example about the Whit-
man men’s soccer team, the 1-step transition matrix was

P =

∥

∥

∥

∥

0.4 0.6
0.2 0.8

∥

∥

∥

∥

.
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When talking about n-step transition probabilities, we showed how
this matrix could be used to find the 2-step transition probabilities.
We then generalized this technique for transitions of n steps using the
Chapman-Kolmogorov equations. If we look at the transition matrices
for a higher number of transitions, the probabilities appear as if they
are reaching a limit. For example, the 4-step transition matrix P(4)

from that same example would be

P(4) =

∥

∥

∥

∥

∥

0.2512 0.7488

0.2496 0.7504

∥

∥

∥

∥

∥

,

and the 8-step transition matrix looks like

P(8) =

∥

∥

∥

∥

∥

0.2500 0.7500

0.2499 0.7501

∥

∥

∥

∥

∥

.

From these matrices it seems that the entries approach a limit as
the number of steps approaches infinity. As it turns out, this is exactly
the case. However, getting to the theorem that states this formally
requires a few more definitions.

State i is said to have period d if P n
ii = 0 whenever n is not divisible

by d, and d is the smallest positive integer with this property. For
instance, starting in i it may be possible for the process to enter state
i only when n = 2, 4, 6, 8, . . . , in which case state i has period 2. A
state with period 1 is said to be aperiodic.

If state i is recurrent, then it is said to be positive recurrent if,
starting in i, the expected time until the process returns to state i is
finite. (It could be shown that in a finite-state Markov chain all recur-
rent states are positive recurrent.) Also, positive recurrent, aperiodic
states are called ergodic.

Using these definitions, Ross arrives at the following theorem [4].

Theorem 1. For an irreducible, ergodic Markov chain, limn→∞ P n
ij

exists and is independent of i. Furthermore, letting

πj = lim
n→∞

P n
ij, j ≥ 0

then πj is the unique nonnegative solution of

πj =

∞
∑

i=0

πiP
n
ij, for j ≥ 0
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and additionally,

∞
∑

j=0

πj = 1.

In words, this theorem says that the limit of each transition prob-
ability exists, and that it is independent of the initial state i. It also
tells us that the limiting probability of the process being in state j at
time n is equal to the fraction of the total time that the process will
be in state j.

A complete proof of Theorem 1 is beyond the scope of this paper,
but a partial proof will help the reader believe an integral part of the
theorem. To that effect, Professor Robert Fontenot completed a proof

showing that if the conditional probability P
(n)
ij → πj, as n → ∞ then

πj can be thought of as the unconditional probability of being in state
j after a long time as follows:

Proof 1.

P (Xn+1 = j) =
∑

i

P (X0 = i)P
(n)
ij

lim
n→∞

P (Xn+1 = j) =
∑

i

P (X0 = i)πj

= πj(
∑

i

P (X0 = i))

= πj(1)

= πj [2]

To understand how this theorem can change how we see probabilities,
let’s look at an example. Assume that you like to ride your bike really
fast because it makes you feel cool. Unfortunately, when you ride your
bike really fast you have a hard time avoiding the pokey seed pods that
are notorious for popping bicycle tires. Therefore, if you are riding your
bike really fast one day, you will continue to ride fast the next day with
a probability of 0.6. Otherwise you have a flat tire and you will not be
riding at all. If you get a flat tire it makes you stop and think about
whether feeling cool is really worth all the time it takes to walk to the
store and get a new tube or patch the old one, so sometimes after you
fix your tire you start to ride slowly for a time. Let’s say that if you
pop your tire one day, you get lazy and don’t fix it with a probability
of 0.5, you decide to ride slow for the next day with a probability of
0.2, and you fix the tire and forget your inhibitions about riding fast
with a probability of 0.3. Lastly, if you have decided to ride slow one
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day, the probability that you think riding slow is silly and start riding
fast the next day is 0.7, the probability that you get a flat despite your
best efforts to be careful is 0.2 and the probability that you continue
to ride slow after a day of biking at such an indolent pace is 0.1. These
probabilities lend themselves to a very neat representation as a three
state Markov chain that has the following 1-step transition probability
matrix:

P =







0.6 0.4 0

0.3 0.5 0.2

0.7 0.2 0.1






.

From this matrix we can see that being in state 0 represents riding fast,
being in state 1 represents having a flat and being in state 2 represents
puttering along. Then, from Theorem 1, we can write the limiting
probabilities of each state as the following system of equations

π0 = (0.6)π0 + (0.3)π1 + (0.7)π2,

π1 = (0.4)π0 + (0.5)π1 + (0.2)π2,

π2 = (0.0)π0 + (0.2)π1 + (0.1)π2,

1 = π0 + π1 + π2.

The equations for the limiting probabilities are the sums down the
columns of the matrix where each entry in the column is multiplied by
the limiting probability of that state to which it transitions. Now we
can solve this system of equations to reach the actual limiting proba-
bilities. In this case they are,

π0 =
51

95
= 0.5368

π1 =
36

95
= 0.3789

π2 =
8

95
= 0.0842.

We can check our solutions by substituting them back into the system
of equations, but it is easy to see that they do indeed sum to 1. What
these solutions tell us is that, in the long run, we spend more than 50%
of our time riding really fast, almost 40% not riding at all because of
flat tires, and only around 8% of our time riding like a retiree on their
way to a shuffleboard match. The beauty of limiting probabilities is
that they allow us to make these generalizations because the longer we
let the chain run, the closer the system comes to following them. Thus,
we can call these limiting probabilities constants, (they are sometimes
referred to as stationary probabilities), if we are willing to let our system
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run indefinitely. This in turn makes it easier for us to interpret other
things about the systems in fields like queuing theory, which is the
study of efficiency and waiting in lines.

3.4. A useful result. Here is another example of how limiting prob-
abilities can be used in conjunction with Markov chains. Suppose a
wealthy alumnus was going to donate money to the soccer program
based on how well the soccer team performed this season. Suppose the
alum was offering $200 for every game that the team won and $50 for
every game that the team played and didn’t win during a ten game
season. How much money could Mike Washington, the soccer coach,
expect to receive from the benefactor? The following result and proof
from Ross show that if, in a process governed by a Markov chain, a
reward r(j) is earned whenever the chain is in state j, then the aver-
age award per unit time is the sum of all the awards multiplied by the
amount of time that the chain spends in each state, i.e.

∑

j r(j)πj [4].

Theorem 2. Let {Xn, n ≥ 1} be an irreducible Markov chain with

stationary probabilities πj, j ≥ 0. Let r be a bounded function on the

state space, which means that the the states of the chain are the range

of r. Then, with probability 1,

(16) lim
N→∞

∑N

n=1 r(Xn)

N
=

∞
∑

j=0

r(j)πj.

Note that r is not necessarily a continuous function.

Proof 2. If we let aj(N) be the amount of time that the Markov chain

spends in state j during time periods 1, . . . , N , then

N
∑

n=1

r(xn) =

∞
∑

j=0

aj(N)r(j).

Since aj(N) is the amount of time that chain is in state j, aj(N)/N is

the fraction of time that the chain is in state j. This is fraction is the

same as πj, so the result follows from Equation 16 upon dividing by N
and letting N → ∞.

Using the probabilities from the simplest soccer example, we get the
following system of equations:

π0 = (0.4)π0 + (0.2)π1

π1 = (0.6)π0 + (0.8)π1

π0 + π1 = 1,
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and stationary probabilities

π0 =
0.2

1 + 0.2 − 0.4
= 0.25, π1 =

0.6

1 + 0.2 − 0.4
= 0.75,

where π0 is the probability of winning, and π1 is the probability of
losing. So to find the amount of money the soccer team can expect to
get, Mike would solve the equation

(200π0 + 50π1)10 = (200(0.25) + 50(0.75))10

to come up with $875.

3.5. Unconditional Markov Probabilities. Another important twist
on Markov chains is that they can be used to find unconditional prob-
abilities. Up until this point, all the probabilities that we discussed
were conditional. For instance, P n

ij is the probability that the state at
time n is j given that the initial state at time 0 is i. If the uncondi-
tional probability is desired, it is necessary to specify the probability
distribution of the initial state. We can think of the initial probability
distribution as the probabilities that a Markov chain has before it is
actually in any state. For example, if the soccer team from previous
examples has not yet played a game, perhaps we could say that the
probability of them winning their first game is based on the strength
of their incoming freshmen or the number of veteran players they grad-
uated last year. Then our estimates of these probabilities are what we
would use as the initial probability distribution. Let us denote this by

αi = P (X0 = i) for i ≥ 0,

where

∞
∑

i=0

αi = 1.

So each αi is the probability of starting in state i. Then Ross tells us
that all unconditional probabilities may be computed by conditioning
on the initial state so that,

P (Xn = j) =

∞
∑

i=0

P (Xn = j|X0 = i)P (X0 = i)

=
∞
∑

i=0

P n
ijαi [4].

In other words, the probability of being in state j at time n is the sum
over all the different initial states, of the probability of going from state
i to state j in n steps multiplied by the probability of starting in state
i.
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For example, to find the probability that the soccer team will win
their fourth game from now (unconditionally), and again using the sim-
plest transition matrix that we have used for the soccer team examples,
we need to make up a distribution for the initial states. Don’t forget
that the one-step transition matrix and the four-step transition matrix
are

P =

∥

∥

∥

∥

0.4 0.6
0.2 0.8

∥

∥

∥

∥

,

and

P(4) =

∥

∥

∥

∥

∥

0.2512 0.7488

0.2496 0.7504

∥

∥

∥

∥

∥

.

Now, let’s say that α0 = 0.3 and α1 = 0.7. Then the probability that
they will win their fourth game from now is

P{X4 = 0} = (0.3)P 4
00 + (0.7)P 4

10

= (0.3)(0.2512) + (0.7)(0.2496)

= 0.25008.

3.6. Markov Chains in Genetics: The Hardy-Weinberg Law.

Many of the examples in this paper have been rather simplistic and
contrived for the sake of understanding concepts, but if we turn to the
field of genetics we can look at a more natural example from Ross’
text that is still simple enough to further our understanding of the
Markov chains [4]. Specifically, let us think about a large population
of individuals with respect to a particular pair of genes. If each gene
is classified as being of type A or of type a and we assume that Aa is
the same as aA, then there are three possible gene combinations for
each individual in the population, AA, aa, and Aa. Assume that the
proportions of individuals who have these gene pairs are, respectively,
p0, q0, and r0 such that p0 + q0 + r0 = 1. If the population being
examined is comprised of college-aged humans, (or really any sexually
mature animals), they are going to mate at some point. When this
happens, each individual contributes one of his or her genes, chosen at
random to their offspring. If the mating occurs randomly with each
individual equally likely to mate with any other individual, (pretend
everyone is naked, blindfolded, and bumbling around trying to mate
with anything they bump into), then we can determine the proportions
of individuals in the next generation whose genes are AA, aa, and Aa.
To do this let us focus on an individual of the next generation and
determine the probabilities for the gene pair of that individual.

Ross tells us that, “randomly choosing a parent and then randomly
choosing one of its genes is equivalent to just randomly choosing a gene
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from the total gene population”, so we can condition on the gene pair
of the parent to find the probability that a randomly chosen gene will
be of type A [4]. So the probability of picking gene A is

P (A) = P (A|AA)p0 + P (A|aa)q0 + P (A|Aa)r0

= p0 +
1

2
r0,

and picking a gene of type a has a probability of

P (a) = P (a|AA)p0 + P (a|aa)q0 + P (a|Aa)r0

= q0 +
1

2
r0.

So if the mating in the population is random, it follows that the prob-
ability of getting the gene pair AA in the offspring is

p = P (A)P (A)

= (p0 + r0/2)2,

the probability of getting a baby that has the genes aa is

q = P (a)P (a)

= (q0 + r0/2)2,

and the probability of getting Aa is

r = 2P (A)P (a)

= 2(po + r0/2)(q0 + r0/2).

This last probability makes sense because it does not matter whether
the child gets the genes Aa or aA. We know that p, q, and r are the
probabilities of each individual getting those specific gene pairs. Then,
since each member of the next generation gets their genes independent
of each other member, these probabilities are also the fractions of the
next generation that have each gene pair type.

As of yet this model is not a Markov chain, but if we look at the next
generation of offspring after this one, we can begin to see the chain
materialize. Since we are assuming random mating, the fractions of
genes that are of type A or type a are the same in this third generation
that they were in the second generation, namely p + r/2 and q + r/2.
Ross shows this fact algebraically as follows:

p + r/2 = (p0 + r0/2)2 + (p0 + r0/2)(q0 + r0/2)

= (p0 + r0/2)(p0 + r0/2 + q0 + r0/2)

= p0 + r0/2 since p0 + q0 + r0 = 1

= P (A),
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and he goes on to note, “thus, the fractions of the gene pool that
are A and a are the same as in the initial generation” [4]. Following
from this conclusion we can say that under random mating all the
successive generations after the first one will have the percentages of
the population having gene pairs AA, aa, and Aa fixed at the values
p, q, and r. This result is what is known as the Hardy-Weinberg law.

Now we can generalize the genetics probability example using a
Markov chain. Suppose that the gene pair population has stabilized,
as per the Hardy-Weinberg law, at percentages p, q, and r. If we sim-
plify nature a bit, we can assume that each individual has exactly one
offspring. For any given individual we will let the random variable
Xn denote the genetic pair present in the individual’s nth generation
decedent (i.e. if you were the individual being monitored, X2 would be
the genetic make-up of your grandchild). Then, if we condition on the
state of a randomly chosen mate, we can create a transition probabil-
ity matrix for the genetic make-up of any individual’s descendants as
follows:

AA aa Aa

P =
AA
aa
Aa

∥

∥

∥

∥

∥

∥

p + r
2

0 q + r
2

0 q + r
2

p + r
2

p

2
+ r

4
q

2
+ r

4
p

2
+ q

2
+ r

2

∥

∥

∥

∥

∥

∥

,

where the limiting probabilities for this Markov chain are conveniently
also p, q, and r. These limiting probabilities are equal to the fractions
of the individual’s descendants that are in each of these genetic states.

4. The Problem of n Liars and Markov Chains

4.1. The Problem. All the theory that we have discussed about Markov
chains has been presented with the intent of being able to understand
problems in the field of Markov chain analysis. The first significant
problem that we will examine comes from a paper written by William
Feller in 1951 entitled, “The Problem of n Liars and Markov Chains
[1].” In his paper, Feller generalizes and expounds upon the following
problem, first treated by A.S. Eddington: “If A, B, C, D each speak
the truth once in three times (independently), and A affirms that B
denies that C declares that D is a liar, what is the probability that D
was telling the truth [1]?”

Eddington treated this question as a simple probability problem,
but Feller realized that it lends itself to representation by “the sim-
plest Markov chain, and that natural variations of the same problem
correspond to more general chains [1].” As Feller began his study of
the n Liars by analyzing Eddington’s treatment, so will we. From the
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initial setup of the problem, there are only eight different statements
that A can make or deny. Both of the aforementioned mathematicians
concluded that the probability we are searching for is 13

41
, so we will

work with this as our goal. To make things a little less confusing, let’s
reword the initial question. Instead of saying “A affirms that B de-
nies that C declares that D is a liar, what is the probability that D
was telling the truth,” it is logically equivalent to write “A says that
B says that C says that D is truthful.” Additionally, let us call this
assertion statement Q, so we do not have to repeatedly write it out.
According to the formulation of the problem, the states are ordered so
that D makes his statement at time 0, C makes his statement at time
1, and so on. Also, assume that each person knows only the statement
of the last speaker, but not the past history of the system. So as part
of our assumption, C knows whether or not D is lying. This will be
fundamental in turning the problem into a Markov chain.

With this breakdown, the question really becomes one of conditional
probability. What is the probability that D is actually telling the truth
given that statement Q has been made, or P (D = T |Q).

4.2. The Eight Cases. Since we have turned the problem into one
of conditional probability, it is easier to see the eight cases that Feller
spoke of. The first four cases are the four different ways that statement
Q could be made while D is actually telling the truth. If that condition
is satisfied, then the four cases are as follows:

(i) P ((A = T ) ∩ (B = T ) ∩ (C = T ) ∩ (D = T )

(ii) P ((A = T ) ∩ (B = L) ∩ (C = L) ∩ (D = T )

(iii) P ((A = L) ∩ (B = T ) ∩ (C = L) ∩ (D = T )

(iv) P ((A = L) ∩ (B = L) ∩ (C = T ) ∩ (D = T ),

where A = T means that A is telling the truth from what their knowl-
edge of the situation. We know that each person tells the truth once
in three times, we can fill the times when a person is truthful with a
probability of 1

3
and the times when they are lying with 2

3
. Since these

are the only four cases when statement Q was made and D is telling
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the truth, we can sum the four probabilities to get

P (D = T ∩ Q) =

(

1

3

)(

1

3

)(

1

3

)(

1

3

)

+

(

1

3

)(

2

3

)(

2

3

)(

1

3

)

+

(

2

3

)(

1

3

)(

2

3

)(

1

3

)

+

(

2

3

)(

2

3

)(

1

3

)(

1

3

)

=

(

1

81

)

+

(

4

81

)

+

(

4

81

)

+

(

4

81

)

=

(

13

81

)

.

The next four cases are the ones when D is in fact lying, and they
are written as

(v) P ((A = T ) ∩ (B = T ) ∩ (C = L) ∩ (D = L)

(vi) P ((A = T ) ∩ (B = L) ∩ (C = T ) ∩ (D = L)

(vii) P ((A = L) ∩ (B = T ) ∩ (C = T ) ∩ (D = L)

(viii) P ((A = L) ∩ (B = L) ∩ (C = L) ∩ (D = L).

Which means that the probability of D being a liar while statement Q
is made is

P (D = L ∩ Q) =

(

1

3

)(

1

3

)(

2

3

)(

2

3

)

+

(

1

3

)(

2

3

)(

1

3

)(

2

3

)

+

(

2

3

)(

1

3

)(

1

3

)(

2

3

)

+

(

2

3

)(

2

3

)(

2

3

)(

2

3

)

=

(

4

81

)

+

(

4

81

)

+

(

4

81

)

+

(

16

81

)

=

(

28

81

)

.

Remembering back to our earliest definitions in probability, we find
that

P (Q) = P (D = T ∩ Q) ∪ P (D = L ∩ Q)

=
13

81
+

28

81

=
41

81
,

and since another early definition tells us that we can write P (D = T |Q)

as P (Q∩D=T )
P (Q)

, we are left with 13
81

/41
81

= 13
81

∗ 81
41

= 13
41

as we expected. We

now have a definite answer to the probability that D is telling the truth
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in the case of four liars. When we make the Markov chain, we can use
this probability to test our formulation.

4.3. Modeling the Liars as a Markov Chain. In this original four
person model of the liars problem, each person issues a statement which
may be true or false and may contradict each other. If for a moment,
we believe everything that each person says, each statement would
imply either that D is telling the truth of lying. So when A makes a
statement about what B and the others have said, he implies (rightly
or wrongly) that D is either lying or telling the truth. According to
Feller, “in a continued process, an even number of denials cancel, and
the implication of statement like ‘A1 asserts that A2 denies that A3 · · · ’
depends on the evenness of the total number of denials [1].”

Feller then sets up the chance process with two states. At any time
the observed state is 1 if the last statement made implies that D is
honest. Alternately the observed state is 2 if the last statement implies
that D is a liar. So that we can think of the problem in terms of steps
for our transition matrix. Feller says that the statements are issued
at times 0, 1, 2, . . ., and that the initial state at time 0 is 1 if D tells
the truth and 2 if D lies. As we noted before, only the first two peo-
ple know the initial state, because for the Markov property to apply
each person can have knowledge only of what the last statement was.
Since there are only two states, at time n the observed state changes
or remains the same according as the nth speaker tells the truth or lies.
With this setup, Feller gives us the following Markov chain,

We have a process with two possible states, 1 and 2. Initially (or
at time 0) the probabilities of the two states are α and β, respectively

(α+β = 1). Whatever the development up to time n, there is probabil-

ity p that at time n the observed state does not undergo a change and

probability q = 1 − p that it does. We seek the conditional probabilities

xn and yn that the process actually started from state 1, given that at

time n the observed state is 1 or 2, respectively [1].

In this setup, the initial probability distribution represented by α
and β is the probability that D is lying or telling the truth. Since each
person in the problem tells the truth one in three times, the probability
of starting in state 1, α, is 1

3
. Similarly, the probability that the ob-

served state does not change is the same as the probability of the next
person in line telling the truth, so p = 1

3
as well. This makes β = q = 2

3
,

because the initial probability distribution and the transition probabil-
ities both need to sum to one. So the transition probabilities are the
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probabilities that the person speaking lies about what they heard or
not. They really say nothing about whether or not D is telling the
truth even though it may initially seem like they should. D tells the
truth with a probability of 1

3
regardless of what anyone says about him.

Feller suggests that we use xn to be the probability that D was actu-
ally telling the truth, given that at time n the person who is speaking
claims that D told the truth. Since this is the case in our four person
case (which means n = 3), x3 is the probability that we found to be 13

41
previously. So our goal will be to duplicate this result by calculating a
general formula for xn, and solving for our specific parameters.

4.4. The Transition Matrix. At each step of the game, there are
two possible transitions the chain can make. If it is in state 1 the two
possibilities are that the person can tell the truth and the chain can
stay in state 1 or the person can lie so that the chain changes to state
2. If the chain starts in state 2, then the two possibilities are 2 → 1 or
2 → 2, and so the corresponding transition probabilities are,

p = p11 = p22(17)

q = p12 = p21.

We will let p
(n)
jk represent the probability that the system is in state k

after n steps if it started in state j. Since the one-step and two-step
transition probabilities can be written as

p
(1)
jk = pjk,

and

(18) p
(2)
jk = pj1p1k + pj2p2k.

Feller suggests that, generally, we can calculate the n-step transition
probability using a recursion formula. He suggests that

(19) p
(n)
jk = p

(n)
j1 p1k + p

(n)
j2 p2k,

because this is just the formula for matrix multiplication using the
transition matrix implied by Equation 17 [1]. As we typically do with

Markov chains, we will denote this matrix P. This makes each p
(n)
jk an

element of Pn.
We already know that the initial probabilities of states 1 and 2 are

are α and β, so we can write a
(n)
k , the probability of observing the state

k at time n, as

(20) a
(n)
k = αp

(n)
1k + βp

(n)
2k .
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This probability is the sum of the probability of starting in either state
multiplied by the probability of moving from that state to state k in n
steps.

We now have everything we need to get formulas for the conditional
probabilities xn and yn. Using the notation that we have defined here
and the definition of conditional probability we can find that they are

(21) xn =
αp

(n)
11

a
(n)
1

and yn =
αp

(n)
12

a
(n)
2

,

just as Feller did, but as he points out, for explicit formulas we must

calculate p
(n)
jk [1]. We can do this with the old linear algebra trick of

diagonalization. If we diagonalize the transition matrix P, we can find

a relatively simple formula for Pn. Then each p
(n)
jk is just an entry

in that matrix. To diagonalize P we need to find its eigenvalues and
eigenvectors. Then we can create three matrices, R, D, and R−1, such
that the columns of R are the eigenvectors of P, R−1 is the inverse of
R, D is a diagonal matrix with the eigenvalues of P as the entries on
its main diagonal, and the product of the three matrices is P. If we
can do that then Pn = RDnR−1, and we have our formula.

By taking the determinant of P and finding its eigenvectors we get
that

R =

[

−1 1

1 1

]

,

D =

[

p − q 0

0 p + q

]

,

and

R−1 =

[

−1/2 1/2

1/2 1/2

]

.

When we put them into the appropriate form we get

Pn =

[

−1 1

1 1

][

(p − q)n 0

0 (p + q)n

][

−1/2 1/2

1/2 1/2

]

=

(

1

2

)

[

(p − q)n + (p + q)n − (p − q)n + (p + q)n

− (p − q)n + (p + q)n (p − q)n + (p + q)n

]

.(22)

Feller equivalently writes this matrix as

(23) Pn =

(

1

2

)

[

1 1

1 1

]

+

(

1

2

)

(p − q)n

[

1 −1

−1 1

]

.
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That seems to make the next substitutions less explicit and more con-
fusing so for our purposes we will use the matrix in Equation 22 [1].

If we now substitute from Equations 22 and 20 into 21, we come to
the formula

xn =
α(1

2
)((p − q)n + (p + q)n)

α(1
2
)((p − q)n + (p + q)n) + β(1

2
)(−(p − q)n + (p + q)n)

,

which looks rather messy, but if we remember that q = 1 − p and
α + β = 1, we can cancel terms to rewrite the equation as

(24) xn =
α(1 + (p − q)n)

1 + (α − β)(p − q)n
.

By similar methods we get the formula for yn, which is,

(25) yn =
α(1 − (p − q)n)

1 − (α − β)(p − q)n
.

We now have two general formulas that tell us the conditional prob-
ability that D is telling the truth given that the last person affirms
or denies that D is truthful no matter how many people are in the
chain. This is great news because calculating the probability explicitly
for large numbers of people, as we did for four people, would be incred-
ibly time consuming. We can verify the accuracy of our formulas by
evaluating the equations at n = 3 and α = p = 1

3
. We see that xn = 13

41
,

just as it did when we crunched the numbers earlier and for the same
parameters, yn = 7

20
. Upon further inspection Feller realized that if

we let n → ∞ the value of the conditional probabilities tend towards
the initial probability distribution (xn → α and yn → β) [1]. With the
values of p, q, α, and β given in the problem, this limiting probability
is demonstrated as follows:

xn =
(1

3
)(1 − (−1

3
)n)

1 + (−1
3
)(−1

3
)n

x1 =
1

2
= 0.5

x2 =
3

10
= 0.3

x4 =
27

82
= 0.329

x8 =
2187

6562
= 0.333 ≈ α.
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4.5. Preferential Lying. In his paper, Feller suggests another mod-
ification on the liars problem. Imagine that all of the people who are
making statements about the initial liar, D, are friends of D or at least
friendly acquaintances. They would probably like to believe that D
was telling the truth unless he had lied to them sometime in their life.
As such, when it arrives time for them to make a statement about the
truthfulness of D, it would make sense for them to have a preference
to claim the D is honest. Then Feller tells us that a transition from
state 1 → 1 is more probable than 2 → 2, while 1 → 2 is less probable
than 2 → 1 [1].

This is really just the same problem as before if we replace the tran-
sition probabilities in Equation 17 with the transition matrix

P =

[

p q

q′ p′

]

,

where p + q = p′ + q′ = 1. Then all of the previous formulas apply
except that Feller’s Equation 23 turns into

Pn =
1

q + q

[

q′ q

q′ q

]

+
(p′ − q)n

q + q′

[

q −q

−q′ q′

]

,

through a similar process of diagonalization, and the final conditional
probabilities become

xn =
α(q′ + q(p′ − q)n)

q′ + (αq − βq′)(p′ − q)n

yn =
α(q′ − q(p′ − q)n)

q′ + (βq′ − αq)(p′ − q)n

by substitution [1].

5. Pallet Repair Policies at Labatt’s Breweries

5.1. Background. The problem of n liars is an interesting exercise in
turning an unlikely situation into a Markov chain. For a more realis-
tic example we turn to Mr. Barry Davidson, an analyst for Labatt’s
Ontario Breweries. During June of 1969 Mr. Davidson was faced with
a question posed be the warehouse manager concerning the repair and
replacement policy for the pallets used in the shipment of beer. Should
the pallets be repaired at all and if so, how often? This example comes
to us courtesy of “Cases in Operations Research,” by Christopher H.
von Lanzenaurer [5].
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Labatt’s Breweries Ltd., of which Labatt’s Ontario Breweries was a
wholly owned subsidiary, was one of Canada’s largest brewing compa-
nies with operations all across Canada. Labatt’s belonged to a pallet
pool with the other breweries in Ontario and Quebec and their common
retail outlets. The a pallets were used for shipments to the retail outlets
from the breweries and the return of empties. Due to one of Canada’s
socialist ideas, the use of a common bottle and pallet by breweries in
Canada allowed the return of empties to any brewery.

New bottles, when shipped to the breweries from the glass manu-
facturers, were shipped on new pallets. The bill for the new pallets
was included with the bill for the new bottles. From time to time,
additional pallets could be ordered by individual breweries, if required.
The number of pallets purchased by each brewery was recorded and at
the end of each fiscal year, breweries that had purchased more than
their share of new pallets were compensated by those breweries that
had purchased less than their share. A brewery’s share of new pal-
lets purchased was determined by the number of new pallets purchased
times its share of the market.

Damaged pallets were repaired by individual breweries if feasible. If
a center block had been damaged, the pallet was not repaired. Often
in repairing a pallet, the new nails would split a center block which
would necessitate scrapping of the pallet. Approximately 10 percent of
the damaged pallets were unrepairable. All pallets were identified as
to time of purchase.

5.2. Ice Cold Beer Facts. At the end of fiscal 1969 (1969F), there
were approximately 150, 000 pallets in the pool. In 1969F, 59, 925 new
pallets had been purchased at an average cost of $4.47, 32, 050 had
been sold as scrap for an average price of $0.55 and 7, 771 had been
repaired by members of the pool. The average cost of repairing a pallet
at Labatt’s in 1969F was $2.07. 1, 721, 000 pallets of beer were moved
in Ontario and Quebec in 1969F, making Labatt’s share of the market
approximately 33%.

Using the records for pallet repairs at Labatt’s, Mr. Davidson was
able to obtain the following average damage rates for the pallets,

Description of Pallets Percentage of Pallets Damaged in Year
One Two Three Four

New Pallets 22 45 33
Pallets Repaired in Year 1 47 48 05
Pallets Repaired in Year 2 83 17

,
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which, he felt could be applied to the entire pallet pool. The foreman
in charge of pallet repairs considered pallets over two years old not
worth repairing and they were scrapped.

Although $0.75 was the most ever received for damaged pallets, the
warehouse manager thought that as much as $1.50 could be obtained
if the scrapped pallets were in a better condition.

With changes in the price of pallets, and the cost of repairing pallets
which, due to high labor content, was rising rapidly, Mr. Davidson
wanted to implement the most economical pallet replacement policy.

5.3. Analysis. To help Mr. Davidson with his analysis, we first need
to understand his goal. Mr. Davidson is looking to minimize the cost
associated with the repair and replacement of pallets for Labatt’s. For
our study we will assume that all the other breweries in the pool use
the same policy as Labatt’s and that the number of pallets in the pool
is fixed at 150, 000. Then the cost in dollars is

(26) Cost = $150, 000(4.47X + 2.07Y − 0.55Z),

where X is the fraction of pallets in the system that are new at the
beginning of each year, Y is the fraction of pallets that are repaired each
year, and Z is the fraction of pallets that are scrapped each year. This
equation is simply calculating the brewery’s expenditures on pallets
minus the revenue generated by selling the scrap pallets to determine
the money that they spend on pallets each year.

When examining the problem, Professor Fontenot suggested that
this cost equation could be further simplified by assuming (as we are)
that the size of the pallet pool is constant. In this case, Z is some
fraction of X, say Z = λX where 0 < λ ≤ 1 is the fraction of X
that is sold as scrap[2]. From our numbers 59, 925 new pallets were
purchased in 1969, while only 32, 050 were sold as scrap. This means
that Z =

(

32050
59925

)

X = (0.535)X. It would seem that those two numbers
should be equal and that λ should always equal 1, but the discrepancy
can be explained. Perhaps some of the pallets were damaged to the
point that they could not be sold and were thrown away. Maybe there
are uses for scrap wood around the brewery so some broken pallets
are kept for Labatt’s own purposes or maybe employees are allowed to
take unrepairable pallets home for personal use. So we no have a cost
equation for the current repair and replacement policy in terms of two
variables. To help Mr. Davidson’s analysis we need to find the values
of X and Y for the current policy. Thinking in the context of Markov
chain analysis, we can try to set up some states so that the steady state
probabilities of the Markov chain give us the values that we need.



MARKOV CHAINS: ROOTS, THEORY, AND APPLICATIONS 43

If we define the states for a pallet at the beginning of the year, the
current repair policy can be modeled as follows:

state 1: 0 years old

state 2: 1 year old, undamaged

state 3: 2 years old, undamaged

state 4: 1 year old, repaired in the first year of use

state 5: 2 years old, repaired in the second year of use

(and possibly also the first year)

state 6: 2 years old, repaired in the first year only

state 7: 3 years old.

In this setup, being 0 years old means that a pallet is brand new.
Since we are assuming that the size of the pallet pool remains con-
stant, all scrapped pallets are replaced with new ones so when a pallet
is scrapped it can also be called 0 years old. The foreman in charge
of pallet repairs said that damaged pallets over two years old are not
worth repairing so we don’t need states for pallets more than 3 years
old, and it is also pivotal to note that all of these states are condi-
tional. For example the probability of transitioning from state 2 to
state 3, P23, is actually the probability of moving from 2 to 3 given
that the pallet is in state 2. It cannot go from being 1 year old and
undamaged to 2 years old and undamaged if it was actually damaged
in the first year of use. This may seem trivial because any transition
probability requires you to be in a certain state to transition from it,
but consider the following. Say that you start with 100 pallets. Us-
ing Mr. Davidson’s average damage rates, 22% of those pallets are
damaged and 78% remain undamaged after their first year of use. So

P12 = (100)(0.78)
100

= 0.78. Then for P21, we are starting out in state 2
with only 78 pallets, because that is how many were undamaged after
the first year. Additionally we can see that the percentages in Mr.
Davidson’s chart sum to 1 across the rows. This implies that in year 3,
all of the remaining pallets that were undamaged after their first two
years get damaged, as opposed to 33% of the remaining undamaged
pallets being damaged. Thus, the 45% in year 2 is 45% of the origi-
nal hundred, meaning that 45 pallets are damaged. Since there only
78 undamaged pallets going into year 2, 45

78
= 57.7% of the remaining

pallets are damaged. Additionally, Mr. Davidson noted that 10% of

the damaged pallets are unrepairable, so P21 = (100)(0.45)(0.1)
78

= 0.058.
This same conditioning is carried into the other transition probabilities
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giving us,

P =



























0.022 0.78 0 0.198 0 0 0

0.058 0 0.423 0 0.519 0 0

1 0 0 0 0 0 0

0.047 0 0 0 0.423 0.530 0

0.83 0 0 0 0 0 0.17

0.906 0 0 0 0 0 0.094

1 0 0 0 0 0 0



























,

as the transition matrix.
If we remember back to steady-state probabilities we can see that

solving the system of equations,

π1 = π1(0.022) + π2(0.78) + π4(0.198)

π2 = π1(0.058) + π3(0.423) + π5(0.519)

π3 = π1(1)

π4 = π1(0.047) + π5(0.423) + π6(0.53)

π5 = π1(0.83) + π7(0.17)

π6 = π1(0.906) + π7(0.094)

π7 = π7(1)

1 = π1 + π2 + π3 + π4 + π5 + π6 + π7,

will give us the steady-state solution. This solution is

π1 = 0.333

π2 = 0.261

π3 = 0.110

π4 = 0.066

π5 = 0.163

π6 = 0.035

π7 = 0.031.

We started solving these steady-state probabilities in search of X and
Y from our cost equation. Here we can see that the fraction of pallets
that are new at the beginning of each year, X, is around 33.3%. The
fraction of pallets that are repaired each year, Y , is π4 + π5 = 22.9%.
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This means that our yearly pallet expenditure can be modeled by,

Cost = $150, 000(4.47X + 2.07Y − 0.55(0.535)X)

= $150, 000(4.47(0.333) + 2.07(0.229)− 0.55(0.535)(0.333))

= $150, 000(1.865)

= $2.797 × 105.

5.4. Alternative Policies. It seems like there are a lot of ways the
cost associated with pallets repairs could be reduced. One option that
comes to mind is keeping a closer watch on the scrappable pallets.
The coefficient λ from the Z = λX substitution is pretty much 50%
in the current numbers. If all of the unrepairable pallets were sold as
scrap, then that λ would approach 1 and the cost would be signifi-
cantly decrease. Having λ = 1 would bring the cost from $2.797x105 to
$2.669x105, which is a difference of about $12, 800. The problem with
this solution is that it doesn’t address when or how often the pallets
are repaired. Those are the areas where it seems like there is the most
wiggle room, because if a pallet is no good, you have to scrap it. If
you have beer to ship, you need to buy a pallet. But if you have a
somewhat broken pallet, you have more than one option.

5.5. Case 1: Repair Pallets Only Once. One option is that we
could change Labatt’s pallet repair policy so that pallets are only re-
paired one time in their life. With this change, we can use the same
number of states as with the current policy. The only difference will be
that state 5 will be defined as “2 years old, repaired in the second year
only” instead of “2 years old, repaired in the second year of use and
possibly also the first year.” This makes the new transition matrix

P =



























0.022 0.78 0 0.198 0 0 0

0.058 0 0.423 0 0.519 0 0

1 0 0 0 0 0 0

0.470 0 0 0 0 0.530 0

0.83 0 0 0 0 0 0.17

0.906 0 0 0 0 0 0.094

1 0 0 0 0 0 0



























,

where you can notice that there is no longer a positive transition prob-
ability for P45. This alteration makes the steady-state probabilities
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equal to

π1 = 0.345

π2 = 0.269

π3 = 0.114

π4 = 0.068

π5 = 0.139

π6 = 0.036

π7 = 0.027,

and the cost function becomes

Cost = $150, 000(4.47(0.345) + 2.07(0.208)− 0.55(0.535)(0.345))

= $150, 000(1.87)

= $2.806 × 105,

for λ = 0.535. For λ = 1 cost would be

Cost = $150, 000(4.47(0.345) + 2.07(0.208)− 0.55(0.345))

= $150, 000(1.78)

= $2.674 × 105.

We can see that the cost of this policy is lower than the cost of the
current policy when the number of pallets that are sold as scrap is
lower and pretty much the same when the number of pallets sold as
scrap is equal to the number of new pallets. A potential bonus of this
“repair once” policy is that we might get more money when selling the
pallets as scrap wood, because they are in better condition. We have
no numbers at this time to calculate the cost difference. However, if
we were able to get even ten cents more per pallet, we would reduce
our cost to $2.779x105 for λ = 0.535 and $2.623x105 for λ = 1. This
difference is on the order of tens of thousands of dollars.

5.6. Case 2: Never Repair. Another policy worth examining is one
under which Labatt exerts no effort in repairing broken pallets. The
logic behind this idea is that they would be spending no money on
repairs, and since they are in the pallet pool, the cost of all the new
ones they were buying would be spread out amongst everyone in the
pool. Additionally, same as the last policy, we could expect to get more
money for our pallets sold as scrap because they have seen less use in
their life times.

To model this policy, we are going to need to redefine the states in
our Markov chain. It doesn’t make sense to have seven states in this
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policy, because we can simplify the states as follows:

state 1: 0 years old

state 2: 1 year old, undamaged

state 3: 2 years old, undamaged,

because according to Mr. Davidson’s information no new pallet makes
it past year three without getting damaged. This makes the transition
probability matrix equal to

P =







0.22 0.78 0

0.577 0 0.423

1 0 0






.

With these transition probabilities, once the system reaches equilibrium
the probabilities will be

π1 = 0.474

π2 = 0.370

π3 = 0.156,

and our cost equation tells us that we should expect to spend

Cost = $150, 000(4.47(0.474) + 2.07(0) − 0.55(0.535)(0.474))

= $150, 000(1.98)

= $2.97x105 for λ = 0.535

and

= $150, 000(4.47(0.474) + 2.07(0) − 0.55(0.474))

= $150, 000(1.86)

= $2.79 × 105 for λ = 1.

So it would seem that the “no repair” policy actually costs the most at
face value. It may still be a viable option however. If we were able to
get numbers for how much more the pallets are worth as scrap or the
increase in beer shipping at Labatt’s now that there are extra workers
because no one is repairing pallets.

5.7. Limitations. The analysis that we just performed regarding La-
batt’s policy on repair and replacement of pallets gives a good initial
assessment of the options available to them, but it is not exhaustive.
A number of areas of the work could have been more detailed or accu-
rate. For example, we don’t know how much more the brewery would
actually get for the scrapped pallets if they were never repaired or if
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they were repaired once or repaired twice. Another failing is that we
assume that a pallet can only break once a year, while that does not ac-
curately reflect the real world. We also don’t fully know the brewery’s
priorities. If they are concerned with environmental impacts in their
cost analysis, they might be hesitant for the sake of the trees to adopt a
plan that involves throwing out repairable pallets. On the other hand,
if they are worried about rising labor costs, then they would want to
repair the pallets as little as possible.

6. Conclusion

The objective of this paper was to explore the theory of Markov
chains with the hope that we would discover its value through relevant
case studies. From this exploration, Markov chains seem to be more
important as a stepping stone that leads to other forms of analysis, than
as an analytical tool themselves. In the fields of Queuing Theory and
Operations Research, for example, Markov theory is used to assume
that after a long enough period of time, systems act according to their
limiting probabilities. So Markov chains play a part in the assumptions
of these two fields that are used by many modern industries, and for
that reason this paper has been an attempt to enlighten us about the
grounds that these fields are built on.
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