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1. Introduction

This paper deals with a set theoretic construct called a semifilter. We
begin with an introduction to the basic properties of semifilters. We
then explore topics such as semifilter multiplication and conjugation.
After that we present our results relating isomorphisms of semifilters
to permutations of an underlying set.

2. Preliminaries

2.1. Semifilters. We begin by letting W denote an arbitrary set. For
now W may be finite or infinite. Before we can present the formal
definition of semifilter, we must define the finite power set of W .

Definition 2.1.1. Let W be a set. Then the finie power set of W is
defined to be the collection of all finite subsets of W . We denote the
finite poewr set as Pf (W ).

Note that if W is a finite set, then Pf (W ) is the same as P(W ), the
traditional power set of W , since all subsets of W are finite.

Definition 2.1.2. Let F ⊆ Pf (W ) be a family of sets. F is said to be
a semifilter on W provided that S ∈ F and S ⊆ T where T ∈ Pf (W )
imply that T ∈ F.

2.2. Examples. We now present a few examples of simple semifilters.

Example 2.2.1. Let W = {1, 2, 3}. Then the collections
E = {{1} , {1, 2} , {1, 3} , {1, 2, 3}}
F = {{1} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}
G = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}
H = {{1, 2, 3}}

are all semifilters on W .

Example 2.2.2. Let W = {1, 2, 3, 4}. Then consider the collection
F = {{1, 2} , {1, 2, 3}}. This is not a semifilter because {1, 2, 3} ⊆
{1, 2, 3, 4} but {1, 2, 3, 4} 6∈ F.
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Now we define an entire family of semifilters that will appear again
later in the paper.

Definition 2.2.3. Let n ∈ W. Then given a set, W , Un is defined to
be the collection of all finite subsets of W with at least n elements.

Theorem 2.2.4. The collection Un is a semifilter on W .

Proof. Let S ∈ Un with S ⊆ T for some T ∈ Pf (W ). Since S ∈ Un, we
know |S| ≥ n. Now since S ⊆ T , we have that |T | ≥ |S| ≥ n. Thus
since T ⊆ W , we have that T ∈ Un as well. Therefore Un is a semifilter
on W . �

Here are a few examples of different semifilters from the Un family.

Example 2.2.5. If W = {1, 2}, then we see that
U0 = {∅, {1} , {2} , {1, 2}}
U1 = {{1} , {2} , {1, 2}}
U2 = {{1, 2}} .

Example 2.2.6. If W = {1, 2, 3}, then
U2 = {{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}.

Before we proceed further, we need to emphasize the differences be-
tween two specific semifilters.

Example 2.2.7. Let W be any set. Note that E = ∅ is a semifilter on
W since ∅ vacuously fulfills the conditions to be a semifilter. We want
to emphasize here that E = ∅.

We now wish to contrast this with the semifilter F = Pf (W ). In this
case, F is the only semifilter on W with the property that ∅ ∈ F. We
want to emphasize here that F is not empty and rather that ∅ ∈ F.

2.3. The collection of semifilters on W . There will be times when
we need to refer to the set of all semifilters on a set W . We denote this
collection as FW . This collection has some interesting properties.

Definition 2.3.1. A set, S, is said to be partially ordered under binary
relation ∗ provided the following three conditions are fulfilled:

(1) Reflexivity: For all a ∈ S, a ∗ a.
(2) Antisymmetry: For all a, b ∈ S, if a ∗ b and b ∗ a, then a = b.
(3) Transitivity: For all a, b, c ∈ S, if a ∗ b and b ∗ c, then a ∗ c.

It turns out that all collections of sets are partially ordered under ⊆,
the set inclusion binary relation.

Theorem 2.3.2. Any collection of sets is partially ordered under set
inclusion.
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Proof. Let X be any collection of sets. Reflexivity: Let F ∈ X. As
F is a set, it is by definition a subset of itself. Thus F ⊆ F.
Antisymmetry: Let E,F ∈ X such that E ⊆ F and F ⊆ E. By the
definition of set equality, we have that E = F.
Transitivity: Suppose E,F,G ∈ X with E ⊆ F and F ⊆ G. Let
S ∈ E. Since E ⊆ F, S ∈ F. Now since F ⊆ G, S ∈ G. Therefore
E ⊆ G.

Therefore X is a partially ordered set. �

Now we observe that since FW , the family of all semifilters on W , is
a collection of sets, it is partially ordered.

Given two semifilters on a set W , the union and intersection of those
two semiftilers are semifilters on W as well.

Theorem 2.3.3. The collecton FW is closed under unions and inter-
sections.

Proof. Unions: Let W be a set and suppose E,F ∈ FW . Let S ∈ E∪F
and let T ∈ Pf (W ) such that S ⊆ T . Since S ∈ E∪F, we have S ∈ E
or S ∈ F. Suppose without loss of generality that S ∈ E. Since E is a
semifilter, T ∈ E. Thus T ∈ E ∪ F. Therefore E ∪ F is a semifilter on
W as well.

Intersections: Suppose E,F ∈ FW . Further suppose S ∈ E ∩ F and
let T ∈ Pf (W ) such that S ⊆ T . Since S ∈ E∩F, we have that S ∈ E
and S ∈ F. As E and F are both semifilters on W , we have T ∈ E and
T ∈ F. Therefore T ∈ E ∩ F, and E ∩ F is a semifilter on W . �

3. Antichains and Generating Sets

3.1. Antichains. Recall that earlier we made the distinction that in
constructing semifilters, we use sets from the finite power set of W
rather than the power set. IfW is finite, this distinction is unimportant.
If W is an infinite set like Z, however, then the distinction is important.
In order for a semifilter, F, on an infinite set like Z to have certain
desirable properties, we need the elements of F to be finite sets.

Since a given element, S, of a semifilter is a finite subset of W ,
we know that S has a finite number of subsets. This is very impor-
tant for semifilters and why the finite power set is used instead of
the regular power set. Suppose, for example, that W = Z. Then
Z ⊃ {2, 4, 6, . . .} ⊃ {4, 8, 12, . . .} ⊃ . . .. In this way we can construct a
chain of proper subsets of Z that does not terminate. What we want,
however, is a way to find the “minimal sets” of a semifilter. It is al-
ways possible to find such “minimal sets” if we limit the elements of a
semifilter to finite subsets of W .
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Definition 3.1.1. Let F be a semifilter on a set W . Then

MF := {S ∈ F | for all T ∈ F, if T 6= S then, T 6⊆ S}

is called the antichain of finite subsets of W .

Our goal is to show in some way that the antichain of a semifilter, F,
will be the collection of “minimal sets” of a semifilter and can somehow
be used to describe the semifilter. First, we’ll show that every set in
a semifilter is either an element of the antichain or is a superset of an
element in the antichain.

Lemma 3.1.2. Let F be a semifilter on some set W . Then for all
T ∈ F, there exists some S ∈MF such that S ⊆ T .

Proof. Let T ∈ F. If there exists some T1 ∈ F such that T1 ⊆ T ,
then choose T1. Now repeat this process for T1. If there exists some
T2 ∈ F such that T2 ⊆ T1, choose T2. Since T ∈ Pf (W ), we know
that |T | <∞. Thus if we continue the process above, it will eventually
terminate with some Ti ∈ F. The set Ti will have the property that for
all S ∈ F, we have S 6⊆ Ti unless S = Ti. Thus Ti ∈ MF. Therefore
for all T ∈ F, there exists some subset, Ti ⊆ T , that is an element of
MF. �

When refering to individual elements of the antichain, we call the
sets minimal sets of F. Now let’s look at a few examples of antichains.

Example 3.1.3. Let W = {1, 2, 3} and let
E = {{1} , {1, 2} , {1, 3} , {1, 2, 3}}
F = {{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}
G = {{1, 2, 3}}
H = Pf (W ).

Then
ME = {{1}}
MF = {{1, 2} , {1, 3} , {2, 3}}
MG = {{1, 2, 3}}
MH = {∅} .

Observe that for any set W , if F = Pf (W ), then MF = {∅}.

Example 3.1.4. Let W be any arbitrary set and let I = ∅. In this
instance, I is the empty semifilter. Since I contains no sets, MI is
empty as well. Thus MI = ∅. Compare this to the previous example
where MH = {∅}.



ISOMORPHISMS AND PERMUTATIONS OF SEMIFILTERS 5

3.2. Generating Sets. When working with the antichain, we talked
about reducing a semifilter to its minimal sets. Often it is more useful
to start with a collection of sets and talk about a semifilter somehow
associated with those sets. We now present a way to build a semifilter
given an arbitrary list of subsets of a set W . This idea has two useful
results. First, it allows us to express a semifilter in terms of its minimal
sets rather than writing out the whole semifilter. Secondly, it says
that given any arbitrary collection of sets, we are able to construct a
semifilter containing those sets.

Definition 3.2.1. Let M be any collection of finite subsets of W and
let BM := {T ∈ Pf (W ) | S ⊆ T for some S ∈M}. We then say that
M is the generating set of BM .

According to Definition ??, BM is just a collection of sets from
Pf (W ). Now we wish to show that BM is indeed a semifilter.

Theorem 3.2.2. The collection BM is a semifilter on the set W .

Proof. Let M be any collection of finite subsets of W . Suppose T ∈ BM

and that T ⊆ U for some U ∈ Pf (W ). Since T ∈ BM , there exists
some set S ∈M such that S ⊆ T . Thus as T ⊆ U , we see that S ⊆ U .
Then by the definition of BM , we have U ∈ BM as well. Therefore BM

is a semifilter on W . �

Now let’s look at a few examples.

Example 3.2.3. Let W = {1, 2, 3} and let
M1 = {{1}}
M2 = {{2} , {1, 3}}
M3 = {{2, 3} , {1, 2, 3}}
M4 = {∅} .

Then we get
BM1 = {{1} , {1, 2} , {1, 3} , {1, 2, 3}}
BM2 = {{2} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}
BM3 = {{2, 3} , {1, 2, 3}} = M3

BM4 = Pf (W ).

Comparing Examples ?? and ??, we see that ME = M1 and that
E = BM1 . Furthermore, MH = {∅} = M4 and H = Pf (W ) = BM4 . It
appears that the relationship between antichains and generating sets
is that the generating set for a semifilter is the antichain for that semi-
filter. We now formalize this.

Theorem 3.2.4. Let F be a semifilter on a set W . Then BMF
= F.
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Proof. First we shall show that F ⊆ BMF
. Let T ∈ F. By lemma

?? there exists some minimal set, S, of F such that S ⊆ T . Then by
definition, T ∈ BMF

. Thus F ⊆ BMF
.

Now we show that BMF
⊆ F. Let T ∈ BMF

. Then there exists some
S ∈ MF such that S ⊆ T . As S ∈ MF, we see that S ∈ F. Now
since S ⊆ T and T ∈ Pf (W ), we have that T ∈ F. Thus F ⊆ BMF

.
Therefore F = BMF

. �

We have now shown that we can represent a semifilter by its gener-
ating sets. From now on, we shall use the notation 〈S1, S2, . . .〉 to mean
the semifilter generated by the sets S1, S2, . . . where it is assumed the
Si ∈ Pf (W ). It need not be the case that the generating set of a semi-
filter is countable. In this paper, we do not deal with that case though.
Finally, note that while a set in a semifilter must be finite, a semifilter
may contain infinitely many sets as well as be generated by infinitely
many sets.

4. Multiplication of Semifilters

4.1. Product Semifilters. Thus far we’ve seen some ways to generate
new semifilters from subsets of W and from other semifilters. We’ve
also presented a way to express a semifilter in terms of its minimal sets.
Now we will present another concept that allows us to construct new
semifilters from old ones as well as express some semifilters in terms of
other ones.

Definition 4.1.1 (Product semifilter). Let E and F be semifilters on
a set W . Then the collection

EF := {U ∈ Pf (W ) | U = S ∪ T where S ∈ E, T ∈ F and S ∩ T = ∅}

is said to be the product semifilter of E and F. We sometimes use
dot notation (E · F) or (E) (F) (parenthetical notation) for semifilter
multiplication when visual representation becomes an issue.

What this definition says is that the product of semifilters E and
F is the collection of disjoint unions of sets from E and F. That is,
suppose S ∈ E and T ∈ F. If S ∩ T = ∅, then S ∪ T ∈ EF.

Let’s look at some examples of product semifilters before presenting
any theorems regarding them.

Example 4.1.2. In this first example we will explicitly construct a
product semifilter. Let’s begin by letting W = {1, 2, 3} ,E = 〈{1}〉 ,
and F = 〈{2}〉. Before constructing EF, let us first list the elements
of E and F explicitly.
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E = {{1} , {1, 2} , {1, 3} , {1, 2, 3}}
F = {{2} , {1, 2} , {2, 3} , {1, 2, 3}}

To construct EF, we begin by noticing that {1} and {2} are disjoint.
Thus {1} ∪ {2} = {1, 2} ∈ EF. Now observe that {1} ∈ E and
{2, 3} ∈ F are disjoint. Thus {1} ∪ {2, 3} = {1, 2, 3} ∈ EF. Next we
notice that the only remaining pair of disjoint sets is {1, 3} ∈ E and
{2} ∈ F. Thus we consider {1, 3} ∪ {2} = {1, 2, 3}, but we already
have {1, 2, 3} ∈ EF. Finally we see that

EF = {{1, 2} , {1, 2, 3}} = 〈{1, 2}〉 .
In this case the minimal set of EF is {1, 2}, which is the union of

the minimal sets of E and F. In general this is not true however.

Example 4.1.3. Let W = {1, 2, 3, 4} and let E = 〈{1} , {2} , {3, 4}〉
and F = 〈{1, 2} , {3} , {4}〉. Again let’s list the elements of these semi-
filers explicitly.

E = {{1} , {2} , {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,
{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} , {1, 2, 3, 4}}

F = {{3} , {4} , {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,
{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} , {1, 2, 3, 4}}

By comparing the two semifilters, we see that
EF = {{1, 3} , {1, 4} , {2, 3} , {2, 4} , {1, 2, 3} , {1, 2, 4} ,

{1, 3, 4} , {2, 3, 4} , {1, 2, 3, 4}}.
Thus EF = 〈{1, 3} , {1, 4} , {2, 3} , {2, 4}〉.
There are several things worth noting in Example ??. First, minimal

sets of the original filters need not be in the product. Observe that
{3, 4} ∈ E, but {3, 4} 6∈ EF. Second, the generating set for EF in
Example ?? is the disjoint unions of the generating sets for E and F.
This turns out to be the general rule: the generating sets of a product
semifilter, EF, are the disjoint unions of generating sets from E and F.

It turns out that multiplication of semifilters has many other desir-
able properties. Just like traditional multiplication, semifiter multipli-
cation is associative, commutative, has a “zero” element, and has an
identity. We prove all this now.

Theorem 4.1.4. Let E,F, and G be semifilters on a set W . Multipli-
cation of semifilters satisfies the following properties:

(1) It is associative. That is, E (FG) = (EF) G.
(2) It is commutative. That is, EF = FE.
(3) There is a “zero” semifilter. That is, there exists some semifilter

0 such that for any semifilter E, we have E0 = 0.
(4) There is a multiplicative identity. That is, there exists some

semifilter 1 such that for any semifilter E, we have E1 = E.



8 COLIN MALLOY

Proof. Let E,F, and G be semifilters on a set W .
(1). Suppose S ∈ E (FG). Then S = X ∪ (Y ∪ Z) for some X ∈

E, Y ∈ F, and Z ∈ G such that X ∩ (Y ∪ Z) = ∅ and Y ∩ Z = ∅.
Since X is disjoint from the union of two disjoint sets, the three sets
must be pairwise disjoint. Thus (X ∪Y )∩Z = ∅. Now since the union
operator is associative, we have that X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z.
Thus S ∈ (EF) G. Since the above process is reversible, we have that
E (FG) = (EF) G.

(2). Suppose S ∈ EF. Then S = X∪Y for some disjoint X ∈ E and
Y ∈ F. Since the union operator is commutative, S = X ∪Y = Y ∪X.
Thus S ∈ FE and EF ⊆ FE. Since this argument is reversible, we
have that FE ⊆ EF and thus EF = FE.

(3). The “zero” semifilter is ∅ (the empty semifilter). Consider E · ∅.
If S ∈ E · ∅ then S must be the union of two disjoint sets, one of which
is an element of ∅. This however is impossible as |∅| = 0. Therefore
E · ∅ = ∅

(4). The multiplicative identity is Pf (W ). We’ll first show that
E · Pf (W ) ⊆ E. Let S ∈ E · Pf (W ). Then S = X ∪ Y for some
X ∈ E and Y ∈ Pf (W ) such that X ∩ Y = ∅. Clearly X ⊆ X ∪ Y and
X ∪ Y ∈ Pf (W ). Thus by the definition of a semifilter, X ∪ Y ∈ E.
Thus E · Pf (W ) ⊆ E.

Now we’ll show that E ⊆ E · Pf (W ). Let S ∈ E. Then since
∅ ∈ Pf (W ) and S ∩ ∅ = ∅, we have that S = S ∩ ∅ ∈ E · Pf (W ). Thus
we have E ⊆ E · Pf (W ). Therefore E · Pf (W ) = E. �

One interesting property of multiplication of semifilters is that de-
pending on the two semifilters being multiplied, the product may have
more or fewer elements than the original two semifilters.

Example 4.1.5. Recall that in Example ??, |E| = |F| = 4. However,
for that example |EF| = 2. So in Example ??, the product semifilter
ends up being smaller than both the two terms of the product.

Now look back at Example ??. In that example, |E| = |F| = 7
while |EF| = 9. So in example ??, the product is larger than both the
original filters.

Example 4.1.6. Another strange property of semifilter multiplication
is that any factorization of Pf (W ) (the multiplicative identity) is triv-
ial. That is, if EF = Pf (W ) then E = F = Pf (W ).

Consider Pf (W ). If we wanted to write Pf (W ) as the product of
two semifilters, we would have to write ∅ as the disjoint union of two
elements of Pf (W ). The only way to do this is to write ∅ = ∅∪∅ while
noting that ∅ ∩ ∅ = ∅. Thus if Pf (W ) = EF then ∅ ∈ E and ∅ ∈ F.
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This implies that E = F = Pf (W ). So the only way to factor Pf (W )
is as Pf (W ) = Pf (W ) · Pf (W ).

The fact that Pf (W ) (the multiplicative identity) can only be fac-
tored trivially implies that there is no such thing as “semifilter inverses”
in the traditional sense that x · x−1 = 1. That is, given a semifilter E,
there does not exist some E−1 with the property that E · E−1 = 1
unless E = Pf (W ).

It turns out that the semifilter F = ∅ has some interesting properties
as well. One such property is that for most sets W , there are numerous
ways to write F as a product.

Example 4.1.7. In order to write ∅ as a non-trivial product, the two
semifilters must have the property that their minimal sets are pairwise
non-disjoint.

Let E,F be semifilters such that neither is ∅ or Pf (W ). Then EF = ∅
if only if given arbitrary minimal sets X ∈ E and Y ∈ F, we have that
X ∩ Y 6= ∅.

If we suppose EF = ∅, then given any X ∈ E and Y ∈ F, it must
be that X ∩Y 6= ∅. Since X and Y are arbitrary, this must be true for
minimal sets as well.

Now suppose any pair of minimal sets from E and F are non-disjoint.
Then as any minimal set of E is not disjoint from any minimal set of
F, any set in E will not be disjoint from any set in F. Thus no union
of sets will be in the product semifilter. Therefore EF = ∅ if and only
if every pair of minimal sets X ∈ E and Y ∈ F have the property that
X ∩ Y 6= ∅.

Example 4.1.8. Let W = {1, 2, 3} and E = 〈{1}〉. Then E2 = EE =
∅ since for any two sets X, Y ∈ E, we have X ∩ Y 6= ∅. Now let
F = 〈{1, 2}〉. Note that E 6= F, but we still have that EF = ∅.

Example ?? shows that when some semifilters are squared, the prod-
uct is F = ∅. Also, it gives an example of two non-empty semifilters
whose product is empty.

Semifilter multiplication has many useful applications, but there are
still many open questions regarding factorization of semifilters. When
W is finite, it is a simple process to construct product semifilters. How-
ever, given any arbitrary semifilter on W , it can be extremely difficult
to determine whether that semifilter is able to be factored.
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5. Conjugates

5.1. Introduction to Conjugates. This section deals with a con-
struction called the conjugate of a semifilter. Let us begin with the
definition and then explore some examples.

Definition 5.1.1. Let F be a semifilter on a set W . The collection
F := {S ∈ Pf (W ) | such that for all X ∈ F, S ∩X 6= ∅} is called the
conjugate of F.

Example 5.1.2. Let W = {1, 2}. Then the following are all semifilters
on W :

F1 = 〈∅〉
F2 = 〈{1} , {2}〉
F3 = 〈{1}〉
F4 = 〈{2}〉
F5 = 〈{1, 2}〉
F6 = ∅

Let’s begin with F1. Since F1 = 〈∅〉, we have that F1 = Pf (W ).
Now as ∅ ∈ F1, if S ∈ F1 then S ∩ ∅ 6= ∅. However, this is impossible.
Therefore F1 = ∅ = F6.

Now consider F2. Every set contained in F2 must intersect with
both {1} and {2}. So we observe that {1, 2} ∈ F2. Next we see that
no proper subset of {1, 2} is in F2 since any subset will be missing 1
or 2 and thus will not have a non-empty intersectin with {1} or {2}.
Thus F2 = 〈{1, 2}〉 = F5.

Following the same method as above, we get the following results:

F1 = Pf (W ) = F6

F2 = F5

F3 = F3

F4 = F4

F5 = F2

F6 = F1 = ∅

Now turn your attention to Figures ?? and ??. Figure ?? is the
semifilter lattice for |W | = 2. The labels of the semifilters in the
figures corresponds to the the semifilters from Example ?? We arrange
the semifilters in the lattice just as we would if we thought of them as
just subsets of Pf (W ).

In Figure ??, we took the original semifilter lattice and where we
wrote Fi before, we’ve now written Fi. What we find is that other
than being flipped over, the lattice is the same as before.
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Figure 1. The semifilter lattice of FW for |W | = 2.

Figure 2. The lattice of conjugates corresponding to
the lattice in Figure ??

From looking at Example ??, it is strongly suggested that for any
semifilter F, its conjugate, F, is also a semifilter. We formalize this in
the following theorem.
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Theorem 5.1.3. Let F be a semifilter on some set W . Then F is also
a semifilter on W .

Proof. Suppose S ∈ F and that S ⊆ T for some T ∈ Pf (W ). Since
S ∈ F, we have that given any X ∈ F, we have S ∩ X 6= ∅. Now
consider T ∩X. Since S ⊆ T , we find that

T ∩X = (S ∩X) ∪ ((T − S) ∩X) 6= ∅
since S ∩X 6= ∅. Therefore T ∈ F and F is a semifilter on W . �

Now we know for certain that F is a semifilter. Conjugates have
many more interesting properties that we will present in the following
section.

5.2. Results Concerning Conjugates. Our first theorem relates semi-
filters whose product is the emptyset and the conjugates of those semi-
filters. Before we present the proof, let’s look at an example.

Example 5.2.1. Let W = {1, 2, 3, 4} and suppose E = 〈{1, 2}〉 and
F = 〈{2, 3}〉.

Note that EF = ∅ since {1, 2} ∩ {2, 3} 6= ∅. Now observe:
E = 〈{1} , {2}〉
F = 〈{2} , {3}〉 .

Since {2} ∈ F, we have that {1, 2} ∈ F. Thus E ⊆ F. Likewise,
since {2} ∈ E, we see that {2, 3} ∈ E and so F ⊆ E.

Based on this example, it seems that if EF = ∅ then E ⊆ F and
F ⊆ E. This is true. In fact, the three statements turn out to be
equivalent as we show in the following theorem.

Theorem 5.2.2. Let E and F be semifilters on a set W . Then the
following statements are equivalent:

(1) EF = ∅.
(2) E ⊆ F.
(3) F ⊆ E.

Proof. We will first show that property (1) implies properties (2) and
(3). Suppose EF = ∅ and let S ∈ E and T ∈ F arbitrarily. If S∩T = ∅,
then S ∪ T ∈ EF. However, EF = ∅. Thus S ∩ T 6= ∅. As both S and
T are aribtrary sets of E and F, S ∩ T 6= ∅ implies that S ∈ F and
T ∈ E. Therefore E ⊆ F and F ⊆ E.

Now we will show that properties (2) and (3) imply property (1).
Suppose without loss of generality that E ⊆ F (the proof is analogous
for F ⊆ E). Let S ∈ E and T ∈ F be arbitrary sets. E ⊆ F implies
that S∩T 6= ∅. Since S and T are arbitrary, there is no pair of disjoint
set from E and F. Therefore EF = ∅. �
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Example 5.2.3. Let W = {1, 2, 3, 4} and let E = 〈{1, 2}〉 and F =
〈{1}〉. Then E = 〈{1} , {2}〉 and F = 〈{1}〉.

First notice that since {1} ⊆ {1, 2}, we see that E ⊆ F. As {1} ∈ E,
we see that F ⊆ E.

Now consider G = 〈{1} , {3}〉. If S ∈ G, then S ∩ {1} 6= ∅ and
S ∩ {3} 6= ∅. Thus for all S ∈ G, we have that {1, 3} ⊆ S. Thus
E 6⊆ G since {1, 2} ∈ E, but {1, 3} 6⊆ {1, 2}. In this instance we
observe that G 6⊆ E and that E 6⊆ G.

We see in Example ?? that E ⊆ F and F ⊆ E while G 6⊆ E and
E 6⊆ G. We now formalize this relationship between the conjugates of
semifilters E and F when we know that E ⊆ F.

Theorem 5.2.4. Let E and F be semifilters on a set W such that
E ⊆ F. Then F ⊆ E.

Proof. Suppose that E ⊆ F and let X ∈ F. Since X ∈ F, we have
that for all T ∈ F, we have that X ∩ T 6= ∅. Now since E ⊆ F, for all
S ∈ E, we see that X ∩ S 6= ∅. Thus X ∈ E. Therefore F ⊆ E. �

The following theorems give the relationship between a semifilter F

an its higher order conjugates. First we show that F ⊆ F and then we

show that F = F.

Theorem 5.2.5. Let F be a semifilter on a set W . Then F ⊆ F.

Proof. Let S ∈ F. Then for all T ∈ F, we know T ∩ S 6= ∅. Therefore

S ∈ F. �

Theorem 5.2.6. Let F be a semifilter on a set W . Then F = F.

Proof. We begin by showing that F ⊆ F. Let S ∈ F. Then S ∩ T 6= ∅
for all T ∈ F. Thus S ∈ F.

We will now show that F ⊇ F. Let S ∈ F. Then S ∩ T 6= ∅ for all

T ∈ F. Then since F ⊆ F, for all U ∈ F we have that S∩U 6= ∅. Thus
S ∈ F. �

Note that since F = F there are at most three higher order conju-
gates of a given semifilter F.

Theorem 5.2.7. Let {Fi}i∈I be a family in FW . Then ∪i∈IFi =

∩i∈IFi.

Proof. We begin by showing that ∪i∈IFi ⊆ ∩i∈IFi. Let S ∈ ∪i∈IFi.
Then for all T ∈ ∪i∈IFi, we have S ∩ T 6= ∅. Thus for each Fi, for all
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T ∈ Fi, we have S∩T 6= ∅. Thus for each i, we have S ∈ Fi. Therefore
S ∈ ∩i∈IFi.

Now we show that ∪i∈IFi ⊇ ∩i∈IFi. Let S ∈ ∩i∈IFi. Then for each
Fi, given T ∈ Fi, we have S ∩ T 6= ∅. Let U ∈ ∪i∈IFi. Then U ∈ Fi

for some i. Then we have that S ∩ U 6= ∅. As U is arbitrary, we have
S ∈ ∪i∈IFi. �

6. Isomorphisms of Semifilters

We are now working towards the most important results of the pa-
per. The first of these results is the Isomorphism-Permutation theorem.
This theorem states that every isomorphism of semifilters is determined
by a permutation of the base set W .

6.1. Preliminaries. Before presenting the proof of the Isomorphism-
Permuation Theorem, we start with some definitions and preliminary
results.

All results in this section depend on W being a finite set. We im-
plicitly assume that W is finite for all discussions in this section.

We first present a short-hand notation for ease of reading. We will
often work with sets of the form W − {a} where a ∈ W . As this
notation can become quite cumbersome we will denote this set by Wa.

Next we present a way to relate an arbitrary set X ∈ F in a one-to-
one correspondence with intersections of sets of the form Wa.

Lemma 6.1.1. Let F be a semifilter on a finite set W . Suppose X ∈ F.
Then there exists a unique set {a1, a2, . . . , an} such that X = Wa1 ∩
Wa2 ∩ . . . ∩Wan where for each i, we have Wai

∈ F.

Proof. Let F be a semifilter on a finite set W and suppose X ∈ F.
Then X ∈ Pf (W ) and thus X ⊆ W . Then there exists a unique set
A = {a1, a2, . . . , an} such that X ∪ A = W and X ∩ A = ∅.

Consider Wa1∩Wa2∩. . .∩Wan . Since for each i, we have ai 6∈ Wai
, we

see ai 6∈ ∩n
i=1Wai

. Furthermore, we have that X ⊆ Wai
since ai 6∈ X.

Thus X ⊆ ∩n
i=1Wai

. Since A 6⊆ ∩n
i=1Wai

and X ⊆ ∩n
i=1Wai

, it must be
that ∩n

i=1Wai
= X since X ∪ A = W . Therefore

X = Wa1 ∩Wa2 ∩ . . . ∩Wan .

�

For the Isomorphism-Permutation Theorem, we will be working with
permutations of the elements of W .

Definition 6.1.2. We say that σ is a permutation of a set, W , provided
that σ : W → W is a bijection.
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Before we proceed, however, we must extend the definition of permu-
tation to the finite power set of W so that we can apply permutations
to semifilters. We denote the set of all permutations of W by SW . The
elements of this set act upon the set W and induce a permutation on
it. A semifilter, however, is a collection of sets and thus outside the
domain and range of permutations of W . We now define σ′ to induce
the permutation σ upon semifilters.

Definition 6.1.3. Let σ ∈ SW . Then σ′ is defined to be the bi-
jection σ′ : Pf (W ) → Pf (W ) where if F ⊆ Pf (W ) then σ′(F) =
{σ(S) | S ∈ F}.

For a given F, σ′(F) is determined by σ acting upon the underlying
sets of F.

Let us now turn our attention to an example to illustrate this point.

Example 6.1.4. Let W = {1, 2, 3}. Let σ ∈ SW such that σ(1) = 2,
σ(2) = 3, and σ(3) = 1. Consider the semifilter F = 〈{1}〉.

By applying σ, we see that

σ({1}) = {2}
σ({1, 2}) = {2, 3}
σ({1, 3}) = {1, 2}

σ({1, 2, 3}) = {1, 2, 3} .
Thus σ′(F) = {{2} , {2, 3} , {1, 2} , {1, 2, 3}} = 〈{2}〉.

Next we will define what we call the mass intersection of F for a
given semifilter F.

Definition 6.1.5. Given a semifilter F, we define for all Si ∈ F

IF := ∩Si∈FSi.

Note that IF may be empty.

Example 6.1.6. Let W be any set and let F = Pf (W ). Thus ∅ ∈ F.
Then IF = ∅ since for some i, we have Si = ∅.

Example 6.1.7. Now let W = {1, 2, 3, 4} be a set and let F be a semi-
filter such that F = 〈{1} , {2, 3} , {3, 4}〉. As the sets {1} , {2, 3} , {3, 4}
are the generating sets, we may simply look at their intersection since
every other set in the semifilter will be a superset of one of these three.
We find that {1} ∩ {2, 3} ∩ {3, 4} = ∅. Therefore IF = ∅.

From these two examples, we see that IF can be empty in a variety
of situations. Now let’s look at some examples where IF is non-empty.



16 COLIN MALLOY

Example 6.1.8. Let W = {1, 2, 3, 4} and F = 〈{1, 2} , {1, 3} , {1, 4}〉.
In this situation, we see that IF = {1, 2} ∩ {1, 3} ∩ {1, 4} = {1}.

Now we’ll present a way to characterize the elements of W that
appear in sets of a semifilter F.

Lemma 6.1.9. Given a finite set W , suppose a ∈ W and let F be a
non-empty semifilter on W . Then either a ∈ IF or Wa ∈ F.

Proof. We begin by supposing that a 6∈ IF. Then there exists some
S ∈ F such that a 6∈ S. As a 6∈ S, we have that S ⊆ Wa. Then by
definition of the semifilter, since Wa ∈ Pf (W ), we have that Wa ∈ F.

Now suppose that Wa 6∈ F. Since Wa 6∈ F, by the definition of the
semifilter no subset of Wa is an element of F. If S ∈ Pf (W ) such that
a 6∈ S, then S ⊆ Wa. Thus if T ∈ F, then a ∈ T . As T is arbitrary, we
have that a ∈ IF.

Now suppose that a ∈ IF and Wa ∈ F. We immediately find a
contradiction since a 6∈ Wa but a ∈ IF implies that for all S ∈ F we
have that a ∈ S. Thus it cannot be that a ∈ IF and Wa ∈ F. �

From Lemma ?? we see that given a semifilter, F, and an element
a ∈ W , we can characterize how a appears within the sets of F. The
lemma states that either a is in every set of F, or there exists some set,
S ∈ F, such that S ∪ {a} = W .

Given a semifilter, F, if we are given the generating sets of F, it is
easy to characterize the elements of W in this way. If X1, . . . , Xi are
the generating sets of F, then for some a ∈ W , we have that a ∈ IF if
and only if for each i, a ∈ Xi. Let’s look at an example.

Example 6.1.10. Let W = {1, 2, 3, 4, 5} be a set and E,F, and G be
semifilters such that E = 〈{1}〉, F = 〈{1, 2, 5} , {1, 3, 5} , {1, 4, 5}〉, and
G = 〈{1, 2} , {1, 3} , {1, 4} , {5}〉. Then we see that

IE = {1}
IF = {1, 5}
IG = ∅.

6.2. The Isomorphism-Permutation Theorem. In this section, we
present a proof of the Permutation-Isomorphism Theorem. There are
three lemmas we prove beforehand that greatly simplify the final proof.

To begin we define what it means for two semifilters to be isomorphic.

Definition 6.2.1. Let E and F be semifilters on some set W . Then
E and F are said to be isomorphic if there exists an order preserving
bijection, φ, between them. We denote this E ∼= F. That is, if S, T ∈ E
with S ⊆ T , then φ(S) ⊆ φ(T ).
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Since an isomorphism, φ, is a bijection, we know that |E| = |F|.
Furthermore, as φ is order preserving, we know that if S ∈ E, then
|S| = |φ(S)|.

Now let us turn our attention to these three lemmas.

Lemma 6.2.2. Let W be a set such that |W | = n. Let σ ∈ SW and
for i = 1, 2, . . . ,m let ai ∈ W distinct. Then

σ (Wa1 ∩Wa2 ∩ . . . ∩Wam) = σ (Wa1) ∩ σ (Wa2) ∩ . . . ∩ σ (Wam) .

Proof. Suppose that a ∈ σ (Wa1 ∩Wa2 ∩ . . . ∩Wam). Then there exists
some b ∈ W such that a = σ(b) and that for all i, we have b ∈
Wai

. Since b ∈ Wai
, we know that σ(b) ∈ σ (Wai

). Thus, as this is
true for all i, we have that σ(b) ∈ σ (Wa1) ∩ . . . ∩ σ (Wam) . Therefore
σ (Wa1 ∩Wa2 ∩ . . . ∩Wam) ⊆ σ (Wa1) ∩ σ (Wa2) ∩ . . . ∩ σ (Wam).

Now suppose a ∈ σ(Wa1) ∩ . . . ∩ σ(Wam). Then there exists some
b ∈ W such that a = σ(b) and that for all i, we have that b ∈ Wi. Since
for all i we have that b ∈ Wi, we see that b ∈ Wa1∩ . . .∩Wam . Thus a =
σ(b) ∈ σ (Wa1 ∩ . . . ∩Wam). Therefore σ (Wa1 ∩Wa2 ∩ . . . ∩Wam) ⊇
σ (Wa1) ∩ σ (Wa2) ∩ . . . ∩ σ (Wam). �

The next lemma is very similar to the last one, but deals with iso-
morphisms instead of permutations.

Lemma 6.2.3. Let W be a set such that |W | = n. Let E and F be
semifilters on W such that E ∼= F with isomorphism φ. If X ∈ E such
that for some a1, a2, . . . , am ∈ W distinct, X = Wa1 ∩ · · · ∩Wam (by
Lemma ??), then

φ (X) = φ (Wa1 ∩Wa2 ∩ . . . ∩Wam) = φ(Wa1)∩φ(Wa2)∩ . . .∩φ(Wam).

Proof. First note that |Wa1 ∩ . . . ∩Wam| = n −m. As φ is order pre-
serving, we also have that |φ(Wa1 ∩ . . . ∩Wam)| = n−m. Next observe
that since the ai’s are distinct, we know that the Wai

’s are distinct.
Thus the φ(Wai

)’s are distinct. As there are m such sets we see that
|φ(Wa1) ∩ . . . ∩ φ(Wam)| = n−m.

Now we will show that φ(Wa1 ∩ . . .∩Wam) ⊆ φ(Wa1)∩ . . .∩φ(Wam).
First note that for all i, we know that ai 6∈ Wa1∩ . . .∩Wam . Thus for all
i, we see that Wa1 ∩ . . .∩Wam ⊆ Wai

. Now since φ is order preserving,
for each i, we have that φ(Wa1∩ . . .∩Wam) ⊆ φ(Wai

). Since this is true
for each i, we have that φ(Wa1 ∩ . . . ∩Wam) ⊆ φ(Wa1) ∩ . . . ∩ φ(Wam).

Now since |φ(Wa1 ∩ . . . ∩Wam)| = |φ(Wa1) ∩ . . . ∩ φ(Wam)| = n−m
and φ(Wa1 ∩ . . . ∩Wam) ⊆ φ(Wa1) ∩ . . . ∩ φ(Wam) is must be that

φ(Wa1 ∩ . . . ∩Wam) = φ(Wa1) ∩ . . . ∩ φ(Wam).

�
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As stated, the goal of this section is to prove the Isomorphism-
Permutation Theorem. This theorem states that any isomorphism of
semifilters on a finite set W is determined by a permutation of W . To
prove this, we will use an algorithm to construct a permutation of W
depending on the structure of the semifilters and the isomorphism, φ.
We will now present the algorithm used to construct σ while proving
that it works in the proof of the theorem.

Algorithm 6.2.4. Let W be a set such that |W | = n. Let E and
F be semifilters on W such that E ∼= F under isomorphism φ. For
i = 1, 2, . . . , n let ai be the distinct elements of W . Now for each
ai ∈ W , do the following:

(1) if ai ∈ IE then define σ(ai) := bi for some bi ∈ IF such that if
j 6= i then σ(aj) = σ(ai);

(2) ifWai
∈ E, then define σ(ai) := bi where bi is the unique element

of W such that bi 6∈ φ(Wai
).

Let us now note some important properties of the algorithm. First
we know from Lemma ?? that for each a ∈ W , either a ∈ IE or Wa ∈ E,
but not both. By following the algorithm, σ is defined for all of W .

Next, observe that we do indeed produce a bijection from W onto
itself. Recall that since φ is order preserving, we know that |IE| = |IF|.
Part (1) of the algorithm says for each b ∈ IF, we define σ such that
there is a unique a ∈ IE for which σ(a) = b. So σ : IE → IF is a
bijection. Now recall that by Lemma ?? if a 6∈ IE, then Wa ∈ E.
Since φ is order preserving, φ(Wa) = Wb for some b ∈ W . Then
since φ is bijective, defining σ(a) to be dependent on φ(Wa) causes
σ : (W − IE)→ (W − IF) to be bijective.

Example 6.2.5. LetW = {1, 2, 3, 4, 5} and let E = 〈{1, 2, 3} , {2, 3, 4}〉
and F = 〈{1, 3, 4} , {2, 3, 4}〉. Assume that E ∼= F under isomorphism,
φ : E→ F, where φ is defined on as follows:

φ ({1, 2, 3}) = {2, 3, 4}
φ ({2, 3, 4}) = {1, 3, 4}

φ ({1, 2, 3, 4}) = {1, 2, 3, 4}
φ ({1, 2, 3, 5}) = {2, 3, 4, 5}
φ ({2, 3, 4, 5}) = {1, 3, 4, 5} .

Note that IE = {2, 3} and that IF = {3, 4}. Thus by the algorithm,
we define σ(2) := 4 and σ(3) := 3. Now we see that

φ (W5) = φ ({1, 2, 3, 4}) = {1, 2, 3, 4} .
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Thus σ(5) = 5. Likewise, since φ(W4) = {2, 3, 4, 5}, we have σ(4) = 1.
Finally, as φ(W1) = {1, 3, 4, 5}, we have σ(1) = 2.

By using the algorithm for this isomorphism, we have defined σ such
that:

σ(1) = 2

σ(2) = 4

σ(3) = 3

σ(4) = 1

σ(5) = 5.

Testing σ, we see:

σ′({1, 2, 3}) = {2, 4, 3}
σ′({2, 3, 4}) = {4, 3, 1}

σ′({1, 2, 3, 4}) = {2, 4, 3, 1}
σ′({1, 2, 3, 5}) = {2, 4, 3, 5}
σ′({2, 3, 4, 5}) = {4, 3, 1, 5} .

In this instance, the algorithm works to define a σ such that σ deter-
mines φ.

Let’s now present one final lemma before the Isomorphism-Permutation
Theorem. With this lemma, all the pieces of the puzzle will be in place
and the proof is more straightforward.

Lemma 6.2.6. Let W be a set such that |W | = n. Now let E and
F be semifilters on W such that E ∼= F under isomorphism φ. Now
let σ : W → W be defined as in Algorithm ??. If Wa ∈ E then
σ′(Wa) = φ(Wa).

Proof. Since φ is an isomorphism, we know that φ(Wa) = Wb for some
b ∈ W . Now by Algorithm ?? we know that σ(a) = b. Since a is the
unique element of W such that a 6∈ Wa and σ is a bijection from W
onto itself, we know that σ(a) = b 6∈ σ(Wa). Now since σ is a bijection,
we know that |σ(Wa)| = n− 1. Thus b must be the only element of W
such that b 6∈ σ(Wa). Therefore σ(Wa) = Wb = φ(Wa). �

We are finally ready to present the Isomorphism-Permutation The-
orem and its proof.

Theorem 6.2.7. Let W be a set such that |W | = n. Let E and F
be semifilters on W such that E ∼= F under isomorphism φ. Then φ is
determined by a permutation of W .
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Proof. We claim that σ constructed according to Algorithm ?? will
determine φ. That is, for any set X ∈ E, we have σ(X) = φ(X).

Let X ∈ E be an aribtrary set. In accordance with Lemma ??, there
exist distinct sets Wa1 , . . . ,Wam such that X = Wa1 ∩ . . . ∩Wam . Now
observe that by Lemma ?? we have that

σ (Wa1 ∩ . . . ∩Wam) = σ(Wa1) ∩ . . . ∩ σ(Wam).

Now by applying Lemma ?? to each σ(Wai
), we find that

σ(Wa1) ∩ . . . ∩ σ(Wam) = φ(Waa) ∩ . . . ∩ φ(Wam).

Finally Lemma ?? implies that

φ(Wa1) ∩ . . . ∩ φ(Wam) = φ (Wa1 ∩ . . . ∩Wam) = φ(X).

Since X is an arbitrary set in E, we find that φ is determined by
σ. �

7. Permutations on Semifilters

7.1. Permutation Groups on Semifilters. We have just shown that
all isomorphisms on semifilters on a finite set are determined by per-
mutations. We now turn our attention to the relation F ∼= F. An
isomorphism from F onto itself is always determined by I, the identity
permutation. However, depending on F it may also be determined by
other permutations. We are interested in what permutations will de-
termine an isomorphism from F onto itself. We are also interested in
how the permutations act. In order for σ to determine the relation, if
X ∈ F, we know that σ′(X) ∈ F. However, we also want to know when
σ fixes all of the individual sets of F. That is, when for all X ∈ F, we
have that σ′(X) = X.

First we show that for a given isomorphism φ, there may be multiple
permutations that determine φ.

Theorem 7.1.1. Let E and F be semifilters on a set W such that
E ∼= F. Suppose |IE| = n. Then there are n! permutations of W that
determine φ.

Proof. Recall Algorithm ??. In part (1) of the algorithm, elements of
IE are mapped to IF arbitrarily. We have already shown that mapping
them in this way will always result in a permutation that determines
φ. The number of bijections between two n elements sets is n!. Thus
there are at least n! permutations that determine φ.

Now note that if a ∈ IE, then σ(a) ∈ IF. So we now need to show
that for any Wa ∈ E, the image of a under σ as defined by the algorithm
is the only image that works.
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Recall from part (2) of Algorithm ?? that for Wa ∈ E, the image of
a under σ is forced to be a unique element b. Choose some c ∈ W with
c 6= b and consider σ(a) = c. In order for σ to determine φ, we need
that σ′(Wa) = φ(Wa). However if σ(a) = c, then σ′(Wa) = Wc while
φ(Wa) = Wb and we have assumed that b 6= c. Thus b is the unique
image of a under σ that causes σ to determine φ. Thus there is no way
to construct new permutations that will still determine φ. Therefore
the number of permutations that determine φ is n!. �

We now introduce two sets of permutations determined by how per-
mutations fix a given semifilter.

Definition 7.1.2. Let F be a semifilter on a set W . Then we define

RF := {σ ∈ SW | for all X ∈ F, σ′(X) = X} .

In other words, RF is the set of all permutations on W that fix every
set of F. The identity permutation, I, is a permutation the fixes every
element of W . For all a ∈ W , we have that I(a) = a. Thus I fixes
every set of W and so fixes every semifilter. Thus I ∈ RF for all F.

Definition 7.1.3. Let F be a semifilter on a set W . Then we define

TF := {σ ∈ SW | for all X ∈ F, σ′(X) ∈ F} .

The set TF is similar to, but less restrictive than RF. Instead of
insisting that σ fix each set of the semifilter F, we just need σ to fix F.
That is, σ ∈ TF if σ′(F) = F.

As RF and TF are sets of permutations on W , both are subsets of
SW . Furthermore, we have that RF ⊆ TF. This is true because if
σ ∈ RF then σ′(X) = X. As X ∈ F, then σ ∈ TF. Thus RF ⊆ TF.

Theorem 7.1.4. Let F be a semifilter on W . Then RF = {I} if and
only if |IF| ≤ 1.

Proof. First let |IF| = n and suppose RF = {I}. Let φ : F → F be
an isomorphism. Then φ(X) = X for each X ∈ F. By Theorem ??,
we have that the number of permutations that determine φ is equal to
n!. However |RF| = 1. So there cannot be another isomorphism that
fixes every set of F. Thus it must be that n = 0 or n = 1. Therefore
|IF| ≤ 1.

Now suppose |IF| ≤ 1. Again consider the identity isomorphism φ
from above. As |IF| ≤ 1, the number of permutations that determine
φ is 0! or 1! by Theorem ??. In either case, there is only 1 permutation
that determines φ. As the identity permutation is a permutation that
always determines any φ, it must be that RF = {I}. �
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Theorem 7.1.5. Let F be a semifilter on W . Then TF = SW if and
only if F = Uk for some k.

Proof. Recall that Uk is defined to be the collection of all subsets of W
with at least k elements.

Suppose TF = SW . This means that for any set X ∈ F and any
permutation σ ∈ SW , we have σ′(X) ∈ F. Since this is true for all
σ ∈ SW , it must be that all sets with the same cardinality as X are
in F. Let Y be a minimal set of F with |Y | = k. Then all subsets of
W with cardinality k are in F. We claim that the collection of all sets
of size k are exactly the generating set of F. There cannot be another
generating set with more than k elements since it would then have a
subset of size k in the semifilter and would not be a generating set.
Also there cannot be a set in F with fewer than k elements. If this
were so, all sets of the same size would also be in F. One of those sets
would be a subset of Y , but we assumed that Y was a minimal set. So
F is generated by all subsets of W of size k. Thus F = Uk.

Now suppose F = Uk. For any set X ∈ F with |X| ≥ k every other
subset of W of the same size is also in F. Thus for any permutation, σ ∈
SW , as |X| = |σ′(X)| we have that σ′(X) ∈ F. As every permutation
in SW perserves Uk, it must be that TUk

= SW . �

Theorem 7.1.6. Let W be a finite set. Then TF 6= {I} for all F ∈ FW

if and only if |W | = 3 or 4. Equivalently, there exists some F ∈ FW

such that TF = {I} if and only if |W | 6= 3 and |W | 6= 4.

Proof. Let W be a finite set where |W | = n. We begin with cases n = 1
and n = 2. Note that for this proof we label the elements of W as the
integers 1 through n. These are only labels and the theorem is valid for
all finite sets, no matter the labels. If a finite sets has elements with
different labels, we simply relabel them and proceed with the proof.

Case 1: Suppose W = {1}. As |W | = 1, there is only one per-
mutation of W – namely the identity permutation. Therefor for any
semifilter F, we have that TF = {I} since I ∈ TF for all F (on any W ).

Case 2: Suppose W = {1, 2}. Consider the semifilter F = 〈{1}〉.
We endeavor to find all σ ∈ SW such that σ′(X) ∈ F for all X ∈ F. As
{1} ∈ F is the only singleton set in F, for any σ ∈ TF we must have
that σ(1) = 1. Now that σ(1) is defined, since σ is a permutation it
must be that σ(2) = 2. Thus σ = I and therefore TF = {I}.

We now present the cases where n ≥ 5 and save the cases where
n = 3, 4 for later.

Case 3: Suppose that W is a finite set such that |W | = 2k + 1 for
some integer k ≥ 2. Then W = {1, 2, . . . , 2k + 1}. We now describe
an algorithm to construct a semifilter, F, for which TF = {I}.
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First, arrange the elements of W into an array in the following way:
1 2 . . . k k + 1
k + 2 k + 3 . . . 2k + 1

.

Note that there are k + 1 entries in the first row and k entries in the
second row. Define F in the following way:

(1) Let {1, 2, . . . , k + 1} be a minimal set of F.
(2) Suppose p is an entry in the ith column of the top row and that

q is an entry in the jth column of the bottom row. Then if
j ≥ i, make {p, q} a minimal set of F.

Thus {p, q} is a minimal set of F only if q is directly below p or to the
right of p.

To illustrate this construction, we present an example before finishing
this case. Let W = {1, 2, 3, 4, 5, 6, 7}. Then our array is:

1 2 3 4
5 6 7

.

Following the above rules, we construct

F = 〈{1, 2, 3, 4} , {1, 5} , {1, 6} , {1, 7} , {2, 6} , {2, 7} , {3, 7}〉 .

In this instance, if σ ∈ TF, then σ′({1, 2, 3, 4}) = {1, 2, 3, 4} since
{1, 2, 3, 4} is the only four-element minimal set of F. Notice that if
σ is a bijection, then a ∈ W is an element of an m-element minimal
set if and only if σ(a) is an element of an m-element minimal set. We
now observe that σ(1) = 1 since the element 1 is the only element of
{1, 2, 3, 4} also in exactly three other minimal sets. Likewise σ(2) = 2
since 2 is the only element of {1, 2, 3, 4} in exactly two other minimal
sets. For similar reasons σ(3) = 3 and σ(4) = 4. Now we observe
σ(5) = 5. This is because 5 is the unique element of W contained in a
single two-element minimal set and not in the k + 1-element minimal
set. Similary σ(6) = 6 as it is the unique element of W contained in
two two-element minimal sets and not in the k + 1-element minimal
set. Finally σ(7) = 7. Thus for the F we constructed, TF = {I}.

Now let’s extend this argument to the general case. Suppose that
we’ve followed the rules from above and have constructed

F = 〈{1, 2, . . . , k + 1} , {p1, q1} , {p2, q2} , . . . , {p`, q`}〉 .

In this case, {1, 2, . . . , k + 1} is the only minimal set with more than
two elements. If σ ∈ TF then σ′({1, 2, . . . , k + 1}) = {1, 2, . . . , k + 1}.
The following arguments repeatedly make use of the array we con-
structed and the second rule for constructing F. We observe that the
element 1 is in k two-element minimal sets of F, the element 2 is in k−1,
3 is in k − 2, and so on. The pattern clearly is that for 1 ≤ i ≤ k + 1,
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the element i is in i − 1 two-element minimal sets of F. Thus for all
a ∈ {1, 2, . . . , k + 1}, we must have that σ(a) = a.

As {1, 2, . . . , k + 1} is the only minimal set of F with more than two
elements, if i ≥ k+1 then i is in contained in only two-element minimal
sets.

Now consider k + 2. There is only one entry in the array that is
directly above or to the left. Thus k + 2 is contained in one two-
element minimal set. There is only one number above and to the left
of k + 3. Thus k + 3 is contained in two two-element minimal sets.
Likewise, k + 4 is contained in three two-element minimal sets. This
pattern continues through 2k + 1. Since for all a 6= b contained in
{k + 2, k + 3, . . . , 2k + 1}, the elements a and b will be contained in a
different number of minimal sets, it must be that σ(a) = a for each
a ∈ {k + 2, k + 3, . . . , 2k + 1}.

Recall that σ is an arbitrary permutation with the property that
σ′(X) ∈ F. We’ve now shown that for all a ∈ W , σ(a) = a. Therefore
TF = {I}.

Case 4: Suppose that W is a finite set such that |W | = 2k for some
integer k ≥ 3. Then W = {1, 2, . . . , 2k} and W2k = {1, 2, . . . , 2k − 1}.
Construct E, a semifilter on W2k, as you would in case 3. Now take the
minimal sets of E and construct F, a semifilter on W , by letting the
minimal sets of E be the minimal sets of F. As W2k ⊆ W , the minimal
sets of E will be subsets of W and thus can be minimal sets of F.

Let σ ∈ TF. First, since 2k is the only element of W that is
not contained in a minimal set. Thus σ(2k) = 2k. Now for all
a ∈ {1, 2, . . . , 2k − 1}, the same arguments from case 3 apply. Thus we
have that σ(a) = a for all a ∈ W . Therefore σ = I and TF = {I}.

We now show that if n = 3 or 4, there does not exist a semifilter on
W such that TF = {I}. Unfortunately, the only way we have found
to do this is to check all possible cases (that is, this is a proof by
exhaustion).

Before breaking into cases, let us make an aside. Claim: If E and
F are semifilters on a finite set W , such that E ∼= F and TF 6= {I},
then TF 6= {I}. Let σ be a permuation that determines φ. Now
suppose X ∈ E and Y ∈ F such that σ(X) = Y . Further suppose that
σ1 ∈ TE. Since σ1 ∈ TE, we have that σ1(X) ∈ E. Since σ1(X) ∈ E and
E ∼= F, we have that σ(σ1(X)) ∈ F. Now as X and Y are arbitrary,
we have that σ ◦σ1 ∈ TF. Since permutations are bijections, they have
unique inverses. Thus if there exists σ2 ∈ TE such that σ1 6= σ2, then
σ ◦ σ1 6= σ ◦ σ2. Therefore if TE 6= {I}, then TF 6= {I}.

Case 5: Suppose that W = {1, 2, 3}.
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Consider ∅, the empty semifilter. T∅ = SW since the conditions are
vacuously fulfilled.

Consider semifilters of the form F = 〈{1}〉. In this case 2 and 3 may
be permuted as neither appear in a generating set of F. Thus TF 6= {I}
for all semifilters of the form F = 〈{1}〉.

Now let F = 〈{1} , {2}〉. In this instance, as {1} and {2} are the
only generating sets of F, the elements 1 and 2 may be permuted. Thus
TF 6= {I}.

Suppose F = 〈{1} , {2} , {3}〉. In this case, TF = SW since any
permutation of the elements of W will determine F ∼= F. Therefore
TF 6= {I}.

Let F = 〈{1, 2}〉. As {1, 2} is the only generating set, 1 and 2 may
be permuted. Thus TF 6= {I}.

Consider semifilters of the form F = 〈{1, 2} , {3}〉. We observe that
we can permute 1 and 2 without affecting their relationships with 3.
Thus TF 6= {I}.

Now let F = 〈{1, 2} , {2, 3}〉. As IF = {2}, we must leave 2 alone.
However, if we permute 1 and 3, then we still preserve the semifilter.
Thus TF 6= {I}.

Now suppose F = 〈{1, 2} , {1, 3} , {2, 3}〉. Then the numbers 1 and
2 may be permuted without affecting F. Therefore TF 6= {I}.

Consider F = 〈{1, 2, 3}〉. For any permutation, σ ∈ SW , we have
that σ({1, 2, 3}) = {1, 2, 3}. Therefore TF 6= {I}.

Now suppose F = 〈∅〉. Then F = Pf (W ) and thus for any permuta-
tion, σ ∈ SW , we have that σ′(F) = F. Therefore TF 6= {I}.

These ten cases represent all semifilters on W up to isomorphism.
Thus we have shown that if n = 3, then for all semifilters on W ,
TF 6= {I}.

The case of n = 4 is shown in a similar way (with many more cases).
Case 6: Now suppose that |W | = 4. We’ll let W = {1, 2, 3, 4} act as

a representative for all four element sets. For this case, we again show
that for each semifilter, F, on W there exists a non-trivial permutation
of W that determines the isomorphism F ∼= F. Up to isomorphism,
the semifilters for which we must show this are:
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F1 = 〈∅〉
F2 = 〈{1}〉
F3 = 〈{1} , {2}〉
F4 = 〈{1} , {2} , {3}〉
F5 = 〈{1} , {2} , {3} , {4}〉
F6 = 〈{1, 2}〉
F7 = 〈{1, 2} , {3, 4}〉
F8 = 〈{1, 2} , {1, 3}〉
F9 = 〈{1, 2} , {1, 3} , {1, 4}〉
F10 = 〈{1, 2} , {1, 3} , {2, 3}〉
F11 = 〈{1, 2} , {2, 3} , {3, 4}〉
F12 = 〈{1, 2} , {2, 3} , {3, 4} , {4, 1}〉
F13 = 〈{1, 2} , {1, 3} , {1, 4} , {2, 3}〉
F14 = 〈{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4}〉
F15 = 〈{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}〉
F16 = 〈{1, 2} , {3}〉
F17 = 〈{1, 2} , {3} , {4}〉
F18 = 〈{1, 2} , {1, 3} , {4}〉
F19 = 〈{1, 2, 3}〉
F20 = 〈{1, 2, 3} , {1, 2, 4}〉
F21 = 〈{1, 2, 3} , {1, 2, 4} , {1, 3, 4}〉
F22 = 〈{1, 2, 3} , {4}〉
F23 = 〈{1, 2, 3} , {1, 4}〉
F24 = 〈{1, 2, 3} , {1, 4} , {2, 4}〉
F25 = 〈{1, 2, 3} , {1, 4} , {2, 4} , {3, 4}〉
F26 = 〈{1, 2, 3, 4}〉
F27 = ∅

We begin the process of finding non-trivial permutations for these
28 semifilters by first observing that if all four elements of W do not
appear in any of the minimal sets of a semifilter, we may adapt the
permutation used for the case where n = 3 on the semifilter with
“similar” minimal sets. We’ve chosen our 28 representatives so that if
three or fewer elements appear in the minimal sets, then 4 is definitely
one of the elements that does not appear. In this case, if 4 does not
appear then we can start with σ∗ ∈ S{1,2,3} and define σ ∈ SW in the
following way:

σ(1) := σ∗(1)

σ(2) := σ∗(2)

σ(3) := σ∗(3)

σ(4) := 4.
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Then σ will affect the minimal sets of the semifilter on W in the same
way that σ∗ affects the minimal sets of the similar semifilter on {1, 2, 3}.

Take, for example, F3 = 〈{1} , {2}〉. In case 5, for the semifilter
with the same minimal sets, we showed showed that permuting 1 and
2 while leaving 3 alone will induce the isomorphism F ∼= F. Thus if we
define σ in the way given above, we get

σ(1) = 2

σ(2) = 1

σ(3) = 3

σ(4) = 4

which is a permutation that induces F3
∼= F3. From this, we see that

the following semifilters fall under this argument:

F1, F2, F3, F4, F6, F8, F10, F16, F19, F27.

We now embark upon our journey of checking the remaining semfilter
from the list.

Let σ1 ∈ SW be defined as follows:

σ1(1) = 2

σ1(2) = 1

σ1(3) = 3

σ1(4) = 4.

Then σ1 fixes the following semifilters:

F5, F7, F14, F15, F17, F20, F22, F24, F25, F26.

Thus for each semifilter, F, from this list, TF 6= {I}.
Now define σ2 ∈ SW in the following way:

σ2(1) = 1

σ2(2) = 2

σ2(3) = 4

σ2(4) = 3.

Then we see that σ2 will in the isomorphism F ∼= F for the following
semifilters:

F9, F21.

Then for each semifilter in the list, TF 6= {I}.
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Now let σ3 ∈ SW be defined in this way:

σ3(1) = 4

σ3(2) = 3

σ3(3) = 2

σ3(4) = 1.

Then σ3(F) = F for the following semifilters:

F11, F12.

Thus for these two semifilter, TF 6= {I}.
Let σ4 ∈ SW be as follows:

σ4(1) = 1

σ4(2) = 3

σ4(3) = 2

σ4(4) = 4.

Then σ4 fixes the following semifilters:

F13, F18, F23.

Thus for these last three semifilters, TF 6= {I}.
With the above four permutations we have shown that all semifilters

on W that do not inherit a non-trivial TF from a semifilter on {1, 2, 3}
also have associated non-trivial TF’s. Therefore all semifilters on a
four element set have an associated non-trivial TF. This concludes the
proof. �

7.2. Automorphisms of FW . Recall that FW is the collection of all
semifilters on the set W . Earlier when we covered isomorphisms of
semifilters, we looked at the image of a single semifilter under a per-
mutation.

We now concern ourselves with how permutations affect every single
semifilter in FW . If we apply a permutation of the elements of W to
FW , will this preserve the structure of FW ? Before we can proceed in
answering that question, we must present some definitions.

Definition 7.2.1. Let W be a set and let σ ∈ SW . Then σ′′ is defined
to be the bijection σ′′ : FW → FW where for each F ∈ FW we define
σ′′(F) := σ′(F).

Theorem ?? states that every permutation of W determines an iso-
morphism of semifilters. Thus defining σ′′ in terms of σ′, we know that
the image of a semifilter under σ′′ is a semifilter.



ISOMORPHISMS AND PERMUTATIONS OF SEMIFILTERS 29

Definition 7.2.2. A function Φ : FW → FW is said to be an auto-
morphism of FW if it fulfills the following:

(1) Φ is a bijection,
(2) for all E,F ∈ FW , we have Φ(EF) = Φ(E)Φ(F),

(3) for all G ∈ FW , we have Φ
(
G
)

= Φ(G),
(4) and if E ⊆ F then Φ(E) ⊆ Φ(F).

This definition of an automorphism of FW implicitly relies on the
definition of an isomorphism between FW1 and FW2 . However, for an
isomorphism to exist, it must be that |W1| = |W2|. In the finite case,
this relationship makes an isomorphism uninteresting since FW1 and
FW2 will behave exactly the same by default except that the elements
of W1 and W2 may have different labels. The automorphism case,
however, is interesting since it turns out that every automorphism on
FW , where W is finite, is determined by a unique permutation of W .

Before formalizing that fact in a theorem, however, we present a
lemma.

Lemma 7.2.3. Let W be a finite set such that |W | = n and suppose
that F is a semifilter on W . Then F = 〈{a}〉 if and only if F2 = ∅ and
there exist non-trivial semifilters F1, . . . ,Fn−1 such that F · F1 · . . . ·
Fn−1 = {W}.

Proof. Suppose that for some a ∈ W , we have that F = 〈{a}〉. Since
IF 6= ∅, no two sets of F are disjoint. Therefore F2 = ∅. Now let
a1, . . . , an−1 be distinct elements of Wa. Then

F ·
n−1∏
i=1

〈{ai}〉 = {{a, a1, a2, . . . , an−1}} = {W} .

Now suppose that F is a semifilter on W such that F2 = ∅ and there
exist non-trivial semifilters F1, . . . ,Fn−1 such that F · F1 · . . . · Fn−1 =
{W}. As F ·F1 · . . . ·Fn−1 6= ∅ and F ·F1 · . . . ·Fn−1 6= Pf (W ), we have
that F 6= ∅ and F 6= Pf (W ). Now since F2 = ∅, it must be that given
S, T ∈ F distinct, S ∩ T 6= ∅. Thus IF 6= ∅.

Aside: Suppose G1, . . . ,Gn are non-trivial semifilters on W such
that

∏n
i=1 Gi = {W}. Then there must exist pairwise disjoint sets

X1, . . . , Xn where Xi ∈ Gi and ∪n
i=1Xi = W . Since the Xi’s are dis-

joint, non-trivial, there are n of them and their union is W , it must be
that for each i, |Xi| = 1. As the X ′is are disjoint and all of cardinality
1, we have that for each i, Xi = {ai} where ai ∈ W and for i 6= j, we
have ai 6= aj. Thus for each i, there exists a distinct ai ∈ W such that
{ai} ∈ Gi.
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Thus by the above argument, since F,F1, . . . ,Fn−1 are all non-trivial,
there exists some a ∈ W such that {a} ∈ F. As |IF| 6= ∅ and {a} ∈ F,
we have that IF = {a}. Therefore F = 〈{a}〉. �

We now present the main theorem.

Theorem 7.2.4. Let W be a finite set. Suppose Φ : FW → FW is an
automorphism. Then there exists a unique σ ∈ SW that determines Φ.
That is, σ determines Φ if and only if for all F ∈ FW , Φ(F) = σ′′(F).

Proof. Let W be a finite set such that |W | = n. Suppose Φ : FW →
FW is an automorphism. Let us consider all principal semifilters gen-
erated by a singleton set. Since Φ preserves semifilter multiplication,
by Lemma ??, for each a ∈ W , there exists a unique b ∈ W such that
Φ (〈{a}〉) = 〈{b}〉. In this way Φ will determine a unique σ ∈ SW

defined by σ(a) = b when Φ (〈{a}〉) = 〈{b}〉.
Note that since Φ

(
G
)

= Φ(G), Φ preserves semifilter lattice rela-
tions. Thus, as the principal semifilters generated by a singleton set
are “sub-semifilters” of all semiftilers in FW (except F = {W} and
∅), the images of these principal, singleton-generated semifilters must
determine the rest of the lattice relations. �

8. Conclusion

In this paper we presented an introduction to semifilters and some
results relating semifilters and permutations. There are still many con-
jectures and questions left to explore.

Question 8.0.5. Given a set W such that |W | = n ∈ N, what is |FW |?

Question 8.0.6. Let E be a semifilter on a set W . Are there simple
conditions E must fulfill in order for E to have a non-trivial factoriza-
tion, E = FG?

There are many conjectures left relating to Theorem ??.

Conjecture 8.0.7. Suppose Φ : FW → FW is a bijection such that
if E,F ∈ FW , then Φ(EF) = Φ(E)Φ(F). Φ maintains the semifilter
lattice relations of FW . That is, if E ⊆ F, then Φ(E) ⊆ Φ(F).

Conjecture 8.0.8. Suppose Φ : FW → FW is a bijection such that if
E,F ∈ FW , then Φ(EF) = Φ(E)Φ(F). Then for all G ∈ FW , we have

Φ
(
G
)

= Φ(G).

Conjecture 8.0.9. Let W be a finite set and let σ ∈ SW . Then
Φ : FW → FW defined by Φ(F) = σ′′(F) is an automorphism of FW .
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