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Abstract. In this paper we will study chaos through the dynamics of the

quadratic family of functions. We begin with an introduction to basic dynam-

ical notions, including orbit analysis and periodicity. Our goal is to isolate

chaos within the specific example of the quadratic functions. From here, we

will form a proper definition of chaos using symbolic dynamics. This material

is largely a review of A First Course in Chaotic Dynamical Systems by Robert

L. Devaney.

In everyday life, we often sit in front of the television wondering to ourselves:

“Does this meteorologist know anything about the upcoming weather conditions?”

or “Why didn’t I foresee this dramatic change in the stock market?” In fact, these

two questions have been studied extensively in the field of mathematics as chaotic

dynamical systems. Though we can never be certain of tomorrow’s actual tem-

perature or humidity, we have learned that the expertise of fellow mathematicians

can productively influence whether or not we take an umbrella to work. The words

“chaos” and “randomness” are often used interchangeably, but we will soon see that

mathematically they are very different notions. In order to grasp the complicated

concept of chaos, it is best to narrow down the focus by studying a very simple

dynamical system. This paper will attempt to trace out the existence of chaos

within a very simple dynamical system: the quadratic family of functions described

as Qcx = x2 + c for various values of c. Our ultimate goal is in fact to arrive at a

clear yet concise definition of chaos.

A person versed in the basic concepts of calculus should be able to follow along

with this material. It is primarily based on the textbook A First Course in Chaotic

Dynamical Systems by Robert L. Devaney, a former professor of mathematics at

Boston University and prominent figure in dynamics in the twentieth century. We

will begin by building a foundation of basic definitions and concepts related to the

functions and systems we will study. We will present a detailed equation for Qc and

then use certain members of this quadratic family to verify the simple properties

of dynamical systems. We will then perform various processes on different Qc

equations to demonstrate their dynamical characteristics. In expanding on these
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characteristics we eventually hope to witness the surfacing of chaotic dynamical

behavior. Finally, once chaos has been properly identified, we will set out to isolate

the chaotic behavior. We define chaos as follows:

Chaos: A dynamical system F is chaotic if:

i. The set of periodic points in F is dense.

ii. F is transitive.

iii. F depends sensitively on initial conditions.

We cannot yet understand this definition because we do not know the meaning of

many of the terms within it. Our final goal is to fully appreciate this simple defi-

nition by decoding each and every aspect. Ideally, our understanding of dynamics

within the quadratic family will allow us to just graze over the basic notion of chaos.

The field of dynamics has been much improved upon over the last few decades.

This fact can be attributed to the rapidly expanding industry of computer tech-

nology. Since much of the study of dynamics is based on complicated graphs and

diagrams, it is a wonder that the pioneers of dynamics were able to discover what

they did. Next we have the French mathematician Henri Poincare, who, in his 1890

paper on “stable and unstable manifolds,” brushed upon our modern-day notion

of chaos. It was not until 1930 that chaos was again addressed this time by Julia

Gaston. His detailed work on what is now called the Julia Set could not fully be

appreciated until computers in the 1980s were able to graphically demonstrate his

findings. It is in fact argued that computer generated figures of the Julia Set are

of the most beautiful and most complicated mathematical diagrams in existence.

Our last significant contributors to dynamics are Americans Steven Smale and E.

N Lorenze who, in the 1960s, came up with the concepts of symbolic dynamics and

sensitive dependence on initial conditions, respectively. These two concepts will

play a large role in our study of chaos. To study a topic so fresh in its discovery

gives us the added benefit of using current computer technology. It is also possible

that we will witness many more innovations in dynamics within our lifetimes.

This paper will be organized as follows. In Section 1, we will discover the basic

properties of the quadratic family of functions Qc. It is necessary to start out with

a solid background in the quadratic family as it will be our main environment for

illustrating chaos. Section 2 will focus on the process of iteration and the orbits

formed from iterating points within a system. In Section 3 we will learn to analyze

the orbits of a system graphically. Section 4 will address the characteristics of

certain points within an orbit, namely fixed and periodic points. In Section 5 we

will translate our graphical analyses into more complex bifurcation diagrams. We
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will then skip to a few more theoretical aspects of dynamics: the Cantor Middle-

Thirds Set in Section 6 and symbolic dynamics for Section 7. Lastly, for Section 8,

we will address chaos.

1. The Quadratic Family of Functions

To fully understand the process of dynamics it is often helpful to turn to specific

examples to observe dynamical trends. For this reason we will be working our way

through the study of dynamics with one simple and constant tool: the family Qc of

quadratic functions. This family of functions will act as an instrument in tracing

out the steps necessary to arrive at chaos. First, we must begin with a discussion

and graphical description of this family.

The quadratic functions are continuous functions that have the form Qc(x) =

x2 + c, where c is a real-valued constant. This constant c is called a parameter and

its value within an equation distinguishes one quadratic function from others in the

family. As we will later see, the value of c will ultimately determine the dynamics

of the function. For each c-value there exists a completely new and unique system

of dynamics.

Now let us observe what happens to the graph of Qc when the value of c is varied.

When c = 0, we have the equation of a parabola in its simplest form, with its vertex

located at the origin. As c increases to a positive value, the graph of the function

shifts directly upward along the y-axis. The vertex in this case is located at the

point (0, c). A negative value for c results in a parabola with its vertex located below

the x-axis at point (0, c). These properties of quadratic functions may seem obvious

and elementary to students of math, but they will support a strong foundation for

understanding dynamics within the quadratic family. We will soon discover how to

make use of these properties with new dynamical procedures.

2. Orbit Analysis

Now it is time to approach the notion of dynamics. For the sake of simplicity,

we will begin with a dynamical description of the one-variable quadratic function.

The essential process involved in dynamics is that of composing a function with

itself: a process called iteration. We will be utilizing this process of iteration when

we find orbits of the function Qc(x) at different values of x.

2.1. Iteration. As calculus students, we perhaps unknowingly employed a few

simple iterative processes. Finding roots of a function using Newton’s Method was

one of these occasions. Iteration literally means the repetition of a process over and

over. To iterate a quadratic function we simply evaluate the function over and over,
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using the output of the last application as the input for the next. For a function

F (x), we denote the second iterate of F at x as F 2(x), the third iterate as F 3(x),

and the nth iterate as F n(x). If F (x) = x2 + 1, then

F 2(x) = F (F (x)) = (x2 + 1)2 + 1

and

F 3(x) = F (F (F (x))) = ((x2 + 1)2 + 1)2 + 1.

This process is also sometimes called function composition. We will now see how

iteration relates to orbits of a function.

2.2. Orbits. Let us consider the function Q1(x) = x2 +1 at the point x0 = 0. The

first four iterations of Q1 at 0 occur as follows:

x0 = 0

x1 = F (x0) = F (0) = 02 + 1 = 1

x2 = F (x1) = F (1) = 12 + 1 = 2

x3 = F (x2) = F (2) = 22 + 1 = 5

x4 = F (x4) = F (5) = 52 + 1 = 26.

The first four iterations of Q1(x) form the first entries of the orbit of F at 0. An

orbit of a function at a point x0 is described as:

Definition 2.1 (Orbit). If we have function F (x) and some initial point x0 ∈ R,

then the orbit of x0 under F is the sequence of points

x0, x1 = F (x0), x2 = F 2(x0), ..., F
n(x0), . . . .

The point x0 is called the seed of the orbit.

We can rewrite the iterations of Q1(x) = x2 + 1 at point x = 0 in the form of an

orbit sequence: 0, 1, 2, 5, 26, . . .. The orbit of Q1 at 0 increases with every iteration

and will eventually converge to ∞. To better understand this phenomenon, we will

investigate different outcomes for different types of orbits.
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2.3. Types of Orbits. Within a dynamical system, there are many types of orbits.

One important species of orbit is initiated by a fixed point.

Definition 2.2 (Fixed Point). A fixed point is a point x0 that satisfies the equation

F n(x0) = x0 for all n ∈ Z+.

The orbit of a fixed point is the constant sequence x0, x0, x0, . . .. We can find

the fixed points for any function F by simply solving the equation F (x) = x. For

example, we set Q−2(x) = x2 − 2 equal to x and solve the equation for x to find

the fixed points of Q−2.

x = x2 − 2

0 = x2 − x − 2 = (x + 1)(x − 2)

The roots of this equation, and thus the fixed points, are x = −1 and x = 2. We can

verify each of these values by inserting them back into Q−2 and finding that they

do indeed yield constant orbit sequences. Another useful method for finding fixed

points involves graphing y = Qc(x) and y = x on the same axes and evaluating

their intersections. As one might expect, each function Qc(x) with c > 1

4
has no

fixed points. This is due to the fact that for these functions, the equation Qc(x) = x

yields no real solutions.

Now that we have discussed fixed points, it is time to approach a different type

of orbit. Just as there are some points that trigger constant orbits, there are some

points that orbit through finite cycles of values and then return to their original

values. These points are called periodic points and are defined as:

Definition 2.3 (Periodic Point). The point x0 is periodic if F n(x0) = x0 for some

n ∈ Z+. The smallest n is the prime period of the orbit.

Let us consider the orbit at 0 for function Q−1(x) = x2 − 1. Computing the first

few compositions, we get:

x0 = 0

x1 = 02 − 1 = −1

x2 = (−1)2 − 1 = 0

x3 = 02 − 1 = −1

It follows naturally that the orbit at 0 of F is 0,−1, 0,−1, 0, . . .. In different terms,

0 falls on a prime period 2 and the points -1 and 0 form a 2-cycle. We can also

have seeds of orbits that are not periodic, but that converge to periodic sequences.

These points, called eventually periodic, are defined as follows:
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Definition 2.4 (Eventually Periodic Point). A point x0 is eventually periodic if it

is not itself periodic, but has point xn in its orbit that is periodic.

There are also eventually fixed points, which can be described with a similar

definition, replacing the word “periodic” with “fixed.” An example of an eventually

periodic point is x0 = 1, iterated in the function Q−1. Since 12 − 1 = 0 and 0 is a

periodic point for Q−1, it follows that the orbit for x0 = 1 is 1, 0,−1, 0,−1, . . . .

For each dynamical system, there may be a few fixed points, periodic points, and

eventually fixed and periodic points. For the most part, however, these significant

points are overwhelmed by non-fixed, non-periodic seeds that, under iteration, yield

very complex orbits. We will be investigating periodic and fixed points in depth in

the coming sections, and we will also investigate the less-obvious orbits.

2.4. Other Orbits. While a function may have a few fixed and periodic points, it

has infinitely many non-fixed and non-periodic points. For instance, if we have a

computer randomly select an initial seed value on the interval (−2, 2) and iterate

it through the function Q−2(x) = x2 − 2, the first few terms might look like:

x0 = −1.93890429188385

x1 = 1.75934985308563

x2 = 1.09531190555244

x3 = −0.80029182955509

This sequence does not appear to have any clear pattern. Indeed, the first 100

terms of this sequence do not paint a picture of a clear pattern. The ninety-eighth

through one hundredth terms of this sequence are:

x98 = F 98(x0) = −1.99690845692414

x99 = F 99(x0) = 1.98764338533516

x100 = F 100(x0) = 0.00319363837844

The distribution of the iterations is scattered and appears to be random. A similar

occurrence can be observed over several orbits of the function Q−2(x) = x2 − 2.

Figure 1 is a histogram of the orbit of x0 = 0.1 under Q−2(x) = x2−2. To create this

frequency graph, we split up the first 2,000 iterations of 0.1 over small subintervals

of (−2, 2). From this histogram, we can appreciate that the distribution of the orbit

does not run evenly over the interval of (−2, 2). It is clear that the orbit favors

points along the edges of the interval. If the orbit was truly distributed randomly,

we would see no such patterns. This occurrence suggests the presence of chaos

within the orbit. As our understanding of chaotic dynamical systems matures, we
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Figure 1. Histogram of the orbit of 0.1 under x2 − 2.

will learn of better ways to evaluate orbits.

2.5. Graphical Analysis. We now know how to evaluate orbits of a function at

specific points, but in order to examine the trends of orbits along intervals of x we

must employ a new system. As mentioned previously, it is possible to find fixed

points by graphing a function and finding its intersections with the line y = x.

We can in fact gather much more information about orbits then just fixed points

from the graph of a function. The technique of graphical analysis allows us to do

this. Graphical Analysis is a geometric procedure used to determine the behavior

of orbits under the function F from the graph of F .

To graphically analyze the orbits of a function F (x), we begin by graphing the

function y = F (x) alongside the graph of y = x. To find the orbit of a point x0,

we locate the point (x0, x0) on the line y = x and draw a vertical line to meet the

function F at point (x0, F (x0)) (see Figure 2). Next, we draw a horizontal line from

the function F to point (F (x0), F (x0)) on y = x. We then draw a vertical line back

to F , which will meet at point (F (x0), F
2(x0)). The x value of this point, being

F (x0), is the next point on our orbit. To further extend our orbit sequence, we

simply continue this procedure: we draw vertical lines from the diagonal y = x to

the function F and then draw horizontal lines back to y = x. These orbit analysis

graphs are also commonly known as “cobweb” or “staircase” diagrams.

For some functions, we can create complete orbit analyses using this technique.

For example, let us consider the graphical analysis for Q0(x) = x2. Looking at

Figure 2, we can see that there are only a few directions in which an orbit of x2 can

converge/diverge. The direction an orbit tends to depends on the value of the seed
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Figure 2. Orbit Analysis of x2.

x0. It can be easily determined by our methods that the fixed points of Q0 are 0

and 1. If a seed of iteration begins at either of these points then the orbit will stay

put. If |x0| < 1 then the orbit of x0 tends to 0, as pictured in Figure 2. On the

other hand, if |x0| > 1, the orbit of x0 tends to ∞. Since we have accounted for all

possible orbits under the function, we can say that we have performed a complete

orbit analysis. This may not be possible for all functions, and it is certainly not

possible for real applications of dynamical systems, but orbit analysis is a good tool

to describe dynamical activity within the quadratic family of functions.

3. Attracting, Repelling, and Neutral Points

We have thus far discovered the existence of fixed points within functions of the

quadratic family. The dynamics of orbits initiated at fixed points follow a constant

repeating pattern. On the other hand, orbits initiated at points close to fixed

points may be very complex. We will now examine such orbits through the process

graphical analysis.

3.1. The Fixed Point Theorem. As mentioned in Section 2.3, there are some

functions within the quadratic family with no fixed points. Therefore, we must

commence with a theorem that will help us to determine the existence of fixed

points under a function. This theorem, commonly called the Fixed Point Theorem,

follows quite effortlessly from the Intermediate Value Theorem we know from early

calculus. As a reminder, here is a statement of the IVT:
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Theorem 3.1 (Intermediate Value Theorem). Suppose F is continuous on the

closed interval [a, b]. If N is any number between F (a) and F (b) then there must

be some value c within the interval [a, b] such that F (c) = N .

Now we shall describe the Fixed Value Theorem and proceed with a simple proof

that relies on results of IVT.

Theorem 3.2 (Fixed Value Theorem). Suppose that F is continuous on the closed

interval [a, b] and that F : [a, b] → [a, b]. It follows that F must have a fixed point

on this interval [a, b].

Proof. Let us first consider the case where F (a) = a. Point x = a is by definition a

fixed point, so we have reached our desired consequence. We know that F (a) cannot

be valued at a number less than a because a is the lower bound of the interval. Now

let us consider the remaining case where F (a) > a. This inequality can be rewritten

as F (a) − a > 0. Combined with the first case we have F (a) − a ≥ 0. Similarly, b

is the upper bound of the interval, so it follows that F (b) ≤ b, or F (b) − b ≤ 0.

Since F is continuous, the intermediate value theorem says that there must be

some c in [a, b] such that F (c) − c = 0. So there must be a fixed point c on the

interval [a, b]. �

This theorem proves the existence of fixed points on particular intervals of inter-

est, but it does not give us a method to find the exact locations of fixed points. It

does, however, give us more understanding into the fixed points we see on a graph

of a function against the line y = x. We already have a method of finding fixed

points, but solving the equation F (x) = x will not be easy for all cases.

3.2. Attracting and Repelling Fixed Points. Referring back to Figure 2, we

can see the graphical analysis of Q0(x) = x2. Recall that the orbits within the

interval (0, 1) all gravitated toward the fixed point x0 = 0. In contrast, the orbits

larger than the fixed point x0 = 1 tended to infinity. The reason for this difference

is that 0 and 1 act as different types of fixed points for x2. The fixed point x0 = 0 is

called an attracting fixed point because the orbits near to it on either side converge

to it. On the other hand, x0 = 1 is a repelling fixed point because all the orbits

close by to it diverge away from the point x = 1. Now we will learn to use calculus

to distinguish between attracting and repelling points.

As it turns out, the classification of a fixed point depends on the slope of the

tangent line of the function at the point. As we know from calculus, the slope of

a tangent line of a function at a certain point is found by evaluating the derivative

of the function at that point. The following is an important definition about orbit

behavior around fixed points:
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Definition 3.1. Suppose x0 is a fixed point of a differentiable function F .

If |F ′(x0)| < 1, then the point x0 is an attracting fixed point.

If |F ′(x0)| > 1, then the point x0 is a repelling fixed point.

If |F ′(x0)| = 1, then the point x0 is a neutral fixed point.

The truth of these statements can easily be verified through graphical analysis.

If the slope of a tangent line at a fixed point x0 is steep in comparison to the

diagonal y = x, then the orbits around this point will necessarily escape to infinity.

On the other hand, if the slope at x0 is slight then the nearby orbit will converge to

x0. As apparent from Definition 3.1, negative slopes also yield the same tendencies.

Now let us finish off this section with an application of Definition 3.1.

Example. For the function Q2(x) = x2 − 2, find all fixed points and classify

them as attracting, repelling, or neutral.

Answer. First we find the fixed points by setting Q2(x) equal to x.

x = x2 − 2 ⇒ 0 = x2 − x − 2 = (x + 1)(x − 2)

The fixed points of Q2 therefore occur at x0 = −1 and x0 = 2. Now we take the

derivative of Q2 and evaluate it at the fixed points.

Q′

2(x) = 2x

Since Q′

2(0) = 2(−1) = −2 and |−2| > 1, the point x = 0 must be a repelling fixed

point. Since Q′

2(2) = 4 > 1, the point x0 = 2 is also a repelling fixed point.

To verify this answer, we can simply perform graphical analysis on the function

and observe the behaviors of the orbits around the fixed points.

3.3. The Attracting and Repelling Fixed Point Theorems. Geometrically,

it is easy to see why Definition 3.1 is valid, but in order to mathematically prove

them we must revisit the Mean Value Theorem from calculus. As a reminder, here

is a statement of the MVT:

Theorem 3.3 (Mean Value). Let F be continuous on the closed interval [a, b] and

differentiable on the open interval (a, b). There must therefore be a number c in

(a, b) such that:

F ′(c) =
F (b) − F (a)

b − a
.

First, we will state both the Attracting Fixed Point Theorem and the Repelling

Fixed Point Theorem and then we will go through a proof of the latter (the proof

of the former follows similarly).
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Theorem 3.4 (Attracting Fixed Point). Suppose x0 is an attracting fixed point

for F (x). Then there exists an interval I containing the point x0 that satisfies the

following condition: if x ∈ I, then F n(x) ∈ I for all n. In other words, as n

approaches infinity, F n(x) approaches x0.

Theorem 3.5 (Repelling Fixed Point). Suppose x0 is a repelling fixed point for

F (x). Then there exists an interval I containing the point x0 that satisfies the

following condition: if x ∈ I and x 6= x0, then there is an n > 0 such that F n(x) /∈ I.

Proof. Since |F ′(x0)| > 1, there is some λ > 0 such that |F ′(x0)| > λ > 1. Let

δ > 0 be chosen so that |F ′(x)| > λ with x in the interval I = [x0 − δ, x0 + δ].

Choose any point p ∈ I . By Theorem 3.3, we have:

|F (p) − F (x0)|
|p − x0|

> λ , or |F (p) − F (x0)| > λ|p − x0|

Since x0 is a fixed point, we have |F (p) − x0| > λ|p − x0|. This mathematical

statement tells us that the distance from F (p) to x0 is much greater than the

distance from p to x0. The point F (p) must therefore fall outside the interval

I . �

Now we have officially verified the existence of attracting and repelling fixed

points, but the behavior of orbits around neutral fixed points is not quite as simple.

We will investigate the behavior of orbits around neutral fixed points at a later

time.

3.4. Periodic Points. Just as with fixed points, periodic points can be classified

as attracting, repelling, or neutral. If we want to classify a periodic point x0 that

lies on an n-cycle, we must concentrate on the slope of the tangent of the nth iterate

of the function at x0. In simpler terms, a periodic point of period n is attracting

if it is an attracting fixed point for F n. Likewise, a periodic point of period n is

repelling if it is an repelling fixed point for F n.

Let us derive a formula for the derivative of the nth iterate. It would be very

time consuming to compute F n for a large n, let alone to evaluate its derivative at

each periodic point on the cycle. Luckily, we have the Chain Rule from calculus to

aid us in this calculation. Notice that:

(F 2)′(x0) = F ′(F (x0))·F ′(x0) = F ′(x1)·F ′(x0).

When we find (F 3)′(x0) using this method, we can recognize a certain pattern.

(F 3)′(x0) = F ′(F 2(x0))·(F 2)′(x0) = F ′(x2)·F ′(x1)·F ′(x0)



12 KELSEY MACE

The derivative of F n at x0 is clearly the product of the derivatives of F at each

point in the n period orbit. We can create a formula to state this in the general

case.

Theorem 3.6 (Chain Rule Along a Cycle). Suppose x0, x1, . . . , xn−1 all lie on a

cycle of period n. Then

(F n)′(x0) = F ′(xn−1)· . . . ·F ′(x1)·F ′(x0)

Since the derivative of F n at the point x0 is just the product of the derivatives

of F at all points on the orbit, it does not matter which point on the cycle we start

with. For example, (F n)′(xn−1) = F ′(xn−1)· . . . ·F ′(x1)·F ′(x0) = (F n)′(x0). This

fact is a basic corollary of Theorem 3.6.

Now we will put our newfound knowledge of periodic points to good use and

work through an example of a periodic orbit.

Example. Zero lies on a periodic orbit of Q−1(x) = x2 − 1. Classify this or-

bit as attracting, repelling, or neutral.

Answer. First we must figure out what cycle the point x0 = 0 falls on. We sim-

ply plug x = 0 into Q−1(x) and begin to take iterations: 0, Q−1(0) = 02 − 1 =

−1, Q−1(−1) = (−1)2 − 1 = 0,−1, 0, . . . . The points 0 and −1 lie on a period 2

cycle, so in order to determine the behavior of the orbits near the periodic point

x0 = 0 we must evaluate |(Q2
−1)

′(0)|. To do this, we must differentiate Q−1(x).

Q′

−1(x) = 2x

Now we have all the information necessary to use the Chain Rule Along a Cycle.

|(Q2
−1)

′(0)| = |Q′

−1(0)·Q′

−1(−1)| = |0·(−2)| = 0

Since |(Q2
−1)

′(0)| = 0 < 1, we know that the cycle is attracting.

3.5. Neutral Fixed Point Theorem. When the behavior of orbits starting near

a fixed point cannot be identified as strictly attracted or repelled a further analysis

can often be performed to describe the nature of the orbits. This incident occurs

specifically around a neutral fixed point x0 where F ′(x0) = 1. For example, we

can graphically analyze the function F (x) = x + x2 to find that the orbits with

seeds slightly to the right of the neutral fixed point x0 = 0 are weakly attracted

to it. Their convergence rate to x0 is much slower than normally observed. On

the contrary, the orbits with seeds slightly to the left of this fixed point are weakly

repelled from it. They slowly diverge from the neutral fixed point. In this case, the
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role of concavity of the function at x0 is effecting the behavior of the surrounding

orbits. This is an indication that differentiation can help us to understand the

effects of neutral points. When we combine the following types of neutral points

with their respective behaviors we form the following:

Theorem 3.7 (Neutral Fixed Point). Suppose the function F (x) has a neutral

fixed point at x0 with F ′(x0) = 1.

i. If F ′′(x0) > 0, then x0 is weekly attracting from the left and weakly

repelling from the right.

ii. If F ′′(x0) < 0, then x0 is weekly repelling from the left and weakly

attracting from the right.

Suppose that F has a neutral fixed point at x0 with F ′(x0) = 1 and F ′′(x0) = 0.

iii. If F ′′′(x0) > 0, then x0 is weakly repelling.

iv. If F ′′′(x0) < 0, then x0 is weakly attracting.

If our results after finding the third derivative prove to be inconclusive, we can

extend this theorem to the nth derivative as necessary. Therefore, it is possible to

find even the slightest attracting and repelling forces at a neutral fixed point by

examining higher derivatives. As with the Attracting and Repelling Fixed Point

Theorems, we can apply this theorem to periodic points.

This concludes our introductory work with fixed and periodic points, and now

we will advance to the study of bifurcations within quadratic functions.

4. Bifurcations

It is quite clear that the quadratic functions Qc(x) = x2 + c have very similar

graphical forms to one another. The graphs in fact vary only in their intercepts

with the y-axis. As it turns out, a slight difference in y-intercept may result in a

significant difference in dynamical behavior. The study of the process of bifurcation

will help us to understand why this occurs.

4.1. Fixed Points of the Quadratic Map. With the usual technique, we can

solve 0 = x2 + c − x to find the fixed points of Qc(x). Applying the quadratic

formula, we find the two roots of the equation:

r1 =
1

2

(

1 +
√

1 − 4c
)

r2 =
1

2

(

1 −
√

1 − 4c
)

These roots represent real-valued fixed points if and only if c ≤ 1

4
. Recall that when

c > 1

4
, our equation yields no real-valued fixed points. In this case, all orbits under

the function tend to infinity. When c = 1

4
, we get r1 = 1

2
(1 + 0) = 1

2
(1 − 0) = r2.
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Figure 3. Graphs of x2 + 1 (top), x2 + 1

4
(middle), and x2 − 1

(bottom).

Here we have found just one real fixed point at ( 1

2
, 1

2
). When c < 1

4
, we have two

distinct real fixed points r1 and r2 with r1 > r2. In Figure 3, the graphs of the

functions Q1(x) = x2 + 1, Q 1

4

(x) = x2 + 1

4
, and Q−1(x) = x2 − 1 are lined up

against each other next to the diagonal line y = x. As expected, the function x2 +1

has no visible fixed points, while x2 + 1

4
has one and x2 − 1 has two.

4.2. The Saddle-Node Bifurcation. As the value of c decreases from 1

4
to a

smaller positive value, we witness an increase of real fixed points for Qc(x). This

change can be described as a splitting or bifurcation of fixed points at c = 1

4
. This

particular bifurcation is called a saddle-node bifurcation. In fact, the definition

of a saddle-node bifurcation is just a generic representation of the aforementioned

occurrence.

Definition 4.1 (Saddle-Node Bifurcation). Let Fλ(x) be a family of one-parameter

functions. A saddle-node bifurcation occurs at λ0 if the following three conditions

are satisfied:

i. Fλ(x) has no fixed points on an interval I for values of λ slightly less (more)

than λ0.

ii. Fλ(x) has exactly one fixed point on I for λ = λ0.

iii. Fλ(x) has two fixed points on I for values of λ slightly more (less) than λ0.

When we replace Fλ(x) with Qc(x) and λ0 with c = 1

4
in Definition 4.1, our prior

observations are perfectly captured. The saddle-node bifurcation is also known as

a blue sky bifurcation. Along the interval c > 1

4
there are absolutely no fixed points

for Qc(x). Then, suddenly, when c brushes past 1

4
, a fixed point appears to surface

out of the “blue sky.” This is a common observation for bifurcations.
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As we can see in Figure 3, a saddle-node bifurcation occurs at a point where

the line y = x acts as a tangent to the graph of the function at that point. As

expected, the diagonal y = x is tangent to the function Q 1

4

(x) at the point ( 1

2
, 1

2
).

In this case, it is also important that Q′′
1

4

(x) 6= 0 at the point. A certain amount

of concavity is required for Q 1

4

(x) at ( 1

2
, 1

2
) so that no point near to it re-crosses

the line y = x. The presence of another fixed point so near to first would certainly

interfere with the destined orbit.

4.3. The Period-Two Bifurcation. When we delve deeper into the properties

of fixed points of the quadratic functions, we find that there exist different, more

subtle types of bifurcations. We begin by determining when the fixed points r1 and

r2 are attracting, repelling, and neutral. Taking the derivative of Qc(x), we get

Q′

c(x) = 2x. Evaluating this derivative at the point r1 gives us

Q′

c(r1) =
(

1 +
√

1 − 4c
)

.

When c = 1

4
, Q′

c(r1) = 1. Thus, the point r1 is a neutral fixed point. When the

value of c falls below 1

4
, Q′

c(r1) > 1 and r1 transforms into a repelling fixed point.

Evaluating the derivative at r2 gives us

Q′

c(r2) =
(

1 −
√

1 − 4c
)

.

Since the value
√

1 − 4c is subtracted from 1 in this case, Q′

c(x) ≤ 1 for all c.

However, we must do a little more work to determine the behavior of the fixed point

r2. To find all the c-values for which r2 is attracting, we must solve |Q′

c(r2)| < 1

for c:

−1 < Q′

c(r2) < 1

−1 <
(

1 −
√

1 − 4c
)

< 1

0 <
√

1 − 4c < 2 ⇒ 0 < 1 − 4c < 4 ⇒ −3

4
< c <

1

4

Therefore, the fixed point r2 is attracting on the open c interval (− 3

4
, 1

4
). Now let

us evaluate |Q′

−1(r2)|:

|Q′

−1(r2)| = |1 −
√

1 − 4(−1)| = |1 −
√

5| ≈ 1.24 > 1.

It is clear that when c < − 3

4
, the point r2 is repelling. But r1 is also repelling for

c < − 3

4
. In cases such as this, how can r1 and r2 both be repelling fixed points?

This occurrence seems to contradict certain laws of physics. The answer: there

exists a period 2-cycle (see Section 2.3) somewhere between these fixed points that

neutralizes their conflicting repelling behavior. In order to find this periodic point,

we must consider 0 = Q2
c(x)−x = x4 +2cx2 + c2 + c−x. Solving this equation will



16 KELSEY MACE

give us our original fixed points as well as our period 2 points. A bit of algebraic

manipulation leaves us with the following periodic points:

q1 =
1

2

(

−1 +
√
−4c− 3

)

q2 =
1

2

(

−1−
√
−4c− 3

)

.

The points q1 and q2 will be real if and only if c ≤ − 3

4
. We have now stumbled

across a new type of bifurcation; the period doubling bifurcation. We can apply

our procedure from Section 3.2 to determine if q1 and q2 are attracting or repelling

points. A summary of our results follows:

For the family Qc(x) = x2 + c:

i. If − 3

4
< c < 1

4
, then Qc(x) has a repelling fixed point at r1, an attracting

fixed point at r2, and no period 2 cycles.

ii. If c = − 3

4
, then Qc(x) has a neutral fixed point where r2 = q1 = q2 and has

no period 2 cycles.

iii. If − 5

4
< c < − 3

4
, then r1 and r2 are repelling fixed points and Qc(x) has a

period 2 cycle.

An n-cycle may undergo a period-doubling bifurcation itself. For instance, the

above period 2 cycle eventually gives birth to a 4-cycle. This 4-cycle gives birth to

an 8-cycle, and so on. Interestingly enough, a period-doubling bifurcation occurs

when the graph of Fλ(x) is perpendicular to y = x. Just as with the saddle-node

bifurcation, calculus can be used to find period-doubling cycles. In this case we

would look for F ′

λ(pλ0
) = −1, or we would take advantage of the chain rule along

a cycle (Theorem 3.6) to find (F 2
λ )′(pλ0

) = 1. Therefore, the graph of the second

iterate of Fλ is tangent to y = x when a bifurcation occurs.

Now we have carefully examined the behavior of fixed and periodic points for

Qc(x) = x2 + c at the significant intervals of c-values. This procedure could easily

be repeated for a different family of functions. Of course, depending on the family,

the results will most likely yield different behaviors and bifurcations.

4.4. Bifurcation Diagram. To better understand the nature of bifurcations, we

will begin to look at bifurcation diagrams as well as orbit analysis graphs. A bifur-

cation diagram does not specifically display the graph of the function in question.

It actually gives us a device to look at a whole family of functions on one diagram.

It ultimately graphs the quantity of fixed points against different values of c or λ.

To create a bifurcation diagram, we plot c values on the x-axis and x values (for

fixed points) on the y-axis. See Figure 4 for an example of a bifurcation diagram.

A bifurcation diagram allows us to easily locate intervals of c where the number
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and behavior of fixed points are changing. In the next section we will examine

an advanced bifurcation diagram of Qc(x) = x2 + c and attempt to locate the

bifurcations we are now familiar with.

4.5. Transition to Chaos. We will now use computer technology to observe the

dynamics of Qc(x) = x2 + c over different values of c. Using the MatLab program,

we first divide the interval −2 ≤ c ≤ 1

4
into 500 evenly distributed c values. Recall

that all interesting dynamics for the family Qc occur on this interval. Next, we

will plug in each of these c values into Qc(x) and use the program to classify the

ultimate behavior of the orbit of 0 for each chosen c. We would ultimately like to

create a bifurcation diagram of our data. We follow these rules:

i. If the orbit of 0 under Qci
is attracted to a fixed point p1, then we plot

(ci, p1) on our diagram.

ii. If the orbit of 0 under Qcj
is attracted to a 2-cycle, q1 and q2, then we plot

(cj , q1) and (cj , q2).

iii. In general: if the orbit of 0 under Qck
is attracted to an n-cycle, then we

plot the appropriate n points vertically under c = ck.

iv. If the orbit of 0 under Qcl
shows no clear pattern, then we fill in the x-

interval under which the orbit covers. This will appear as a vertical line on

the diagram.

In order to create a bifurcation diagram we will plot the c-axis horizontally with

an integer corresponding to each chosen c value (1 through 500) and the x-axis

vertically with −2 ≤ c ≤ 2. For the specific MatLab commands used to create

this diagram, see Appendix A. Our resulting diagram is pictured in Figure 4. It

is important to keep in mind that repelling fixed points will not appear on our

diagram. We know that the first bifurcation, the saddle-node bifurcation, occurs at

c = 1

4
. We can only see the attracting half of the split of fixed points. If we were to

zoom in on Figure 4, we would find that the second bifurcation, the period-doubling

bifurcation, occurs at about the 280th index for c, which appropriately corresponds

to a c value of − 3

4
. Following this process, we find a period 4-cycle surfacing at

about the 168th c value for which c = − 5

4
. This number also looks familiar from

our prior calculations for critical c values. As c approaches −2, the bifurcation

diagram gets more difficult to read. What is happening here? Most likely, our

answer is chaos. In fact, there is a lot about Figure 4 we cannot yet comprehend.

As another example: why does the initial seed x0 = 0 yield such interesting and

complex orbits? We hope to answer these questions in sections to come.
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Figure 4. Bifurcation diagram for Qc(x) = x2 + C with orbits

initiated at point x = 0

5. Cantor Sets

We now have a comprehensive understanding of the dynamics of the quadratic

functions for c values greater than − 5

4
. Unfortunately, when the value of c decreases

below −2, the dynamical behavior of a function Qc is far more difficult to follow. In

this section we will approach our first basic fractal: the Cantor middle-thirds set.

This fractal will act as a basis for understanding the complex behavior of orbits of

the quadratic family Qc(x) = x2 + c for values of c < −2. We will soon discover

that the ideas of the Cantor set are closely related to these orbits.

5.1. The Cantor Middle-Thirds Set. The qualities and characteristics of the

Cantor middle-thirds set will help us to understand the behavior of orbits in certain

quadratic cases. For now, we will focus on the classic model of a Cantor set: the

Cantor middle-thirds set. This set is classified as a basic fractal. Unfortunately,

we will not have time here for a proper discussion of fractals. Refer to Devaney’s

chapter on fractals, Chapter 14, for an extensive discussion. For our purposes, it

will suffice to stick to a brief description of the Cantor set.

To create the traditional Cantor set, we begin with the closed interval [0, 1] and

remove from this set the middle third of the interval. The middle section we remove

is precisely the open interval ( 1

3
, 2

3
), so we are left with the set of closed intervals

[0, 1

3
] and [ 2

3
, 1]. Our next progression is the same as the first; we remove the middle

thirds from our remaining two sections. This leaves us with the set of four closed

intervals [0, 1

9
], [ 2

9
, 1

3
], [ 2

3
, 7

9
], and [ 8

9
, 1]. We continue to repeat this process, always
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removing from the set the middle third section of each remaining interval. This

process is pictured in Figure 5. The set left over after the process is repeated an

infinite number of times is the complete Cantor middle-thirds set, denoted here as

K. It is a non-empty set, since at least the endpoints of each interval from each

step can be accounted for (the open intervals being removed each time do not affect

the endpoints). It is also true that K is completely disconnected: each interval is

interrupted by a smaller absent interval, so no definite intervals are present. These

two facts suggest that K is an uncountable set, but we are not quite ready to prove

it. To build up the proper foundation for the proof, we must first examine ternary

expansions of the real numbers.

5.2. Ternary Expansion. As we might recall from calculus, the geometric series
∑

∞

i=0
ai converges absolutely if |a| < 1. If the series converges then

∞
∑

i=k

ai =
ak

1 − a
.

For example:
∞
∑

i=1

(

1

3

)i

=
1

3
+

1

9
+

1

27
+ . . . =

1

3

1 − 1

3

=
1

2

and
∞
∑

i=1

2

3i
= 2

∞
∑

i=1

(

1

3

)i

= 2

(

1

2

)

= 1.

Now let us consider the ternary expansion x = 0.022022022. The familiar base-

10 expansion of a number has digits 0-9 that occupy each decimal place, whereas

a base-three, or ternary, expansion holds only the numbers 0, 1, and 2 in each

decimal place. For instance, 0.1 is the ternary expansion for 1−3 = 1

3
and 0.002 is

the ternary expansion for 2 · 3−3 = 2

27
. By the rules of ternary expansion, we can

write x as

x =
0

31
+

2

32
+

2

33
+

0

34
+ . . . .

Figure 5. The Cantor Middle-Thirds Set: a visual representation

of the first five steps (image taken from Devaney p. 76)



20 KELSEY MACE

We can recombine these elements of x to form two geometric series

x =
2

32
+

2

35
+ . . . +

2

33
+

2

36
+ . . . =

2

9

∞
∑

i=0

(

1

27

)i

+
2

27

∞
∑

i=0

(

1

27

)i

=
4

13

We have found that the ternary expansion 0.022022022 is equal to the fraction
4

13
. Now let us use the same method to check the base-ten value for 0.02:

∞
∑

i=2

2

3i
=

2

9

∞
∑

i=0

(

1

3

)i

=
1

3
.

Since 0.1 is also a ternary expansion for 1

3
, it is possible for a number to have two

different ternary expansions. For the same reason, two different ternary expansions

can equal each other.

As another example, consider the ternary expansions 0.2200 and 0.2122. They

are equivalent to each other and to the fraction 8

9
. That two different ternary

expansions can equal each other is a problem that also surfaces in base-ten and

binary expansions. As it turns out, the numbers that yield two ternary expansions

are of a certain type. These numbers are rational numbers that can be written

as k
3i where k is an integer that satisfies 0 ≤ k ≤ 3i. Clearly, 8

9
falls under this

category.

Unfortunately, it is not as easy to convert a base-ten number into its ternary

equivalent. If the digits of the ternary number 0.t1t2t3 . . . fall under an accessible

pattern, we can use summations and other manipulations to decipher the number’s

base-ten value. Otherwise, we are left to estimate its value. Fortunately, the system

of ternary expansion allows for an effortless method of mapping ternary numbers

to the real interval I = [0, 1]. If x has a ternary expansion of the form 0.t1t2t3 . . .,

then the value of the digit t1 determines which third of the interval I x is located

in. If t1 = 0, then x ∈ [0, 1

3
], if t1 = 1, then x ∈ [ 1

3
, 2

3
], and x ∈ [ 2

3
, 1] if t1 = 2.

Once this has been determined, the same approach can be applied to t2 to figure

out which third of the third x is located in. We can follow this procedure up to the

last significant digit tn to find the exact location for x. An easy way to practice this

procedure is to follow along with a diagram of the Cantor middle-thirds set (see

Figure 5). At each step, we determine whether x is in the left thirds portion of the

interval (if tn = 0), the middle thirds section (if tn = 1), or the right-hand third of

the interval (if tn = 2). But if tn = 1, then x is not in the Cantor middle-thirds

set. Therefore, each real number x in [0, 1] that has a ternary expansion void of 1’s

belongs to the Cantor set. In other words, the Cantor set is a set of all x ∈ I that

satisfy this condition: x can be written as a ternary expansion composed of only

0’s and 2’s.
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Thus, if we have a ternary expansion of 0’s and 2’s, we simply pass down Figure

5 taking the appropriate “left” or “right” path to eventually locate the number

within I . If we choose the ternary expansion 0.220, for instance, and we follow

the directions “right, right, left,” we land on the point 8

9
(see Figure 5). This is

as expected, since we have already determined that the base-ten value for 0.22 is

indeed 8

9
.

Now that we are able to comfortably translate between base-ten and ternary

numbers, we may proceed with a proof the uncountability of the Cantor set.

5.3. Uncountability of the Cantor Set. To prove that the Cantor middle-thirds

set is uncountable, we must go through one more intermediate step. This step

involves the set of binary numbers, which is itself an uncountable set. If we take

each member x of the Cantor set in its ternary form and change every “2” to a “1”,

we have created the set of binary numbers. In other words, the elements of the

Cantor set are in a one-to-one correspondence with the full set of binary numbers.

Since the set of binary numbers is also in a one-to-one correspondence with the set

of real numbers, which is uncountable, it follows that the Cantor set is uncountable.

This property of the Cantor middle-thirds set will surface again in the sections to

come.

5.4. The Quadratic Family. Now we will apply the concepts behind the Cantor

middle-thirds set to dynamics we are closely acquainted with. Up to this point we

have learned the basic dynamical infrastructure of Qc(x) = x2 + c for − 5

4
≤ c < ∞.

We will now attempt to do this for Qc(x) with c < −2, but our work will not be

quite as simple as before. We will come across very complex networks of orbits for

each value of c < −2, but our newfound knowledge of Cantor sets will help us along

the way.

In Figure 6, we see the function Q−2.5(x) = x2−2.5 enclosed (or almost enclosed)

in a box. This box, centered at the origin, has vertices’s approximately at the points

[−2.158, 2.158], [2.158, 2.158], [2.158,−2.158], and [−2.158,−2.158]. The number

x ≈ 2.158 has a significance we can appreciate; it is the value of the fixed point r1

for x2 − 2.5. As we have come to experience, all the interesting orbit activity for a

quadratic function Qc occurs between the two fixed points. Since |r1| > |r2| for all

possible c, this activity will certainly be captured within the interval I = [−r1, r1],

or in our case, I = [−2.158, 2.158]. As expected, the function Q−2.5(x) intersects

the line f(x) = x at a corner of the box (in the first quadrant of the graph).

From Figure 6, note that the lowest section of the function is poking out of

the bottom of the box. Let us call the open-ended portion of I corresponding to

this lower part of the graph A1 and recognize that orbits fed from each x ∈ A1
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immediately leave I . In fact, x values within the interval (−0.585, 0.585) yield

orbits that leave the interval I upon their first iteration and escape to infinity. In

addition to this set A1 = {x : −0.585 < x < 0.585}, there are other sets of x ∈ I

who’s orbits eventually escape to infinity through this hole in I . We know the fate

of all orbits that leave I , so this leaves us to determine the fate of orbits that never

escape from I . The set of x values that yield orbits completely contained in I will

be denoted as Λ and will be defined as follows:

Λ = {x : x ∈ I ∧ Qn
c (x) ∈ I ∀ n ∈ Z

+}.

The most effective way to determine the full set of Λ is by instead determining the

complete complement of Λ. Naturally, what is left behind in I will make up Λ. We

will call this set ¬Λ. As we have discovered, A1 is part of this set. There are indeed

many more subsets that contribute to ¬Λ. For example, let us consider the pair of

open intervals that form the set A2. If an x0 is chosen from one of these intervals,

it follows from Figure 6 that Q−2.5(x0) will be in A1 (see path 1). Therefore, the

orbit of x0 escapes from I after 2 iterations. Similarly, if x0 is chosen from A3,

then x0 will escape I after 3 iterations. Following a process of “backward graphical

analysis,” we find that, if x0 is chosen from An, then x0 will escape from I after n

iterations. If we take the union of A1, A2, . . ., A∞, we will have the completed set

of ¬Λ, as desired. In general, we will define ¬Λ as:

¬Λ = {x : x ∈ I ∧ x /∈ Λ} = A1 ∪ A2 ∪ A3 ∪ . . . ∪ A∞

From the first three subsets of ¬Λ, we can see a clear pattern in the formation

of the set ¬Λ. Now, if we remove subsets A1, A2, and A3 from the interval I , we

are left with a basic foundation for Λ. The pattern of formation for Λ is just as

evident as for ¬Λ: it is a pattern eerily similar to that of the Cantor middle-thirds

set. Since An is an open set, the endpoints of A1, A2, and A3 will be left behind to

remain in Λ (a similar property to that of the original Cantor set). The orbit path

2 in Figure 6 shows an orbit starting from an endpoint of one of the A3 intervals.

As we can see, this orbit is eventually fixed at r1. Therefore, the set Λ is clearly

closed and non-empty. The set Λ also contains no intervals for reasons very similar

to those for the Cantor middle-thirds set. For all practical purposes, Λ is a Cantor

set in its own right. In the chapters to come, we will expand on the properties of

this Cantor set and on many others.

6. Symbolic Dynamics

We have gradually worked to secure a strong background in the properties and

behaviors of dynamical systems. Now we are almost ready to describe the chaos
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Figure 6. The function x2 − 2.5 with the intervals A1, A2, and A3

we have witnessed within the quadratic family. The only thing holding us back

at this point is our lack of proper symbolic terminology. In this section we will

work our way through a basic tutorial on symbolic dynamics. This will give us

a more convenient way to describe the dynamics we see. Symbolic dynamics will

help us to translate our familiar system of quadratic dynamics into one more readily

accommodating to the theories behind chaos.

6.1. Sequence Space. To better understand the concept of chaos, we will first

approach a chaotic model with dynamics even simpler than that of the quadratic

family. We must define the “space” under which the our chaotic dynamical model

will exist. This so-called space will not consist of intervals of real numbers. It will

be a sequence space, consisting of combinations of a certain type of sequence. We

will call this sequence space Σ, and define it as the following set:

Definition 6.1 (Sequence Space). The set Σ = {(s0s1s2 . . .) : sj = 0 or 1} is the

sequence space on two symbols.

Thus, the elements of Σ are sequences of made up of zeros and ones. The entire

set Σ is comprised of all possible combinations of ones and zeros (in sequence form).

Clearly, sequences such as 01101001 and 11001100 are distinct elements of the set.

We will soon see how this space provides a foundation for chaotic behavior to occur.
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Naturally, it will prove useful to measure distance between two points in our

sequence space. We cannot use the traditional method for finding the distance

between two sequences. Therefore, let us designate a new definition.

Definition 6.2 (Distance in Σ). Let s = (s0s1s2 . . .) and t = (t0t1t2 . . .) be points

in Σ. The distance between s and t is

d[s, t] =

∞
∑

i=0

|si − ti|
2i

.

For example, suppose s = (11111111) and t = (00000000). The distance between

these points should be as large as Σ permits since |si − ti| = 1 for every 0 ≤ i ≤ ∞.

Calculating the distance, we get:

d[s, t] =

∞
∑

i=0

|si − ti|
2i

=

∞
∑

i=0

(

1

2

)i

= 2.

Therefore, two points in the sequence space can be as far apart as 2 units. To

determine the distance between points that are “close” together in the sequence

space, we use the Proximity Theorem (featured in Devaney, p. 102).

Theorem 6.1 (The Proximity Theorem). Let s, t ∈ Σ. If s 6= t but si = ti for

i = 0, 1, . . . , n, then the distance between s and t is d[s, t] ≤ 1

2n .

These new terms and concepts about sequence space will help us to express chaos

in precise terms.

6.2. The Shift Map. Now that we have a created a space of our model, we must

determine how the model will map from Σ to Σ. In order to consider the dynamics

of the model, we must examine the behavior of the orbits initiating from different

sequences in Σ. How shall we iterate sequences in Σ to form new sequences within

the space? The answer is simple: we will iterate by removing the first term of the

sequence and shift all the other terms one place to the left. This process will be

made possible by the shift map, denoted as σ.

Definition 6.3 (Shift Map). The shift map σ : Σ → Σ is given by

σ(s0s1s2 . . .) = (s1s2s3 . . .).

For example, σ(011011 . . .) = 110110 . . . and σ(01111 . . .) = 1111 . . .. We can

continue this process without effort, merely dropping the first term of each iteration

to find the next. To find the nth iteration of the sequence, we follow the following

formula:

σn(s0s1s2 . . .) = (snsn+1sn+2 . . .).
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Interestingly, if we are given a repeating sequence s = (s0s1 . . . sn−1s0s1 . . . sn−1),

we can iterate n times to return to the original sequence. In other words, s is a

n-cycle periodic point and σn(s) = s. As we can see, the shift map provides for a

very easy way to find periodic points within the sequence space Σ. This fact will

come in handy in our discussion of chaos.

6.3. Itinerary. We will finish off our discussion of symbolic dynamics new termi-

nology that specifically relates to the quadratic family of functions Qc = x2 + c

where c < −2. We know that for the case of c < −2, all the interesting dynamics

occur on the interval I = [−r1, r1] where r1 = 1

2

(

1 +
√

1 − 4c
)

. Recall from Figure

6 that, within the subinterval A1, all orbits leave I after the first iteration. Natu-

rally, the set λ of points whose orbits never leave I must be contained in I − A1.

The set I −A1 is split up into 2 closed intervals, one on each side of the origin. Let

us call I0 the interval to the right of the origin and I1 the interval to the left. Any

x ∈ λ will therefore travel between I0 and I1 (or stay within one interval) under

each iteration. This fact allows us to create a distinct itinerary for each point x ∈ λ.

Definition 6.4 (Itinerary). Let x ∈ λ. The itinerary of x is the infinite sequence

S(x) = (s0s1s2 . . .) where sj = 0 if Qj
c(x) ∈ I0 and sj = 1 if Qj

c(x) ∈ I1.

The itinerary of x is an infinite sequence of 0s and 1s. For an example, consider

the case where x is the attracting fixed point r1. The itinerary of x would be S(x) =

(1111 . . .) since x would remain in its place in I1 for all iterations. Interestingly, each

periodic point xp ∈ λ has a repeating sequence. As one might infer, this concept is

the basis for the creation sequence space Σ. The mapping of real numbers within

λ to their respective itineraries will come into play later under the theories of

conjugacy.

Now we have built up a vocabulary of new terms about symbolic dynamics.

Finally, we can proceed with a definition of chaos!

7. Chaos!

Now that we have the all the necessary materials in our toolbox, we can finally

approach the complex concept of chaos. Chaos, as it is seen in the dynamical

systems around us, can be described in many different ways. For the time being,

we will stick to Devaney’s definition of chaos, as featured in Chapter 10 of A First

Course in Chaotic Dynamical Systems. Devaney’s definition engages three very

new and abstract topological ideas. These ideas are denseness, transitivity, and

sensitivity, all of which pertain to orbits within dynamical systems. First, let us

consider the description of a dense set :
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Definition 7.1 (Dense Set). Suppose Y is a subset of set X and let ε > 0. The

subset Y is dense in X if, for each point x ∈ X, there exists a point y ∈ Y within

ε of x.

In other words, for each point in X there is a point in Y that is arbitrarily close.

As an example, the set of rational numbers is dense in the set of real numbers. In

addition, the open interval (0, 1) is dense in the closed interval [0, 1]. Obviously,

there are also many cases where subspaces are not dense in a set. For instance,

the integers are not dense in the reals. Let us choose an element x ∈ R, say 4.7,

and also designate ε = 0.1. Clearly, there is no integer within the interval [4.6, 4.8].

The size of Y seems to play a part in its role as dense subset, but we often find

that a dense subset is quite small in comparison to the original set. The the subset

of rationals within the reals is a good example of this, since the set of rationals is

countable and the set of real numbers is uncountable.

Upon investigation of the sequence space Σ, it can be shown that the subset

of Σ that consists of all the periodic points in Σ is a dense subset. To prove

this statement, we must show that there is a periodic point within ε of any point

s = (s0s1s2 . . .) in Σ. For the proof that the subset of all periodic points in Σ

is dense, we are interested in the closeness of points. The Proximity Theorem

(featured in Devaney, p. 102) will help us determine the distance between “close”

points.

Now we may return to our proof. Let us choose a positive integer n so that 1

2n <

ε. Now we will look for a periodic point within 1

2n of s. Let tn = (s0s1 . . . sns0s1 . . . sn).

Since the first n + 1 terms of s and tn are the same, we can apply the Proximity

Theorem to find:

d[s, tn] ≤ 1

2n
< ε.

The sequence tn is repeating, so it is clearly a n + 1 periodic point under the shift

map σ. Therefore, since s and ε were chosen arbitrarily, we have proved that there

is a periodic point arbitrarily close to every point s in Σ.

Now that we have explicitly demonstrated the characteristics of a dense sub-

set, we will move on to approach another important topic of chaos: transitivity.

Transitivity is closely related to the concept of dense subsets. First, we will define

transitivity as it relates to chaos and than we will provide an appropriate applica-

tion.

Definition 7.2 (Transitivity). A dynamical system is transitive if, for each two

points x and y in the system and for each ε > 0, there exists an orbit that comes

within ε of both points.
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A dynamical system with a dense orbit is transitive. This follows from the fact

that a dense orbit must come arbitrarily close to all points in the system. We will

propose the idea of a dense orbit through an example in the Σ domain under σ. In

this case, we are hoping to find an orbit that comes arbitrarily close to every point

in Σ. As we can recall, such an orbit would be formed by a point s in Σ and by its

respective iterations under the shift map σ.

Consider the sequence s′ = (0 1 00 01 10 11 000 001 010 011 . . .) where s′ is

made up of all combinations of 0s and 1s of length n for n = 0, 1, 2, . . . ,∞. As we

can see, the first two terms are 0 and 1. These are the two possibilities for n = 1.

These terms are followed by the four combinations for n = 2 and then proceeded

by 2n terms of length n for each n.

As before, choose an arbitrary s = (s0s1s2 . . .) in Σ and an ε > 0. Also, select

n so that 1

2n < ε. Somewhere along the sequence s′, there is a sequence strand

of length n + 1 that is composed of the digits s0s1s2 . . . sn that correspond with

the sequence s. If s0 is the kth term of s′, we apply the shift map k times to s′.

Therefore, the first n + 1 terms of σk(s′) are equal to the first n + 1 terms of s.

Again putting to use the Proximity Theorem, we have:

d[σk(s′), s] ≤ 1

2n
< ε.

Since s and ε were arbitrary choices, we have proved that the point s′ yields an

orbit that comes within ε of every point in Σ. Thus, the orbit of s′ is dense and the

sequence space Σ under σ is transitive. This concludes our discussion of transitivity.

A third notion that surfaces in Devaney’s definition of chaos is that of sensitive

dependence on initial conditions. Here is the definition for sensitivity:

Definition 7.3 (Sensitive Dependence on Initial Conditions). A dynamical system

F depends sensitively on initial conditions if there exists a β > 0 such that for

any x ∈ F and any ε > 0 there is a y ∈ F within ε of x and a k such that

d[F k(x), F k(y)] ≥ β.

If a system has sensitive dependence on initial conditions, then we can always

find a y within ε of x whose orbit eventually differs from that of x by at least β. It

should be noted that the orbit of y need only to be separated from the orbit of x

for the kth iteration.

Now we will attempt to show that the shift map depends sensitively on initial

conditions. Let β = 1. For any s ∈ Σ and ε > 0, we again select an n so that
1

2n < ε. Suppose there exists a t ∈ Σ such that t 6= s but d[s, t] < 1

2n . From the

Proximity Theorem, si = ti for i = 0, 1, . . . , n. However, there must be a k > n

such that sk 6= tk. Now apply k iterations to both s and t under the shift map.
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The initial terms of the sequences will be different and

d[σk(s), σk(t)] ≥ |sk − tk|
20

+

∞
∑

i=1

0

2i
= 1.

Therefore, we have proved sensitivity for this shift and for every other shift in Σ

since s was chosen arbitrarily. For each s ∈ Σ all other points in Σ have orbits that

eventually separate from the orbit of s by at least 1 unit.

Now that we have officially discussed the concepts behind denseness, transitivity,

and sensitivity, we can proceed with our definition of chaos:

Definition 7.4 (Chaos). A dynamical system F is chaotic if:

i. The set of periodic points in F is dense.

ii. F is transitive.

iii. F depends sensitively on initial conditions.

Since we have shown that the shift map σ satisfies these three conditions under

the sequence space Σ, we have proved that the dynamical system σ : Σ → Σ is

chaotic. Next we will apply this concept of chaos to the quadratic family.

8. Conjugacies and the Chaotic Nature of Qc

8.1. Homeomorphisms. As we have recently discovered, the itinerary map S

relates λ, the set of orbits in Qc for c < −2 that never leave I , to the sequence

space Σ. We would like to take this relationship a step farther. First, we hope to

show that λ and Σ are indeed identical spaces. In other words, we are checking to

see if λ and Σ are homeomorphic to each other.

Definition 8.1 (Homeomorphism). A homeomorphism is a continuous function

that is one-to-one and onto. It must also have a continuous inverse.

Homeomorphic sets map points between each other in a one-to-one correspon-

dence. Due their continuous natures, they also map nearby points in one set to

nearby points in the other.

If c < − 1

4
(5 + 2

√
5), then S : λ → Σ is a homeomorphism. In order to prove

that the two sets λ and Σ are homeomorphic, we must be sure that they satisfy all

four conditions of homeomorphism. We will not solve such an involved proof, but

we will certainly consider a few more ideas that extend from homeomorphisms.

8.2. Conjugacy. We will now look at a concept that extends directly from home-

omorphism. This concept is called conjugacy.
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Figure 7. Commutative Diagram involving λ, S, and Σ (image

from Devaney, page 107).

Definition 8.2 (Conjugacy). The functions F : X → X and G : Y → Y are

conjugate if there is a homeomorphism h : X → Y such that h(F (x)) = G(h(x))

for all x ∈ X.

Conjugacies play an important role in locating chaos within a system because

their existence ultimately demonstrates the exact equivalence between the dynamics

of two systems. If we can find that Qc on λ is conjugate to σ on Σ, then we can

conclude that their dynamics are equivalent. Since we were able to prove that shift

map σ over the sequence space Σ demonstrates chaotic behavior, we can easily

prove the same for a system with congruent dynamics.

For the moment, let us return to our discussion of the itinerary map S to con-

sider an applicable example of conjugacy.

Example. Prove the following statement: if x ∈ λ, then S(Qc(x)) = σ(S(x)).

Proof. First recall that if S(x) = (s0s1s2 . . .), then σ(S(x)) = (s1s2s3 . . .). Since

x ∈ λ, it must have an itinerary (s0s1s2 . . .) and therefore

x ∈ Is0

Qc(x) ∈ Is1

Q2
c(x) ∈ Is2

Q3
c(x) ∈ Is3

.

Since Isj
is either I0 or I1, it follows that S(Qc(x)) = (s1s2s3 . . .) is the same

sequence of 0s and 1s. Thus, we find that S(Qc(x)) = σ(S(x)), as desired. �

To see a commutative diagram of this property, see Figure 7. From the diagram,

we can begin with λ in the upper left-hand corner and follow either of two different

paths to end up in at the same point in Σ (in the lower right-hand corner). Such

commutative diagrams will be used from now on to test for conjugacy. Under
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Figure 8. Commutative Diagram involving S1, B, and D (image

from Devaney, page 125).

this example, the map S is clearly a conjugacy and the functions σ and Qc for

c < − 1

4
(5 + 2

√
5) are conjugate.

As with the case of S, there are homeomorphisms that provide us with more than

just the usual information about continuity and correspondence. In this particular

case, the map S has equipped us with the ability to make a giant step toward

finding chaos within the quadratic family Qc. We have shown that the system Qc

on λ is dynamically equivalent to the shift map σ on Σ. The remaining steps of the

proof follow naturally and will be omitted from our discussion.

8.3. The Doubling Map. Now that we have officially verified that the quadratic

family of functions Qc exhibits chaotic behavior for certain values of c, it is only

natural to wonder what other simple functions are chaotic. Let us consider another

example of a chaotic dynamical system. Our example will involve the unit circle

S1 in the plane, described by

S1 = (x, y) ∈ {R
2 : x2 + y2 = 1}.

A point in S1 is given in its polar angle θ form, in radians. It is important to note

that θ is measured modulo 2π.

Now that we have a space, we must complete the system by defining a function

to act on the space. Let D : S1 → S1 be defined as D(θ) = 2θ. To iterate this

function, we simply multiply any angle θ by 2. Once the value of the iteration

exceeds 2π, we must subtract n · 2π for the appropriate integer n.

To prove that D on S1 is chaotic, we will look for the presence of a conjugacy.

Let us consider a map B that first projects a point θ on the unit circle straight

down to the x-axis and then doubles its distance from the origin. Such a function

B : S1 → [−2, 2] could be defined as B(θ) = 2 cos(θ). This mapping is pictured in

Figure 8. We would like to complete this diagram by finding the missing map from

[−2, 2] to [−2, 2]. We know that

B(D(θ)) = B(2θ) = 2 cos(2θ)
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and we are looking for a map such that

2 cos(θ) → 2 cos(θ).

With a little trigonometric manipulation, we find that

2 cos(2θ) = 2
(

2 cos2(θ) − 1
)

=
(

2 cos2(θ)
)2 − 2.

Therefore, the function that acts as a conjugacy in this case is Q−2 = x2 − 2. This

happens to be a familiar function. Though the value of c is not less than − 1

4
(5 +

2
√

5), we have seen from previous experiments and discussions that the dynamics

of Q−2 do suggest chaotic activity. For sake of time and energy conservation, let us

assume (correctly) that Q−2 is a chaotic dynamical system. It then follows easily

that the function D on S1 is also a chaotic dynamical system.

9. Related Topics

Over the course of this paper, we have been working to verify one ultimate result:

that the quadratic family of functions Qc(x) = x2+c exhibits chaotic behavior under

certain constraints on c. With the introduction to bifurcation theory in Section 4,

our suspicions of chaos were first aroused. In order to formally arrive at our desired

conclusion, we had to familiarize ourselves with a great deal of new terminology.

We began with the study of orbits and bifurcations and then moved on to more

complex mathematical notions such as the Cantor set and symbolic dynamics. We

have now completed our goal, but a certain cloud still hangs over our heads. What

does acknowledging the presence of chaos do for us? Where do we go from here?

The fact of the matter is, if we can find chaos in a dynamical system as simple

and primitive as the quadratic family, we can certainly find chaos in more complex

systems. We have barely scratched the surface of chaos. For example, both sine and

cosine functions have chaotic characteristics under certain parameters. As do many

functions within the complex plane. Quadratic functions of the form z2 + c where

z and c are complex numbers have been studied extensively in the field of chaos

theory. The chaotic behavior of these functions and many other complex functions

can be visually captured by their Julia set representations. Julia sets allow us to

observe the outcome of a functions orbits within a plane, and the diagrams they

create are as beautiful as they are complex. The study of Julia sets is an interesting

extension of chaos.

As mentioned previously, there are systems we utilize in our everyday lives that

demonstrate chaos. The weather predictions we tune in to in the morning are

based on exploration into a massive chaotic system. The stock market acts as

a multi-faceted dynamical system that is subject to chaos. There are also living
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creatures that express behaviors we can model using our dynamical techniques.

As an example, there is a certain type of firefly in the American Midwest that will

inadvertently synchronize his flash to an appropriate stimulus. This synchronization

can be measured and modeled by a relatively simple dynamical system. For further

information on this particular experiment, see Nonlinear Dynamics and Chaos by

Steven H. Strogatz [2]. There are clearly many directions one can take to indulge

their interests in chaotic dynamical systems.

Appendix A

MatLab commands for creating a bifurcation diagram of Qc(x) for −2 ≤ c ≤ 1

4
:

%Script file to produce the bifurcation diagram for

% F(x) = x^2 + c using the orbit of 0, and values

% of c: -2 <= c <= 0.25

c=linspace(-2,0.25,500); %This is 500 points for c

x=zeros(1,500); %An array of initial conditions

fprintf(’Going into the initial orbit\ n’);

for i=1:100

y=x.^2+c;

x=y;

end

fprintf(’Going into new orbit\ n’);

%Store results:

A=zeros(400,500); %allocates memory

for i:400

y=x.^2+c;

A(i,:)=y;

x=y;

end

plot(A’,’k.’,’Markersize’,4);
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