
UPPER BOUNDS ON THE L(2,1)-LABELING NUMBER OF GRAPHS
WITH MAXIMUM DEGREE ∆

ANDREW LUM

ADVISOR: DAVID GUICHARD

ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a
way to use graphs to model the channel assignment problem proposed by Fred
Roberts [Ro, 1988]. An L(2,1)-labeling of a simple graph G is a nonnegative
integer-valued function f : V (G) → {0,1,2, . . .} such that, whenever x and y are
two adjacent vertices in V (G), then | f (x)− f (y)| ≥ 2, and, whenever the distance
between x and y is 2, then | f (x)− f (y)| ≥ 1. The L(2,1)-labeling number of G,
denoted λ(G), is the smallest number m such that G has an L(2,1)-labeling with
no label greater than m. Much work has been done to bound λ(G) with respect
to the maximum degree ∆ of G ([Cha, 1996], [Go, 2004], [Gr, 1992], [Kr, 2003],
[Jo, 1993]). Griggs and Yeh [Gr, 1992] conjectured that λ ≤ ∆2 when ∆ ≥ 2.

In §1, we review the basics of graph theory. This section is intended for those
with little or no background in graph theory and may be skipped as needed. In §2,
we introduce the notion of L(2,1)-labeling. In §3, we give the labeling numbers
for special classes of graphs. In §4, we use the greedy labeling algorithm to
establish an upper bound for λ in terms of ∆. In §5, we use the Chang-Kuo
algorithm to improve our bound. In §6, we prove the best known bound for
general graphs.

1. PRELIMINARIES

1.1. Basic Graph Theory. We begin with the problem known to have started it
all. The city of Königsburg, Prussia was located on the Pregel River and included
two islands connected to each other and the mainland by seven bridges, as illus-
trated in Figure 1. The locals wondered if it was possible to start on one of the
land masses, cross all seven bridges exactly once, and return to the starting point.
Evidently, it is impossible. To help see why, we must first introduce the notion of
a graph.

Definition 1.1. A (simple) graph1 G is a pair (V,E) consisting of a set of ver-
tices V (G) and a set of edges E(G), where edges are of the form {v1,v2} ⊆V (G)
with v1 6= v2. Two vertices v1,v2 ∈ V (G) are said to be adjacent or neighbors if
{v1,v2} ∈ E(G).

Date: April 27, 2007.
Key words and phrases. L(2,1)-labeling, channel assignment problem, distance dependent graph

coloring analogues.
1For the purposes of this paper, all graphs henceforth will be considered simple.

1

2 Andrew Lum

FIGURE 1. The Seven Bridges of Königsburg

Informally, then, a graph is a set of vertices, some of which are connected by edges.
Graphs are most often visualized pictorially. Figure 2 gives an example of a graph
on 6 vertices.

FIGURE 2. A graph with 6 vertices and 5 edges

Definition 1.2. The degree of a vertex v, denoted ∆(v), is the number of edges
incident to it. The maximum degree of a graph G, denoted ∆(G), is the greatest
∆(v) over all v ∈V (G).
For example, in the graph G in Figure 2, vertex 3 has degree 3. Since it is the vertex
with the greatest number of edges incident to it, ∆(G) = 3.

Graphs model pairwise relations between objects. For example, Figure 3 shows
a graph modeling the seven bridges of Königsburg, where vertices represent land
masses and edges represent bridges. This graph makes it easy to argue that the
desired traversal is impossible. Notice each vertex has odd degree, either three or
five. If we start on a vertex with degree three, we must leave through one edge,
come back through another, and leave again through the remaining edge, making
it impossible to return while crossing each edge exactly once. Likewise if we start
on the vertex with degree five, we leave, come back, leave, come back, and leave
again. Thus, no matter where we start, we will never be able to return to our starting
position if we are required to cross every bridge exactly once.
Definition 1.3. A complete graph is a graph whose vertices are all pairwise adja-
cent. The complete graph on n vertices is denoted Kn.

L(2,1)-Labeling 3

FIGURE 3. The Seven Bridges of Königsburg as a graph

Definition 1.4. A path is a graph whose vertices can be ordered so that two vertices
are adjacent if and only if they are consecutive in the list. An n-path, denoted Pn,
is a path on n vertices. See Figure 4.

A path has exactly two vertices of degree 1 (these are the first and last vertices in
the ordered list); the rest are of degree 2.

Definition 1.5. A cycle is a graph with an equal number of vertices and edges
whose vertices can be placed around a circle so that two vertices are adjacent if
and only if they appear consecutively along the circle. An n-cycle, denoted Cn, is a
cycle on n vertices.

Deleting one edge from a cycle produces a path as illustrated in Figure 4. To
generalize this concept, we introduce the notion of a subgraph.

FIGURE 4. A 5-path P5 (left) and a 5-cycle C5 (right)

Definition 1.6. A subgraph of a graph G is a graph H such that V (H) ⊆V (G) and
E(H) ⊆ E(G). We say that “G contains H .”

As in the previous example (Figure 4), P5 is a subgraph of C5.

Definition 1.7. A u,v-path is a path whose vertices of degree 1 (its endpoints) are u
and v. If a graph G contains a u,v-path, then the distance between u and v, denoted
d(u,v), is the number of edges in the shortest u,v-path.

For example, in Figure 2, the distance between vertices 1 and 6 is 4.

Definition 1.8. A graph is connected if it contains a u,v-path whenever u,v∈V (G).

4 Andrew Lum

In other words, a graph is connected if we can get from any point on the graph
to any other point on the graph by following edges. All the graphs illustrated so
far are connected. However, if we delete any edge from the graph in Figure 2, the
graph will no longer be connected. For our purposes, we will mainly be concerned
with connected graphs.
Definition 1.9. A tree is a connected graph containing no cycles. A leaf is a vertex
of degree 1.
An example of a tree is given in Figure 5. Its leaves are v1, v2, v3, v4, v6, v7, v8,
and v9. Notice the path between any two vertices is unique. This is true for trees in
general.

FIGURE 5. A tree

Definition 1.10. A rooted tree is a tree with one vertex r chosen as the root. For
each vertex v, let P(v) be the unique v,r-path. The parent of v is its neighbor on
P(v); its children are its other neighbors.
In Figure 5, for example, if we choose v14 as the root, v5 has v12 as a parent and v3
and v4 as children.
Definition 1.11. A spanning subgraph of a graph G is a subgraph with vertex set
V (G). A spanning tree is a spanning subgraph that is a tree.
We can get a spanning tree from any connected graph by repeatedly removing an
edge from a cycle.

Next, we consider another problem that can be solved using graph theory.

1.2. Coloring and Brooks’ Theorem. Suppose we want to assign time slots for
final exams so that two courses with a common student have different slots. To
solve this and similar problems, we use the notion of graph coloring.
Definition 1.12. A k-coloring of a graph G is a labeling f : V (G) → S, where
|S| = k. The labels are called colors and the vertices of one color form a color
class. A k-coloring is proper if no two adjacent vertices are in the same color
class. A graph is k-colorable if it has a proper k-coloring. (See Figure 6.)

L(2,1)-Labeling 5

FIGURE 6. The graph in Figure 2 is 2-colorable.

Typically when we speak of graph coloring, we mean proper coloring.

Definition 1.13. The chromatic number of a graph G, written χ(G), is the least k
such that G is k-colorable.

For example, the chromatic number of the graph in Figure 6 is 2 since it has a
proper 2-coloring and it cannot be properly colored with only 1 color.

So, to solve our scheduling problem, we can create a graph where vertices rep-
resent courses and edges represent a common student in both courses. The least
number of time slots needed, then, is the chromatic number of the graph. In gen-
eral, finding the chromatic number of a graph can be used to solve a wide variety
of optimization problems. As a result, it becomes useful to find upper bounds on
the chromatic number based on the structure of the graph. This leads to Brooks’
Theorem.

Brooks’ Theorem. [We, 1993] If G is a connected graph other than a complete
graph or an odd cycle, then χ(G) ≤ ∆(G).

Brooks’ Theorem gives an upper bound for the chromatic number of graphs in
terms of its maximum degree. As we will see in the next section, a natural extension
of graph coloring uses this same idea.

2. BASIC IDEAS BEHIND GRAPH LABELING

Suppose we have a distribution of radio station transmitters scattered across
town. Now suppose we wanted to assign channel frequencies to these transmitters.
However, we have to be careful. Transmitters that are close together cannot be
assigned the same channel frequency or else they would interfere with each other.
For the same reason, transmitters that are very close together must be assigned
channel frequencies at least two units apart. One way to approach this problem
is reduce our situation to a graph. We can have vertices represent radio station
transmitters and edges connect vertices that are “very close.” The assignment of
channel frequencies will be represented through what we call L(2,1)-labeling.

6 Andrew Lum

Definition 2.1. An L(2,1)-labeling (sometimes simply referred to as a labeling) of
a graph G is a nonnegative integer-valued function f : V (G) → {0,1,2, . . .} such
that, whenever x and y are two adjacent vertices in V (G), then | f (x)− f (y)| ≥ 2,
and, whenever the distance between x and y is 2, then | f (x)− f (y)| ≥ 1.

So, if two vertices are a distance two apart, they cannot be assigned the same
label. If two vertices are adjacent, their labels must differ by at least two. An
example of this is given in Figure 7.

FIGURE 7. An L(2,1)-labeling

Definition 2.2. The L(2,1)-labeling number of G, denoted λ(G), is the smallest
number m such that G has an L(2,1)-labeling with no label greater than m.

The L(2,1)-labeling number of a graph labeling is analogous to the chromatic num-
ber of graph coloring. In the next section, we give examples of the labeling num-
bers of special classes of graphs.

3. LABELING NUMBERS OF SPECIAL CLASSES OF GRAPHS

3.1. Complete Graphs. Consider the complete graph on n vertices, Kn.

Proposition 3.1. λ(Kn) = 2n−2.

Proof. Given Kn with vertices v1, v2, . . . , vn, the function f :V (G)→{0,1,2, . . . ,2n−
2} defined by f (vi) = 2i−2 is a labeling of Kn. So, λ(Kn) ≤ 2n−2. We claim we
can’t label Kn with just the numbers 0, 1, 2, . . . , 2n−3. Note that we have 2n−2
labels that need to be assigned to n vertices. We can think of this as n− 1 dis-
joint pairs of consecutive labels in which n vertices must be placed. By the pigeon
hole principle, one of these pairs of consecutive labels must contain two vertices.
However, since these two vertices are adjacent in Kn, this violates our labeling
condition. Thus, λ(Kn) = 2n−2. �

Figure 8 illustrates a minimal labeling of K5.

3.2. Paths. First, consider P2. We start by labeling one vertex 0. This forces the
other vertex to be at least 2. So λ(P2) = 2, as in Figure 9.

Proposition 3.2. λ(P3) = 3.

L(2,1)-Labeling 7

FIGURE 8. An L(2,1)-labeling of K5

FIGURE 9. L(2,1)-labelings of P2, P3, P4, and P5 (from top to bottom)

Proof. For P3, we can label the leftmost vertex 0, the middle vertex 3, and the
rightmost vertex 1, as shown in Figure 9. So, λ(P3) ≤ 3. We claim we can’t label
P3 with just the numbers 0, 1, and 2. The label 1 could not be used anywhere or else
it would have to be adjacent to 0, 1, or 2, all of which violates the adjacency rule.
This leaves us with two labels (0 and 2) that must be assigned to three vertices. By
the pigeon hole principle, two of these vertices must receive the same label, which
necessarily violates the condition. �

Before we consider the P4, we need the following lemma.

Lemma 3.3. If H is a subgraph of G, then λ(H) ≤ λ(G).

Proof. Let λ(G) = m with corresponding labeling f : V (G) →{0,1, . . . ,m}. Then
g : V (H) →{0,1, . . . ,m}, defined by g(v) = f (v) for all v ∈V (H), is a labeling of
H that uses no label greater than m. Thus, λ(H) ≤ m = λ(G). The idea is we can
use the same labels we use on G to label the corresponding vertices of H . �

Proposition 3.4. λ(P4) = 3.

Proof. Since P3 is a subgraph of P4, from our previous result we know λ(P4) ≥
λ(P3) = 3. Figure 9 shows we can label P4 with no label greater than 3. Thus
λ(P4) ≤ 3 and the result follows. �

Proposition 3.5. λ(Pn) = 4 for n ≥ 5.

8 Andrew Lum

Proof. First, we show λ(P5) = 4. Figure 9 shows we can label P5 with no label
greater than 4. So, λ(P5) ≤ 4. We claim we can’t label P5 with just the numbers
0, 1, 2, and 3. The labels 1 and 2 cannot be assigned to any non-endpoint vertex
without violating either the adjacency rule or the distance two rule. To see this,
suppose one of the non-endpoint vertices of P5 were labeled 1. Then only the label
3 can be assigned to its neighbors without violating the adjacency rule. However,
if both its neighbors receive the label 3, the distance two rule is violated. So, this
leaves us with two labels (0 and 3) that must be assigned to the three non-endpoint
vertices. Again, by the pigeon hole principle, two of these vertices must receive
the same label, which necessarily violates the condition. So, λ(P5) = 4.

Next, we show λ(Pn) = 4 for n > 5. Let Pn be a path with more than 5 vertices.
Since P5 is a subgraph of Pn, we know λ(Pn)≥ λ(P5) = 4. Notice we can cyclically
repeat the labels in P5 (2, 0, 3, 1, 4, 2, 0, 3, . . .) and still get a proper labeling for
any Pn. Thus λ(Pn) ≤ 4 and the result follows. �

3.3. Cycles. Now let’s consider the labeling numbers of cycles. Recall that we
can get a cycle by adjoining the endpoints of a path.

Proposition 3.6. λ(Cn) = 4 for n ≥ 3.
Proof. Since C3 = K3, from Proposition 3.1, we have λ(C3) = 2(3)−2 = 4. Now
consider C4. Figure 10 shows we can label C4 with no label greater than 4. So,
λ(C4) ≤ 4. We claim we can’t label C4 with just the numbers 0, 1, 2, and 3.
Since every vertex is C4 is adjacent to two other vertices, we cannot use labels 1
and 2, as explained earlier, without violating the rules. This leaves us with two
labels (0 and 3) that must be assigned to the four vertices. Again, by the pigeon
hole principle, two of these vertices must receive the same label, which necessarily
violates the condition since any pair of vertices in C4 are at most distance two apart.
So, λ(C4) = 4.

FIGURE 10. An L(2,1)-labeling of C4

Now consider Cn, where n ≥ 5. Since Cn contains P5 as a subgraph, λ(Cn) ≥
λ(P5) = 4. Now we want to show λ(Cn) ≤ 4 by defining a labeling on Cn using no
label greater than 4. We have three cases. First, suppose n ≡ 0 (mod 3). Then we
can label our vertices (starting at one vertex and proceeding clockwise) 0, 2, 4, 0,
2, 4,. . . . Next, suppose n ≡ 1 (mod 3). Then we can label our vertices 0, 2, 4, 0, 2,
4,. . . , 0, 2, 4, 0, 3, 1, 4. If n ≡ 2 (mod 3), then we can label our vertices 0, 2, 4, 0,
2, 4,. . . , 0, 2, 4, 1, 3. This is illustrated in Figure 11. In each case, we repeat the
labeling 0, 2, 4 as many times as necessary. This completes the proof.

�

L(2,1)-Labeling 9

FIGURE 11. L(2,1)-labelings of C5, C6, and C7 (from left to right)

4. GREEDY LABELING

We now seek ways to L(2,1)-label graphs in general. We start with a greedy
labeling algorithm.

Algorithm 4.1 (Greedy labeling). For a given graph G with vertices v1, ...,vn, label
vertices in the order v1, ...,vn by assigning the smallest nonnegative integer s such
that |s− r| ≥ 2 for any r assigned to a lower indexed neighbor, and |s− t| ≥ 1 for
any t assigned to a lower indexed vertex at a distance 2.

So, given a graph with ordered vertices, we go through the vertices in order assign-
ing the smallest number that doesn’t violate any of our labeling conditions based on
the previously assigned labels. Figure 12 gives an example of a graph with ordered
vertices and its greedy labeling.

FIGURE 12. A graph with ordered vertices and its greedy labeling

Now we are able to prove an easy bound.

Theorem 4.2. Let G be a graph with maximum degree ∆. Then λ(G) ≤ ∆2 +2∆.

Proof. Arbitrarily order the vertices of G and perform the greedy labeling algo-
rithm. A vertex v ∈ V (G) has at most ∆ neighbors. Each of these neighbors can
rule out at most 3 labels for v (e.g. if v is neighbors with a vertex labeled 2, it can-
not be labeled 1, 2, or 3). For each neighbor of v, there are at most ∆− 1 vertices
a distance two from v (since we don’t consider v at distance two from itself). So
there are a total of at most ∆(∆−1) = ∆2 −∆ vertices a distance two away from v.

10 Andrew Lum

Each of these vertices can rule out at most 1 label for v. Thus when it comes time
to label v, there are at most 3∆+∆2 −∆ = ∆2 +2∆ numbers we must avoid. So, v
can be labeled with some number in {0,1,2, . . . ,∆2 +2∆}. Therefore, we have that
λ(G) ≤ ∆2 +2∆. �

5. THE CHANG-KUO ALGORITHM

Though the previous result is nice, we can do better. The result and proof pre-
sented in this section is due to Chang and Kuo [Cha, 1996]. Their method will
be the basis for proving the best known bound. We start with a definition and an
algorithm.

Definition 5.1. For any fixed positive integer k, a k-stable set of a graph G is a
subset S of V (G) such that every two distinct vertices in S are of distance greater
than k.

For example, in Figure 12, {v1,v4} form a 2-stable set since v1 and v4 are more
than a distance 2 apart. Similarly, {v2,v5} also form a 2-stable set. Notice that
every vertex in a 2-stable set can be assigned the same label without violating any
of our conditions. The next algorithm uses this idea to give a labeling scheme.

Algorithm 5.2. For any graph G, start with all vertices unlabeled. Let S−1 = /0.
When Si−1 is determined and not all vertices in G are labeled, let

Fi = {x ∈V (G) | x is unlabeled and d(x,y) ≥ 2 for all y ∈ Si−1}.
Choose a maximal 2-stable subset Si of Fi. Label all vertices in Si by i. Increase i
by one and continue the above process until all vertices are labeled.

FIGURE 13. K3

Example 5.3. To see how this works, let’s apply Algorithm 5.2 to K3 (shown in
Figure 13). First, we have all vertices unlabeled and

S−1 = /0.

Now we determine F0. Since all vertices, at this point, are unlabeled and it is
vacuously true that all vertices are at least a distance 2 from all vertices in the
empty set, we have that

F0 = {u,v,w}.
Next, we determine S0 by choosing a maximal 2-stable subset of F0 = {u,v,w}.
Let’s have

S0 = {u}

L(2,1)-Labeling 11

and label u with 0. Now we determine F1. Since no vertex is at least a distance 2
from u, we have

F1 = /0.

So
S1 = /0.

Now we determine F2. Since both of our remaining unlabeled vertices are at least
a distance 2 from all vertices in the empty set, we have that

F2 = {v,w}.
Next, we determine S2 by choosing a maximal 2-stable subset of F2 = {v,w}. Let’s
have

S2 = {v}
and label v with 2. Now we determine F3. Since no vertex is at least a distance 2
from v, we have

F3 = /0.

So
S3 = /0.

Now we determine F4. Since our remaining unlabeled vertex is at least a distance
2 from all vertices in the empty set, we have that

F4 = {w},
which means

S4 = {w}.
And we label w with 4. The finished labeling is shown in Figure 14.

FIGURE 14. K3 after applying Algorithm 5.2

Notice the difference between the greedy labeling algorithm and the Chang-Kuo
algorithm. The greedy labeling algorithm goes through each vertex and assigns it
the smallest possible label, whereas the Chang-Kuo algorithm goes through each
label and assigns it to a maximal set of possible vertices. As we will see, this
difference will allow us to establish a better bound.

Theorem 5.4. Let G be a graph with maximum degree ∆. Then λ(G) ≤ ∆2 +∆.

Proof. Let G be a graph with maximum degree ∆. Perform Algorithm 5.2 on G.
Let k be the maximum label used and let x be a vertex whose label is k. Let

12 Andrew Lum

I1 = {i | 0 ≤ i ≤ k−1 and d(x,y) = 1 for some y ∈ Si},
I2 = {i | 0 ≤ i ≤ k−1 and d(x,y) ≤ 2 for some y ∈ Si},
I3 = {i | 0 ≤ i ≤ k−1 and d(x,y) ≥ 3 for all y ∈ Si}.

Then we have
|I2|+ |I3| = k.(1)

Since the total number of vertices y with 1 ≤ d(x,y) ≤ 2 is at most ∆+∆(∆−1) =
∆2, we have

|I2| ≤ ∆2.(2)
Also, there are at most ∆ vertices adjacent to x so

|I1| ≤ ∆.(3)
Now for any i ∈ I3, x /∈ Fi. Otherwise, Si ∪{x} is a 2-stable subset of Fi, which
contradicts the choice of a maximal Si. This means d(x,y) = 1 for some vertex
y ∈ Si−1. So, i−1 ∈ I1. Thus,

|I3| ≤ |I1|.(4)
Therefore, combining (1), (2), (3), and (4) gives

λ(G) ≤ k = |I2|+ |I3| ≤ |I2|+ |I1| ≤ ∆2 +∆.

�

6. GONÇALVES BOUND

As we will see, the Chang-Kuo bound can be improved. The next result is due to
Gonçalves [Go, 2004] and is currently the best known bound for graphs in general.

Theorem 6.1. [Go, 2004] For any graph G with maximum degree ∆ ≥ 3, we have
λ(G) ≤ ∆2 +∆−2.

The proof for this theorem uses the Chang-Kuo [Cha, 1996] algorithm. Before
we proceed, however, it will be useful to look at a slight modification of the algo-
rithm.

Modified Chang-Kuo Algorithm. Let G be any graph on n vertices.
(1) Randomly order the vertices of G as v1, v2, . . . ,vn.
(2) Starting with label i = 0, consider the vertices in the chosen order and label

the vertex i if possible.
(3) After considering the last vertex vn, increase i by 1 and repeat until all

vertices are labeled.

Notice the difference between the original Chang-Kuo algorithm and the modified
version. In the original, we were given the freedom to choose a maximal 2-stable
set of vertices for each label. In the modified version, because we are assigning
an order to the vertices, we are forced to pick a specific maximal 2-stable set for a
given label. An example of a graph labeled using the modified Chang-Kuo algo-
rithm is given in Figure 15.

L(2,1)-Labeling 13

FIGURE 15. This graph was labeled using the modified Chang-
Kuo algorithm.

Notice that this algorithm assigns each class of labels greedily. That is, for each
label i, it considers the vertices in a given order and labels the vertex i if it can.
After reaching the last vertex, it increases i by one and starts over. Let l(v) be the
label the algorithm assigns to the vertex v. Note that if i > j, a vertex v j can only
forbid an adjacent vertex, vi, to be labeled l(v j) and l(v j) + 1. For example, in
Figure 15, the vertex v3 only forbids the labels 1 and 2 to vertex v4 (v3 would not
forbid the label 0 to v4 because when the algorithm considered whether or not to
label v4 with 0, the vertex v3 was unlabeled). Similarly, if i > j, a vertex v j can
only forbid a vertex at distance 2 (or two-neighbor), vi, to be labeled l(v j). For
example, in Figure 15, the vertex v3 only forbids the label 1 to v5. Thus, if we let
F(v j,vi) be the set of all labels forbidden by v j to vi, where i > j, then we have that

F(v j,vi) =











{l(v j), l(v j)+1}, if d(v j,vi) = 1 and i > j
{l(v j)}, if d(v j,vi) = 2 and i > j
/0, if d(v j,vi) > 2 and i > j

.

Suppose the algorithm considers the vertices in the order of v1, v2, . . . , vn. Note
that if i < j, then v j will not forbid the label l(v j) to vi because when the algorithm
considered whether or not to assign the label l(v j) to vi, the vertex v j was not yet
labeled. In this case, we say that v j is posterior to vi. For example, in Figure 15, the
vertex v5 would not forbid the label 2 to v2 because when the algorithm considered
whether or not to label v2 with 2, the vertex v5 was unlabeled. Thus, if i < j, we
have that

F(v j,vi) =

{

{l(v j)+1}, if d(v j,vu) = 1 and i < j
/0, if d(v j,vu) ≥ 2 and i < j

.

When i = j, we have F(v j,vi) = /0.
If we let F(v) be the set of all values forbidden to v, then we have that

F(v) =
[

u∈V (G)

F(u,v).

14 Andrew Lum

Since the algorithm labels v with the smallest value not in F(v), we have that
l(v) ≤ |F(v)|

≤ ∑
u∈V (G)

|F(u,v)|

≤ 2∆+∆(∆−1)

= ∆2 +∆.

To improve the ∆2 + ∆ bound we have to be careful on the order in which the
algorithm considers the vertices. So, to improve our bound to ∆2 +∆−2, we’d like
to assign an order to our vertices so that

• all vi, with i ≤ n−2, have 2 posterior neighbors or two-neighbors,
• l(vn−1) ≤ ∆2 +∆−2, and
• l(vn) ≤ ∆2 +∆−2.

For the first requirement, consider a graph G with spanning tree T rooted in
r. Order the vertices from the leaves to the root, so that any vertex v is indexed
lower than its parent. This ordering of a graph based on a rooted tree T is called a
T -ascending order. An example is given in Figure 16.

FIGURE 16. The vertices in this tree, rooted in v14, are indexed in
a T -ascending order.

We must have that r is ordered last and one of its children is ordered second to
the last. This ordering will ensure that all vi, with i ≤ n− 2, will have 2 posterior
neighbors or two-neighbors. Indeed, the vertices with parents and grandparents
will have 2 posterior neighbors or two-neighbors. Additionally, all the children of
vn (except for vn−1) will be neighbors with vn and two-neighbors with vn−1.

Now we want to be able to construct our spanning tree T and a T -ascending
order so that our last two requirements are met. To do this, we need the following
structural lemma.

Lemma 6.2. [Go, 2004] Every graph G with maximal degree ∆ ≥ 3 has either:
(1) a vertex v with degree less than ∆,
(2) a cycle of length three,

L(2,1)-Labeling 15

(3) two cycles of length four passing through the same vertex,
(4) a vertex v with three neighbors u, x, y, such that there is a cycle of length

four passing through the edge uv and such that the graph G\{x,y} is con-
nected, or

(5) a vertex u with two adjacent vertices v and w such that the graph G\X is
connected, where X is the set (N(v)∪N(u))\{w}.2

This lemma will allow us to prove the Gonçalves bound by cases.

Case (1) Suppose a graph G on n vertices has a vertex vn with degree less than
∆. Consider any spanning tree T of G rooted in vn. Now consider any T -ascending
order. Let’s look at vn. Since vn has degree less than ∆, it has at most ∆− 1
neighbors and (∆−1)2 two-neighbors. Thus, we have that

l(vn) ≤ |F(vn)| ≤ 2(∆−1)+(∆−1)2 < ∆2 +∆−2,

which takes care of the third requirement. Now let’s look at vn−1. It has at most ∆
neighbors, including vn which is posterior in the ordering, and at most ∆(∆−1)−1
two-neighbors. Thus, we have that

l(vn−1) ≤ |F(vn−1)| ≤ 2(∆−1)+1+∆(∆−1)−1 = ∆2 +∆−2,

which takes care of the second requirement.

Case (2) Suppose a graph G on n vertices has a cycle of length three passing
through the edge uv. Consider a spanning tree T rooted in v that uses the edge uv.
Now consider a T -ascending order such that u = vn−1 and v = vn. Notice that a
vertex in a cycle of length three has at most ∆(∆− 1)− 2 two-neighbors (the two
other vertices in the three cycle are not two-neighbors; see Figure 17). Thus we
have that both |F(vn)| and |F(vn−1)| are less than or equal to ∆2 + ∆− 2, which
fulfills the second and third requirement.

FIGURE 17. A three cycle. The vertex u has at most ∆(∆− 1)
two-neighbors. However, this formula counts both w and v, which
are both 1-neighbors.

Case (3) Suppose a graph G on n vertices has two cycles of length four passing
through the same vertex v. Let u be a neighbor of v in one of these cycles. Consider
a spanning tree T rooted in v that uses the edge uv. Now order the vertices in T -
ascending order with u = vn−1 and v = vn. Let’s look at vn−1. It has a posterior

2Here, N(v) denotes the set of all neighbors of v.

16 Andrew Lum

neighbor in vn and at most ∆(∆−1)−1 two-neighbors (the vertex opposite vn−1 in
the four cycle is counted twice; see Figure 18). So we have

l(vn−1) ≤ |F(vn−1)| ≤ 2∆−1+∆(∆−1)−1 = ∆2 +∆−2.

Now let’s look at vn. Since it has two different vertices opposite it in two different
four cycles, it has at most ∆(∆−1)−2 two-neighbors (see Figure 18). So we have

l(vn) ≤ |F(vn)| ≤ 2∆+∆(∆−1)−2 = ∆2 +∆−2.

FIGURE 18. Three possible configurations of two cycles of length
four passing through the same vertex v. The vertex u has at most
∆(∆− 1) two-neighbors, however, this formula counts the vertex
y twice. So, u really only has at most ∆(∆−1)−1 two-neighbors.
Likewise, the vertex v has at most ∆(∆−1) two-neighbors. How-
ever, this formula counts the vertices w and x twice. So, v really
only has at most ∆(∆−1)−2 two-neighbors.

Case (4) Suppose a graph G on n vertices has a vertex v with three neighbors u,
x, y, such that there is a cycle of length four passing through the edge uv and such
that the graph G\{x,y} is connected (see Figure 19). We construct a spanning tree
T of G rooted in v from a spanning tree of G\{x,y} by adding the edges vx and vy.
Since x and y are leaves in T , there is a T -ascending order such that x = v1, y = v2,
u = vn−1, and v = vn.

FIGURE 19. Three possible configurations for a vertex v with
three neighbors u, x, y, such that there is a cycle of length four
passing through the edge uv.

As in the previous case, the vertex vn−1 has a posterior neighbor vn and at most
∆(∆− 1)− 1 two-neighbors (since it is in a four cycle). Thus we have l(vn−1) ≤
∆2 +∆−2.

L(2,1)-Labeling 17

For vn, it also has at most ∆(∆−1)−1 two-neighbors (since it is in a four cycle),
which reduces the bound by 1. To reduce the bound by 1 again, we show that there
are two distinct vertices va and vb such that F(va,vn)∩F(vb,vn) 6= /0. In other
words, the vertices va and vb share a label forbidden to vn, which means we would
have double counted.

Since v1 is the first vertex in the order, the algorithm automatically labels it 0.
Since v2 is at distance 2 from v1, it cannot be labeled 0. Now we consider two cases
for the label of v2. See Figure 20. If l(v2) = 1, we have 1 ∈ F(v1,vn)∩F(v2,vn).
If l(v2) 6= 1, then it must have a neighbor vx labeled 0. Since vx is at distance two
from vn, we have 0 ∈ F(v1,vn)∩F(vx,vn).

FIGURE 20. When l(v2) = 1 (left), both v1 and v2 forbid the label
1 to vn. When l(v2) 6= 1 (right), both v1 and vx forbid the label 0
to vn.

Case (5) Suppose we are in none of the previous cases and that G has a vertex
u with two adjacent vertices v and w such that the graph G\X is connected, where
X is the set (N(v)∪N(u))\{w}. First, we construct a spanning tree of G\X . Then,
we add all the edges adjacent to u and all the edges adjacent to v to get a spanning
tree T of G rooted in v. Since the neighbors of u and v, except u, v, and w are leaves
in T , we can put them at the beginning of a T -ascending order so that

• w, u, and v are ordered vn−2, vn−1, and vn, respectively
• N(vn) = {vn−1,v1,v2, . . . ,v∆−1}
• N(vn−1) = {vn,vn−2,v∆,v∆+1, . . . ,v2∆−3}.

This is illustrated in Figure 21 when ∆ = 3. Note that since we are assuming we
are not in case 1, every vertex has degree ∆.

Again, since vn is a posterior neighbor to vn−1, we already reduce the bound on
l(vn−1) by 1. To reduce it by 1 more, like the previous case, we need to show that
there are two distinct vertices va and vb such that F(va,vn−1)∩F(vb,vn−1) 6= /0.
For vn, to reduce the bound on l(vn) by 2, we need to show that there are two dis-
tinct pairs of vertices va 6= vb and vc 6= vd such that F(va,vn)∩F(vb,vn) 6= /0 and

18 Andrew Lum

FIGURE 21. For ∆ = 3, for example, we have N(vn) =
{vn−1,v1,v2} and N(vn−1) = {vn,vn−2,v3}.

F(vc,vn)∩F(vd ,vn) 6= /0. Now we consider two cases for the size of ∆.

Case (5) with ∆ ≥ 4. Suppose ∆ ≥ 4. First, we want to find two distinct vertices
va and vb such that F(va,vn−1)∩F(vb,vn−1) 6= /0. Since ∆≥ 4, vn−1 is adjacent to v∆
and v∆+1. So, we have that d(v∆,v∆+1)≤ 2, which means l(v∆) 6= l(v∆+1). Without
loss of generality, we can assume l(v∆) < l(v∆+1). Now, if l(v∆+1) < l(v∆) + 2,
then l(v∆+1) ∈ F(v∆,vn−1)∩F(v∆+1,vn−1). So, assume l(v∆+1) ≥ l(v∆)+2. Then
there are two possible reasons why v∆+1 was not labeled l(v∆)+1:

(1) v∆+1 had a neighbor vx labeled l(v∆) or l(v∆)+1, or
(2) v∆+1 had a lower indexed 2-neighbor vy labeled l(v∆)+1.

In the first case, vx would be at distance two from vn−1 and we would have l(vx) ∈
F(vx,vn−1)∩F(v∆,vn−1). In the second case, if vy is labeled l(v∆)+ 1 before this
label is proposed to v∆+1, then y < ∆. So, vy is a neighbor of vn and a 2-neighbor
of vn−1. Thus, we would have l(v∆)+1 ∈ F(vy,vn−1)∩F(v∆,vn−1).

Now we turn our attention to vn. Recall that we want to find two distinct pairs
of vertices va 6= vb and vc 6= vd such that F(va,vn)∩F(vb,vn) 6= /0 and F(vc,vn)∩
F(vd ,vn) 6= /0. Let’s consider the labels the algorithm assigns to v1, v2, and v3.
Certainly, l(v1) = 0 since v1 is the first vertex considered. Now since v1, v2, and v3
are all at distance two from each other, they have different labels. Without loss of
generality, we can assume l(v1) < l(v2) < l(v3). We now consider different cases
for l(v1), l(v2), and l(v3).

• If these vertices are labeled 0, 1, and 2 (see Figure 22), the label 1 and
2 are each forbidden twice to vn. So, 1 ∈ F(v1,vn)∩F(v2,vn) and 2 ∈
F(v2,vn)∩F(v3,vn).

• If these vertices are labeled 0, 1, and l(v3) > 2 (see Figure 23), then v3
must have some neighbor vx labeled 0 or 1. Since vx is at distance two
from vn, we have 1 ∈ F(v1,vn)∩F(v2,vn) and l(x) ∈ F(v1,vn)∩F(vx,vn).

• If these vertices are labeled 0, l(v2) > 1, and l(v3) > 1 (see Figure 24),
then v2 and v3 must have respective neighbors vy and vz labeled 0. Since
we are assuming we are not in case 4, vy and vz must be distinct. Since vy
and vz are at distance two from vn, we have 0 ∈ F(v1,vn)∩F(vy,vn) and
0 ∈ F(v1,vn)∩F(vz,vn).

L(2,1)-Labeling 19

FIGURE 22. When ∆ = 4 and v1, v2, and v3 are labeled 0, 1, and 2.

FIGURE 23. When ∆ = 4 and v1, v2, and v3 are labeled 0, 1, and
l(v3) > 2.

Case (5) with ∆ = 3. Suppose ∆ = 3, as in Figure 21. Recall that we are
assuming we are in none of the previous cases. Then d(v1,v3) and d(v2,v3) are
greater than 1, otherwise we’d be in case 4. Notice that d(v1,v3) and d(v2,v3)
are also less than or equal to 3 by how we constructed our spanning tree with T -
ascending order (again, see Figure 21). So, d(v1,v3) and d(v2,v3) are either 2 or
3.

First, suppose d(v1,v3) = 3. Then v1 and v3 will both be labeled 0 according to
the modified Chang-Kuo algorithm. Thus, we have

0 ∈ F(v1,vn)∩F(v3,vn) and 0 ∈ F(v1,vn−1)∩F(v3,vn−1).
It remains to find another pair of vertices va 6= vb such that F(va,vn)∩F(vb,vn) 6= /0.
Now if l(v2) = 1, then 1 ∈ F(v1,vn)∩F(v2,vn). So, assume l(v2) 6= 1. Then v2
must have a neighbor vx labeled 0. Since we are not in case 4, vx is distinct from
v3. Thus, 0 ∈ F(v1,vn)∩F(vx,vn).

20 Andrew Lum

FIGURE 24. When ∆ = 4 and v1, v2, and v3 are labeled 0, l(v2) >
1, and l(v3) > 1.

Next, suppose d(v1,v3) = 2 and d(v2,v3) = 3. For this, we can permute the order
of the vertices v1 and v2. Doing so allows us to repeat the previous paragraph’s
argument verbatim.

Finally, suppose d(v1,v3) = d(v2,v3) = 2. Then there is a vertex vx adjacent to
v1 and v3 and a vertex vy adjacent to v2 and v3. The vertices vx and vy are distinct,
otherwise the vertex vx = vy would be neighbors with v1, v2, and v3, which would
make the graph G\{v1,v2,v3} disconnected. By construction of T , the edges v1vn,
v2vn, and v3vn−1 are the only edges in T incident to v1, v2, or v3. So, vx and vy are
not connected to T by its edges to v1, v2, or v3. So, these vertices have just one
adjacent edge in T and are leaves of T , which means we can order them as vx = v4
and vy = v5. We know that d(v1,v5) > 1 and d(v2,v4) > 1, otherwise G\{v1,v2,v3}
would be disconnected. Now we consider different cases according to d(v1,v5) and
d(v2,v4).

• Suppose d(v1,v5) > 2 (see Figure 25). Then we have l(v1) = l(v5) = 0
and l(v2), l(v3), l(v4) ≥ 2. Thus, 0 ∈ F(v1,vn−1)∩F(v5,vn−1) and 0 ∈
F(v1,vn)∩F(v5,vn). If l(v2) = 2, we have to consider if l(vn−1) = 1 or
not. If it were, then we’d have 1 ∈ F(v1,vn)∩F(vn−1,vn). If l(v2) = 2 and
l(vn−1) = 2, then v4 is labeled 3. Thus, 3 ∈ F(v2,vn)∩F(v4,vn). If l(v2) =
2 and l(vn−1) > 2, then v4 is labeled 2. Thus, 2 ∈ F(v2,vn)∩F(v4,vn). If
l(v2) > 2, it is because its unique neighbor vz, distinct from vn and v5 is
labeled 1. So, we have 1 ∈ F(v1,vn)∩F(vz,vn).

• Suppose d(v1,v5) = 2 and d(v2,v4) > 2. Then we can permute v1 with v2
and v4 with v5. Doing so allows us to repeat the previous argument.

• Suppose d(v1,v5) = d(v2,v4) = 2. Then we can permute v2 and v3 (see
Figure 26). With this ordering, the algorithm labels the vertices v1, v2,
v3, and v4 with labels 0, 1, 2, 3, respectively. Thus, 2 ∈ F(v2,vn−1)∩
F(v3,vn−1), 1 ∈ F(v1,vn)∩F(v2,vn), and 3 ∈ F(v3,vn)∩F(v4,vn).

L(2,1)-Labeling 21

FIGURE 25. When ∆ = 3 and d(v1,v5) > 2.

FIGURE 26. When ∆ = 3, d(v1,v5) = d(v2,v4) = 2. The figure
above shows the graph after we permute v2 and v3. Dotted lines
represent distance 2 relationships.

7. CONCLUSION

As mentioned earlier, the Gonçalves bound is the best general bound for graphs
to date. Though there is still no proof for the Griggs-Yeh conjecture in general, the
conjecture has been proven for several classes of graphs:

• graphs with ∆ = 2
• diameter 2 graphs [Gr, 1992]
• incidence graphs of a projective plane and polarity graphs of the Galois

plane [Gr, 1992]
• outerplanar graphs [Jo, 1993]
• chordal graphs [Sa, 1994]
• Hamiltonian cubic graphs [Ka, 2004]
• planar graphs with ∆ 6= 3 [Be, 2005]
• direct and strong products of graphs [Kl, 2006].

22 Andrew Lum

REFERENCES

[Be, 2005] Bella, Peter, Daniel Král, Bojan Mohar, and Katarı́na Quittnerová. Labeling planar
graphs with a condition at distance two. DMTCS proc. AE, (2005) 41-44

[Cha, 1996] Chang, Gerard J. and David Kuo. The L(2,1)-Labeling Problem on Graphs. SIAM J.
Disc. Math., Vol. 9, (1996) 309-316.

[Go, 2004] Gonçalves, Daniel. On the L(d,1)-labelling of graphs. LaBRI, U.M.R. 5800, Université
Bordeaux I (March 2004), 1-9.

[Gr, 1992] Griggs, Jerrold R. and Roger K. Yeh. Labelling Graphs with a Condition at Distance 2.
SIAM J. Disc. Math., Vol. 5, No. 4, (November 1992) 586-595.

[Ka, 2004] Kang, J.H. L(2,1)-labeling of 3-regular Hamiltonian graphs. Ph.D. Thesis, University
of Illinois, Urbana-Champaign, IL, 2004.

[Kl, 2006] Klavžar, S. and S. Špacapan The ∆2-conjecture for L(2,1)-labelings is true for direct and
strong products of graphs. IEEE Transactions on Circuits and Systems II, Vol. 53, No. 4, (April
2006) 274-277.

[Kr, 2003] Král, Daniel and Riste Škrekovski. A Theorem about the Channel Assignment Problem.
SIAM J. Disc. Math., Vol. 16, No. 3, (2003) 426-437.

[Jo, 1993] Jonas, K. Graph Coloring Analogues With a Condition at Distance Two: L(2,1)-
Labelings and List λ-Labelings. Ph.D. Thesis, Dept. of Math., Univ. of South Carolina,
Columbia, SC, 1993.

[Ro, 1988] Roberts, F.S. (1988) private communication to J.R. Griggs.
[Sa, 1994] Sakai, D. Labeling chordal graphs: distance two condition. SIAM J. Disc. Math., Vol. 7,

(1994) 133-140.
[We, 1993] West, Douglas B. Introduction to Graph Theory. 2nd Ed. Prentice Hall, (1993).

WHITMAN COLLEGE
E-mail address: lumaa@whitman.edu

