
ON MODELING, MONEY, AND BANDITS

by

Benjamin P. Keefer

A thesis submitted in partial fulfillment of the requirements

for graduation with Honors in Mathematics.

Whitman College

2008

Certificate of Approval

This is to certify that the accompanying thesis by Benjamin P.

Keefer has been accepted in partial fulfillment of the requirements

for graduation with Honors in Mathematics.

Douglas R. Hundley, Ph.D.

Whitman College

May 06, 2008

i

Contents

1 Introduction 1

2 Preprocessing Data 1

2.1 Finding the Best Basis . 2

2.2 The Singular Value Decomposition 16

3 Neural Networks 25

4 Data Clustering 36

4.1 The LBG Algorithm . 39

4.2 Kohonen’s Map . 41

4.3 The Neural Gas Algorithm . 50

5 The Modeling Approach: A Case Study 53

5.1 The n-armed Bandit Problem 53

5.2 Analytical Formulation . 57

5.3 Initial Trials . 61

5.4 Economic Theory . 64

5.5 Further Scenarios . 66

6 Conclusion 75

A Choice of α 75

B Data for the Empirical Application 78

ii

List of Figures

1 The original clown picture . 23

2 The reconstructed clown pictures with 5 and 10 vectors 24

3 The reconstructed clown picture with 20 and 30 vectors 24

4 The letter A . 27

5 Other letters . 28

6 The neural network architecture. 30

7 Processing the signal in the ith cell 33

8 Estimating the first component of the target 34

9 Example clustering . 37

10 Example Voronoi diagram . 38

11 Initial allocation and lattice structure 42

12 Hypothetical allocation . 43

13 Initial placement . 48

14 Placement after Kohonen’s Map 50

15 Obstacle course and the neural gas topology 52

16 A stationary time series and a nonstationary one 54

17 Returns for assets in round 1 62

18 Returns for assets in rounds 1 and 2 62

19 Returns for assets for all rounds 63

20 Performance of portfolios of U.S. stocks and bonds from 1958–

2008 . 67

iii

21 Performance of portfolios of U.S., U.K., and Japanese stocks

from 1970–2008 . 69

22 Allocation in Japanese stocks on left and in gray with Japanese

stock index in black and on the right under the contrarian

algorithm. 70

23 Performance of portfolios of U.S. stocks and the EAFE index

from 1970–2008 . 72

24 Cascades for simulations 1, 2, and 3, respectively 73

25 A summary of the three simulations 74

26 Returns for each α in scenario 1 76

27 Returns for each α in scenario 2 77

28 Returns for each α in scenario 3 78

iv

1 Introduction

In this paper, we first review the modeling process and then apply it to a

problem in portfolio analysis. We begin by proving the Best Basis Theorem

and the Singular Value Decomposition and showing how we can use them to

make a data set easier to analyze. From there, we discuss data clustering

techniques and neural networks. Although we originally intended to use these

clustering algorithms and neural networks to forecast the asset returns in our

portfolio-analysis application, we instead choose to frame the application

in terms of the n-armed bandit problem. We find however, that even this

approach proves problematic and we then analyzed why. The conclusion will

summarize our results.

2 Preprocessing Data

Preprocessing a data set X, represented as an m×n matrix, generally has two

purposes: to make it smaller and simpler. The two techniques discussed in

this section are the Singular Value Decomposition (SVD) and the Best Basis

Theorem. The SVD gives us a representation of X that is easier to work with.

It allows us to decompose an m× n matrix into a product of an orthogonal

m × m matrix, an m × n diagonal matrix, and another n × n orthogonal

matrix. These matrices have other important properties as well, though we

will discuss these properties more fully later. This decomposed product of

X can then be used to find the Best Basis of the data set, which is simply

1

a subset of elements of a basis of X that “best” (in terms of minimizing the

least-squares error) reproduces the original data set.

2.1 Finding the Best Basis

The Basis Theorem allows us to take a multivariate data set and find a more

compact representation. This means that if we have an m × n data set X

with m data points in Rn, then we would want to find a way to represent

each data point in Rk with k < n in order to reduce the complexity of our

data. Of course there is a tradeoff between conveying most of the original

information and reducing the number of coordinates.

In his textbook, David Lay [2] gives an example of how it can be applied

to satellite images. He presents three images of Railroad Valley, Nevada using

different spectral bands. Using the Best Basis Theorem (also called Principal

Component Analysis), he creates a new picture, in which each pixel is a linear

combination of the pixels from the three original pictures. This new picture

also portrays a wider range of light than any of the original pictures. The

general idea is to choose combinations of the original variables that seem

important and ignore the elements of the basis that appear unimportant.

For example, the line of best fit is the one-dimensional data set that best

describes a higher dimensional data set. If we wanted to approximate a two-

dimensional data set in a single dimension, all we would need is the line of

best fit equation and the x-coordinates. We could then proceed to drop the y-

coordinates from our data and still preserve our approximations. Condensing

2

a data set in this fashion makes it easier to analyze and takes less memory

because fewer coordinates are needed.

First, we will describe what we mean by the Best Basis and then show

how to find it. Suppose we have an arbitrary array of data as defined below:

X =

x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

Consider the row vectors of X, denoted x(1), x(2), . . . , x(m). Each of these row

vectors is an element of Rn.

Generally, when we talk about the Best Basis, we are referring to the

“best” k−dimensional basis, for some k between 1 and n − 1. Our goal is

to find a specific basis Φ, with elements {φ1, φ2, . . . , φn}, from which we can

draw the k vectors that “best” represent X. Remember that we want to

reduce the number of coordinates in each data point, so k is at most n− 1.

As we will see in the proof of the Best Basis Theorem, it is easy to find the

Best single-dimensional Basis of X and then to add the next k − 1 vectors

one at a time. So we will construct Φ one element at a time.

Last, we need to be able to determine which of two bases is better. Gen-

erally speaking, one basis is better than another if it allows us to more ac-

curately reproduce the row vectors of X. For example, suppose we have the

3

data set

X =

1 3 1 2

3 7 1 6

2 5 1 4

and the orthogonal basis

Φ =

1

0

0

0

,

0

1

0

0

,

0

0

1

0

,

0

0

0

1

,

with φi being the i(th) element from the left in Φ. Notice that X is 3× 4 and

each data point x(i) is an element of R4. Also note that R4 is spanned by Φ.

In order to reduce the dimensionality of the data set, we need to choose k

between 1 and 4. Let k = 3. If we wanted to condense the data even further,

we could also choose k to be 1 or 2. Suppose we wanted to represent X as

best we could with the following three elements of Φ:

1

0

0

0

,

0

1

0

0

,

0

0

0

1

.

Using these vectors, we can approximate the three data points (i.e., row

4

vectors of X) as

x̃(1) = φ1 + 3φ2 + 2φ4

x̃(2) = 3φ1 + 7φ2 + 6φ4

x̃(3) = 2φ1 + 5φ2 + 4φ4

with X then represented as

1 3 0 2

3 7 0 6

2 5 0 4

 .

If we denote the error for the ith observation as x
(i)
err = |x(i) − x̃(i)|, then

it is easy to show that ‖ x(i)
err ‖= 1 and that ‖ x(i)

err ‖2= 1 for each i. We

will determine whether one basis is better than another by comparing their

associated average squared error. Had we tried to represent X using any

other choice of three elements from Φ, our total error would have been even

larger. You can see this for yourself if you try choosing other three element

combinations from Φ. This means that {φ1, φ2, φ4} is the three element

subbasis of Φ that “best” represent X. Note that this does not mean that

these elements are the best 3−dimensional basis for X. All this shows is that

of the 4 possible combinations of 3 element combinations considered here,

this combination is best. The goal of the Best Basis theorem is to first find

Φ and then to choose the k best elements of Φ.

5

We give a simplified form of the Best Basis Theorem below but first we

will need a few final definitions. We define the centroid of the data set as the

average point. If the data set is m× n with m observations in Rn, then the

average point is a vector in Rn. We can calculate the centroid by averaging

the entries in each of the columns, one column at a time. For example, in

X =

1 3 1 2

3 7 1 6

2 5 1 4

the centroid is calculated as

1+3+2
3

3+7+5
3

1+1+1
3

2+6+4
3

=

2

5

1

4

and the mean subtracted representation for X is

1− 2 3− 5 1− 1 2− 4

3− 2 7− 5 1− 1 6− 4

2− 2 5− 5 1− 1 4− 4

 =

−1 −2 0 −2

1 2 0 2

0 0 0 0

 .

We first subtract the centroid in order to make it easier to find the best

basis. Recall that in statistics, the line of best fit passes through the mean

6

(x, y) pair. Subtracting the mean forces the line of best fit to pass through

the origin. Once we know that the line of best fit passes through the origin,

then we know that the y−intercept is 0 and all that is left to find is the slope.

An analogous simplification occurs in higher dimensional data sets that are

mean subtracted.

We have one last remark. We will need what is called the covariance

matrix C of X. The formula for C is given by

C =
1

m
XTX, (1)

where m is the number of observations in the data set. We will also as-

sume that the best basis is orthonormal. If it was not, we could use the

Gramm-Schmidt process to convert the basis to an orthogonal form and

then normalize it. Now we are ready for the Best Basis Theorem:

The Best Basis Theorem. Suppose that:

• X is an m× n mean-subtracted data matrix of m points in Rn.

• C is the covariance matrix of X

Then the best k-element basis Φ of X is found by taking the first k eigenvec-

tors of C, when arranged by eigenvalues from largest to smallest.

Another way to think of the Best Basis is that it is a k-dimensional set that

is associated with the smallest average squared error. Earlier, we introduced

error as ‖ x(i)
err ‖2, which was the squared Euclidean distance between each

7

original data point and its new approximation. If x(i) is a row vector of X,

then x(i) ∈ Rn because X is m × n. Since Φ is a basis of Rn, then we can

write x(i) as a linear combination of the elements of Φ:

x(i) = a1φ1 + a2φ2 + . . .+ anφn,

for some real-valued constants a1, a2, . . . , an and where φ1, φ2, . . . , φn are vec-

tors in the basis Φ. If we choose the first k elements of Φ to approximate

x(i), then we have

x(i) ≈ a1φ1 + . . .+ akφk.

Then we can write the residual, or the part left out of the approximation,

of x(i) as xerr = ak+1φk+1 + . . . + anφn. The error associated with the basis

φ1, φ2, . . . , φk is simply the squared magnitude of the residual:

‖ x(i)
err ‖2=‖

n∑
j=k+1

ajφj ‖2 .

If we have m data points (or row vectors), the average squared error is

1

m

m∑
i=1

‖ x(i)
err ‖

2
.

In order to find the best k-element basis of X, denoted Φ, we will have to

minimize the average squared error.

The sketch of the proof of the Best Basis Theorem was provided by Doug

8

Hundley [3] from Whitman College. The proof consists of two parts:

1. Converting the minimization problem into a maximization problem

that is easier to solve.

2. Solving the maximization problem.

To find the best basis, we will first show that the least-squares error

associated with the ith observation in the data set can be measured as

‖ x(i)
err ‖

2
=

n∑
j=k+1

〈φj,Cφj〉 .

Since for a general vector v:

‖ v ‖= 〈v,v〉 = vTv,

then we note that the error for the ith observation, ‖ x(i)
err ‖

2
is equivalent to

the product
〈
x

(i)
err, x

(i)
err

〉
. Given that x

(i)
err = a

(i)
k+1φk+1 + . . .+ a

(i)
n φn with each

φj orthonormal to the others, we can expand the error as

‖ x(i)
err ‖

2
=

n∑
j=k+1

(a
(i)
j)2φTj φj =

n∑
j=k+1

(a
(i)
j)2

because φTj φj = 1 and φTj φi = 0 for j 6= i.

Each a
(i)
j , where a

(i)
j corresponds to coefficients on the jth element of the

9

basis Φ for the data point x(i), can be written as

(x(i))Tφj =
〈
x(i), φj

〉
=
〈
a

(i)
1 φ1 + a

(i)
2 φ2 + . . .+ a(i)

n φn, φj

〉
= a

(i)
j

since the elements of Φ are orthonormal. Then by rearranging the terms of

the inner product, we can write the error as

‖ x(i)
err ‖

2
=

n∑
j=k+1

(a
(i)
j)2 =

n∑
j=k+1

〈
a

(i)
j , a

(i)
j

〉
=

n∑
j=k+1

〈
(x(i))

T
φj, (x

(i))
T
φj

〉
=

n∑
j=k+1

φTj x
(i)(x(i))

T
φj.

The average error is the mean of the m individual errors. From what we

have shown thus far, the average error is equal to

1

m

m∑
i=1

‖ x(i)
err ‖

2
=

m∑
i=1

1

m

(
n∑

j=k+1

(a
(i)
j)2

)

=
m∑
i=1

1

m

(
n∑

j=k+1

φTj x
(i)(x(i))

T
φj

)
.

In the above expressions, notice that we now have double summation. The

summation from i = 1 to m is across all m data points. The summation

j = k+ 1 to n is across the n− k elements of Φ excluded from the k element

sub-basis we are considering. Notice that for each j, with k + 1 ≤ j ≤ n, we

10

can rewrite
∑m

i=1 φ
T
j x

(i)(x(i))Tφj as

φTj

[m∑
i=1

x(i)(x(i))T
]
φj

because φj is independent of the choice of the ith data point. Therefore,

the inner product form is
〈
φj,
[∑m

i=1 x
(i)(x(i))T

]
φj
〉
. We want to write the

summation on the inside of the inner product in terms of the covariance

matrix C = 1
m

XTX. Since X = [x(1) . . . x(m)]T , we can rewrite C as

C =
1

m
[x(1) . . . x(m)][x(1) . . . x(m)]T

=
1

m

m∑
i=1

x(i)(x(i))T

through matrix multiplication. We are now ready to relate the average error

to the covariance matrix C. Remember from before that

1

m

m∑
i=1

‖ x(i)
err ‖

2
=

1

m

m∑
i=1

(
n∑

j=k+1

(a
(i)
j)2

)

=
1

m

n∑
j=k+1

m∑
i=1

(a
(i)
j)2

=
n∑

j=k+1

m∑
i=1

1

m

(
φTj x

(i)(x(i))Tφj
)
.

Since for each j we know that
∑m

i=1 φ
T
j x

(i)(x(i))Tφj =
〈
φj,
[∑m

i=1 x
(i)(x(i))T

]
φj
〉
,

11

we can convert to inner product form and shift the summations as follows

1

m

m∑
i=1

‖ x(i)
err ‖

2
=

n∑
j=k+1

(〈
φj,
[1

m

m∑
i=1

x(i)(x(i))T
]
φj

〉)
.

Since the summation on the inside of the inner product is equivalent to C,

we can rewrite the average error as

1

m

m∑
i=1

‖ x(i)
err ‖

2
=

n∑
j=k+1

〈φj,Cφj〉 .

To minimize the average error and find the best basis, we need to minimize

n∑
j=k+1

〈φj,Cφj〉 .

To find the best 1-dimensional basis, let k = 1. Since

n∑
j=1

〈φj,Cφj〉 =
1∑
j=1

〈φj,Cφj〉+
n∑

j=1+1

〈φj,Cφj〉 ,

then minimizing
∑n

j=2 〈φj,Cφj〉 is the same as maximizing φT1 Cφ1. That is,

to minimize the error all we need to do is to find the best projection.

How can we find the best projection? We will employ the Spectral Theo-

rem for Symmetric Matrices from Lay’s Linear Algebra text [2]. Recall that

if X is an m × n matrix, then C = 1
m

XTX must be n × n and therefore

symmetric. By the Spectral Theorem, we can orthogonally diagonalize C

12

into its eigenvectors {vi}n1 and eigenvalues {λ}n1 with

C = λ1v
T
1 v1 + λ2v

T
2 v2 + . . .+ λnv

T
nvn = V ΛV T

and V V T = V TV = I. In the above decomposition, Λ is a diagonal matrix

of eigenvalues and V has the eigenvectors of C for columns with transpose

V T . Assume that the eigenvectors and corresponding eigenvalues are ordered

so that the eigenvalues are arranged from largest to smallest. Also, assume

that the eigenvectors are orthonormal (since they are already orthogonal, it

would be very easy to make them orthonormal if they were not already). Let

φ be an arbitrary vector in Rn with ‖ φ ‖= 1. Since φ ∈ Rn, it must be

some linear combination of the eigenvectors of C. Furthermore, we can find

a real-valued vector α such that

φ = α1v1 + α2v2 + . . .+ αnvn = V α.

Remember that in order to find the best projection, we needed to max-

imize φTCφ. If ‖ φ ‖= 1, then ‖ φ ‖2= φTφ = 1 and so we would need to

maximize φTCφ
φTφ

. Since φ = V α (where V is the matrix of eigenvectors), then

φTCφ = αTV TV ΛV TV α = αTΛα

13

which can be expanded to λ1α
2
1 + λ2α

2
2 + . . .+ λnα

2
n. Since

φ = α1v1 + α2v2 + . . .+ αnvn

with the eigenvectors orthonormal, then

φTφ = α2
1 + . . .+ α2

n.

Putting the numerator and the denominator together, we obtain

φTCφ

φTφ
=
λ1α

2
1 + . . .+ λnα

2
n

α2
1 + . . .+ α2

n

.

Since λ1 is larger than λ2, . . . , λn, then

λ1α
2
1 + . . .+ λnα

2
n

α2
1 + . . .+ α2

n

≤ λ1α
2
1 + . . .+ λ1α

2
n

α2
1 + . . .+ α2

n

≤ λ1.

Observe that equality holds only when φ = v1.

Thus, we have shown that the best 1-dimensional orthonormal basis is

observed by taking the first leading eigenvector from the covariance matrix.

To find the best 2-dimensional orthonormal basis, we would take the next

leading eigenvector (with the second largest eigenvalue). Although this com-

pletes the proof, some explanation may be helpful. We started this proof

by constructing a measurement of error for each possible basis. We argued

earlier that the best basis is the one associated with the smallest average

14

error. For a single dimensional basis, the error is minimized when φT1 Cφ1 is

maximized. Since we do not initially know what Φ looks like, φ1 can be any

vector in Rn. So we need to consider all vectors in Rn in order to find the

best single dimensional basis. If we let φ represent an arbitrary element in

Rn with ‖ φ ‖= 1, then we have shown that

φTCφ

φTφ
≤ λ1

and that equality holds only when φ = v1. So the vector that maximizes

φT1 Cφ1 is v1.

Now we will let φ1 = v1. That is, we will choose the first element of the

basis as v1. Then we will try to find the next vector in the best basis. By

the argument we just made, we would want to choose φ2 = v2 and repeat

this process until we have chosen the k leading eigenvectors.

So this means that we initialize the elements in the best basis one at a

time. This is convenient because it means we can keep adding elements to

the basis until we are satisfied. So we can choose k as we construct the basis;

we stop adding elements when we are satisfied with the size of the average

error

1

m

m∑
i=1

‖ x(i)
err ‖ .

So what does this all mean? In his original example, Lay found the 3× 3

covariance matrix for the image of Railroad Valley (the original data had 4

million vectors) and created a new image by taking the leading eigenvector

15

of the covariance matrix expansion. This image captured approximately 93

percent of information provided by the original data using much less mem-

ory. He also found that two pictures would capture all but 1.2 percent of

the original information. When considering your own m × n data set, you

can continue adding eigenvectors to the basis until you capture a previously

determined percentage of the information in the data set. For example, to

convert a 3-dimensional data set into a 2-dimensional data set, you would

need to find the plane in R2 that best preserves your data and force each

point not on the plane to its closest neighbor on the plane.

2.2 The Singular Value Decomposition

The Singular Value Decomposition (SVD) is an important result in applied

linear algebra. David Lay and Doug Hundley ([2],[3]) say that some appli-

cations include finding the least-squares solution (or finding one of many

generalized least-squares solutions), estimating the rank of a given matrix,

finding the pseudo-inverse of any matrix (it need not be n × n), and con-

structing bases for the four fundamental subsets of a matrix (i.e., the null

space, the column space, the null space of the transpose, and the column

space of the transpose). It is also helpful in finding the Best Basis. The rest

of this section will be devoted to giving a proof of the SVD and explaining

how it ties into the Best Basis.

Since we are talking about the Singular Value Decomposition, it would

be nice to know what a singular value is. If we have an m × n matrix A,

16

then we will call the singular values as the square roots of the eigenvalues of

the matrix ATA. In our proof of the SVD, we will show why these values are

significant.

The Singular Value Decomposition. Let A be any m×n matrix of rank

r. Then

A = UΣV T

where U is an orthogonal m × m matrix constructed from the eigenvectors

of AAT , V is an orthogonal n × n matrix constructed from the eigenvectors

of ATA, and Σ is an m × n diagonal matrix of singular values (with each

singular value computed as the square root of an eigenvalue of ATA).

The following proof was sketched by Hundley in his work [3], though any

mistakes are my own. Let A be an m × n matrix. Then consider the n × n

symmetric matrix ATA. It is symmetric because (ATA)T = ATA. By the

spectral theorem of symmetric matrices, ATA is orthogonally diagonalizable

into V DV T where the columns of V are orthogonal eigenvectors of ATA and

the corresponding entries of the diagonal matrix D are their eigenvalues.

Denote the eigenvalues of ATA (the entries of D) as {λi}ni=1 and the corre-

sponding orthonormal eigenvectors as {vi}ni=1. To obtain the orthonormal

eigenvectors, simply divide the entries of the columns of V by the magnitude

of the corresponding column vector.

First, we will need to show that all the eigenvalues of ATA are non-

negative. Let λi be an eigenvalue of ATA with corresponding orthonormal

17

eigenvector vi. Then

‖ Avi ‖2 = (Avi)
TAvi = vTi A

TAvi = vTi (λivi) = λi.

Since ‖ Avi ‖2 is nonnegative, so is λi.

Suppose that the rank of ATA is r. Then the dimension of Null(ATA)

is n− r because if ATA has n columns, r of which are linearly independent,

then it must have n − r columns that are linearly dependent. The rank of

the null space of ATA is n− r. Since A has n columns, if the the null space

has rank n− r, then the rank of A is likewise r.

To show that Null(A) has rank n − r, we will first suppose W is the

subspace spanned by the eigenvectors corresponding to the eigenvalues of

ATA equal to zero. Clearly, if w ∈ W . Then w is in Null(ATA). Suppose

now that w ∈ Null(ATA), then w is an eigenvector with an eigenvalue of 0

because ATAw = 0 ×w = 0. Therefore, w ∈ W . So we can conclude that

W = Null(ATA) and the two vector spaces must also share the same rank

n− r. Since ATA has rank r, then both Null(ATA) and W have dimension

n− r. This means we have n− r eigenvectors of ATA with eigenvalues equal

to 0. If w ∈ W , we have that

‖ Aw ‖2 = wTATAw = wT0w = 0

18

and so w ∈ Null(A). Moreover, if w ∈ Null(A), then

ATAw = AT (Aw) = AT0 = 0

and so Null(A) must have rank n− r and A must have rank of r.

We define the singular values of A as σi =
√
λi. Recall that we showed

that ‖ Avi ‖2 = λi earlier. This implies that the eigenvalues are non-negative

and that σi is well-defined. Then construct the vectors

ui =
1√

‖ Avi ‖2
Avi =

1

σi
Avi

and the matrix U having columns ui as its ith column when λi 6= 0. Remem-

ber from the theorem that we wanted to construct U as an m×m orthogonal

matrix. But we only have r vectors ui where λi 6= 0. So we need m− r more

columns for U , with each column in Rm.

We know that AAT is m×m with rank r. If it has m−r eigenvectors with

eigenvalues equal of zero then we may be able to use these eigenvectors to fill

in the missing columns of U . In fact, stealing the eigenvectors corresponding

to the zero eigenvalues of AAT will make things work out nicely, as we will

see.

At this point, we have two objectives. To make U orthogonal, we will

need to show that if i 6= j, then ui and uj are orthogonal. To make U have

dimensions m ×m, we will need to show that AAT has m − r eigenvectors

19

with an eigenvalue of 0. To prove the first, it is sufficient to show that the

mapping v → Av preserves the orthogonality of the eigenvectors of ATA.

Suppose vi and vj are two such eigenvectors with i 6= j. Then

〈Avi, Avj〉 = vTj A
TAvi

= vTj (λivi)

= λi 〈vi,vj〉

= λi · 0 = 0,

and the linear transformation v → Av preserves orthogonality of the eigen-

vectors of ATA.

To show that AAT has m−r eigenvectors with a corresponding eigenvalue

of 0, we will need to show that Null(AAT) has rank m − r. Recall that we

earlier assumed Null(ATA) has rank n − r and then proved that A must

then have rank r. That means A has r pivot positions in reduced echelon

form. Recall that the pivot columns of A provide a basis for ColA and that

the rows of A corresponding to the pivot rows of the reduced echelon form

provide the basis for the RowA. Since RowA=ColAT and since there are r

pivot positions, then there are r pivot rows and AT has rank r. This means

that Null(AT) has rank m− r. Now if Null(AT) differed from Null(AAT) we

would arrive at a contradiction because we showed earlier that Null(ATA)

and Null(A) must have the same rank.

Therefore, we can find m−r orthogonal eigenvectors from the orthogonal

20

decomposition of AAT (since it too is symmetric) with 0 eigenvalues and

use these eigenvectors to fill the columns of U . To show that the original r

vectors {u1,u2, . . . ,ur} are indeed eigenvectors of AAT (we already showed

orthogonality), notice that

AATui = AAT
1

σi
Avi = A

1

σi
λivi = λi

(
A

1

λi
vi
)

= λiui.

Thus, the columns of U are also orthogonal eigenvectors of AAT .

If we construct the diagonal m× n matrix from the n singular values of

ATA, with Σ = diag(σ1, . . . , σn), then all that is left to prove for the SVD

is that A = UΣV T . We will now proceed with this last step. Consider AV .

By matrix multiplication,

AV = [Av1 . . . Avn]

= [σ1u1 . . . σnun]

21

since ui = 1
σi
Avi. Notice that

UΣ = [u1 . . .un . . .um]

σ1 0 . . . 0 . . . 0

0 σ2 . . . 0 . . . 0

...
...

. . .
...

...
...

0 0 . . . σn . . . 0

0 0 0 0 . . . 0

...
...

...
...

...
...

0 0 0 0 . . . 0

= [σ1u1 . . . σnun].

So AV = UΣ. Since V is an n × n orthonormal matrix, it has inverse V T ,

and so we have proved that A = UΣV T . �

How does this relate to finding the Best Basis? Recall that the Best Basis

for a data set X (with data entries as row vectors) was found by taking the

leading eigenvectors of the covariance matrix C. If we apply the Singular

Value Decomposition to X and rewrite X as UΣV T (and drop all zero rows

and columns of Σ until it is a k × k matrix, with similar changes to U, V T),

then notice that

C =
1

m
XTX =

1

m
V ΣUTUΣV T = V

(1

m
Σ2
)
V T .

Thus, the Best Basis for the row space of X comes from taking the first k

leading eigenvectors of V . With the SVD, we no longer need to first find C

and then its spectral decomposition. Instead, we can apply the SVD to X

22

directly.

As an application of the SVD and the Best Basis, let us now consider

the clown image in Figure 1 provided by MATLAB. This image is stored as

Figure 1: The original clown picture

a matrix of numbers. How big can these matrices get? In MATLAB, they

can get very big [1]. A picture is composed of what we call pixels, which

is short for “picture elements.” If a picture has a lot of pixels, we say that

it has a high resolution. Each pixel is a rectangular square, and the grid of

these pixels form the picture. These pixels form the building blocks of the

picture.

One example of a type of image with color is a true color image, which

we can think of a matrix of size m×n with entries in R3. The m corresponds

to the number of rows of pixels and n the number of columns of pixels in

the image. For each point on the m × n matrix, we have a vector in R3

corresponding to the amount of red, green, and blue desired. So a 3.2 million

pixel camera would need 9.6 million entries in R associated with it.

Suppose we want to know how many vectors are needed before we get an

23

identifiable image. We can use the SVD to decompose the image’s matrix

and then create bases from the eigenvectors of the decomposition. Let us

look first look at images produced by bases of dimensions 5 and 10.

Figure 2: The reconstructed clown pictures with 5 and 10 vectors

The images in Figure 2 are not rendered well, although the image pro-

duced by ten vectors is at least recognizable. It looks like we will need to

include more vectors in the bases. Let us now look at images produced by

bases of dimensions 20 and 30 as shown in Figure 3.

Figure 3: The reconstructed clown picture with 20 and 30 vectors

Notice that although these images are much clearer, the colors are no-

24

ticeably muted (although readers in gray-scale may not be able to tell the

difference). If we included more and more vectors, our image would slowly

begin to look almost exactly like the original. However, since we are choosing

the best vectors first, then each vector adds less and less to the picture and

chances are that we would need a lot of vectors before we had an image that

looked exactly like the original.

According to Lay [2], if we define the total variance of X as the sum of

the entries along the diagonal of C, denoted as the trace of C or tr(C), then

we can think of λi
tr(C)

as the information of X collected by the ith eigenvector

of C. If we decide that we want to preserve 90 percent of the information of

X, then we can continue selecting eigenvectors of C until

n∑
i=1

λi
tr(C)

≥ 0.90.

3 Neural Networks

A neural network is a function that assigns each input to an output that

closely approximates a desired target. Since we generally use neural networks

for classification or identification, then our target can be thought of the group

or label we want to assign our input to. Although there are many different

representations, the most typical form is called the three-layer feed-forward

network, which we will focus on in this paper. For this type of neural network,

the inputs, the outputs, and targets are generally vectors, with the targets

25

and outputs having the same number of components.

Potential applications are numerous. One example is character recog-

nition. Other applications mentioned by Steven Gonzalez [4] include con-

verting printed text into audio form, playing backgammon, and “diagnosing

automobile engine misfires.” In MATLAB’s implementation of the character

recognition neural network, the neural network for character recognition is

a function f : N35 → N26. It uses the method of steepest descent, a multi-

variate form of Newton’s Method using the gradient instead of the slope, to

estimate parameters that collectively represent a local minimum for the error

of the estimates. This process is called training. The goal is for the com-

puter to be able to identify which letter was drawn. To accomplish this task,

it must first read an image, translate it into a vector in N35 and then find

parameters that will successfully assign each vector to a vector in N26, which

will represent a unique letter of the alphabet. In order to find such parame-

ters, the computer needs to first be able to analyze a data bank of previous

images of known letters and then develop a mechanism that correctly assigns

the image to the correct letter. We will discuss how this is accomplished in

more detail later. The rest of this section will be dedicated to understanding

how a neural network functions, and we will use the character recognition

example to illustrate the process.

In MATLAB’s implementation, the image to be read is first broken up

into thirty-five rectangles of equal size (see Figure 4 for an example). This

character is saved as a vector ~x ∈ N35, with each component of ~x corre-

26

sponding to a rectangle in the image. If writing is present in the box, the

corresponding component of ~x is assigned a value of 1. Otherwise, the com-

ponent is assigned a value of 0. In the example of the letter A, we would

take the image of the letter A given in Figure 4 and start from the top-left

Figure 4: The letter A

corner (moving right and then down) and construct a vector ~x ∈ N35 with

an entry 1 if the corresponding rectangle in the image has writing in it and 0

in the absence of writing (the color red, or lighter shade of gray if printed in

black-and-white, indicates writing). When translating the letter A, we would

create the vector

~x = [0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 . . .]T

Other letters are displayed in Figure 5.

After we have translated the image of the letter into a vector ~x ∈ N35, we

will need to teach the computer how to identify which letter is portrayed in

the image using the vector ~x. We will do this through a neural network, but

we will also need a surjective function mapping the vector ~y ∈ N26 produced

27

Figure 5: Other letters

by the neural network to a letter in the alphabet. This letter will represent

the computer’s best estimate of which letter is shown in the image.

MATLAB’s algorithm for mapping the output of the neural network to a

letter is relatively straight-forward. With 26 letters in the alphabet, MAT-

LAB creates a numerical label ~y ∈ N26, with a single entry having a value of

1 corresponding to the letter’s position in the alphabet (for example, since A

is the first letter in the alphabet, the corresponding vector in N26 has a 1 in

its first entry). All other entries are coded 0. For example, the appropriate

target for the letter A would be

~y = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .]T .

Since most people do not write letters as composed of thirty-five rect-

angles, how would we interpret partially-filled rectangles? Notice that in

MATLAB’s implementation, all letters are composed of rectangles. So this

is a not an issue. If the entire rectangle is not filled in, we could also take

28

the percentage of the area of each rectangle filled, and round to either 0 or

1.

Now that we have taken the letter A, assigned it a vector representation ~x

and created a numerical label ~y for its target, we can begin training a neural

network. This means, we need to find the parameters that best map each ~x

to its target vector ~y.

What form does a neural network take? The neural network discussed

here has a three-layer feed-forward architecture and is generally non-linear.

We say three-layer because we have an input layer, a processing–or hidden–

layer, and an output layer. The neural network is also understood as a

connected graph, with movement moving from the input layer to the hidden

layer and finally to the output layer (hence feed-forward). In the input layer,

we break up each input vector into its components. So if we have a vector

~x ∈ N35 representing our input vector, we would take each component of ~x

and assign it to a node, equivalent to a vertex in Graph Theory, in the input

layer. In fact, it is important to know that each node in the graph of the

neural network (see Figure 6) represents a real number. The output layer is

where we recombine the results from the processing layer to form a vector

ŷ ∈ N26 that will represent our output.

How does the neural network map N35 → N26? The process is not simple.

The key to understanding how a neural network works is the processing layer.

The processing layer is important because each node in the processing layer

takes some linear combination of the entries in the input vector, adds them

29

e e e eq q q q q q q q output layer
y1 yN

e e e e e eq q q q q q q q hidden layer

e e e eq q q q q q q qx1 xn
input layer

Q
Q
Q
Q
Q
Q
Q
Q

S
S
S
S
S
S

S
S
S
S
S
S

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

S
S
S
S
S
S

�
�
�
�
�
�

�
�
�
�
�
�
�
�

!!!!!!!!!!!!!

����������������

!!!!!!!!!!!!!

����������������

���������������������

PPPPPPPPPPPPPPPP

aaaaaaaaaaaaa

Q
Q
Q
Q
Q
Q
Q
Q

XXXXXXXXXXXXXXXXXXXXX

PPPPPPPPPPPPPPPP

aaaaaaaaaaaaa

�
�
�
�
�
�
�
�

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q
Q

aa
aa

aa
aa

aa
aa

a

PP
PP

PP
PP

PP
PP

PP
PP

��
��
��
��
��
��
��
��

!!
!!
!!
!!
!!
!!
!

�
�
�
�
�
�
�
�

S
S
S
S
S
S

Q
Q
Q
Q
Q
Q
Q
Q

�
�
�
�
�
�

S
S
S
S
S
S

aa
aa

aa
aa

aa
aa

a

PP
PP

PP
PP

PP
PP

PP
PP

XXX
XXX

XXX
XXX

XXX
XXX

XXX

���
���

���
���

���
���

���

��
��
��
��
��
��
��
��

!!
!!
!!
!!
!!
!!
!

�
�
�
�
�
�

S
S
S
S
S
S

Figure 6: The neural network architecture.

together, and spits out a number close to either 1 or 0 depending on whether

the linear combination is sufficiently large. This number is then passed to

each of the output nodes, multiplied by a real constant, and then combined

with the outputs of other nodes from the processing layer. If we focused

instead on the signal (or input vector ~x) instead of its entries, we would see

that there are three steps involved in the processing layer:

• Amplifying each component of a signal ~x by linear weight from the

vector ~wT and summing the components of the resulting product

~x→ ~wT~x.

• Adding the product to the to base state b (if the total sum is sufficiently

larger than b, then we want the processing node to return a 1, otherwise

0)

~x→ ~wT~x+ b.

30

• Processing the combined signal using the formula

σβ(x) =
1

1 + e−βx
.

The function σβ(x) = 1
1+e−βx

(for an arbitrary constant β) is important

because it is continuous and is also differentiable. Moreover, it will usually

return a number close to 1 or close to 0. We use this form for theoretical

calculations (e.g., when we want to take the derivative of σβ). In actual

MATLAB code, Doug Hundley [3] generally uses the inverse tangent func-

tion after normalizing the data (i.e., µ = 0, σ = 1). The advantage of this

approach is that for numbers close to zero, the inverse tangent function will

return a number close to zero. For numbers between one and three, the

inverse tangent function will return a number close to one. If the data is

normally distributed, then over 99 percent of the data will fall within three

standard deviations of the mean, which means that less than one percent of

normally-distributed data would fall outside of the interval [−3, 3].

A neural network is a mathematical simulation of how neurons in the

brain work. Biologically, neurons have rest states, as represented by b, and

when receiving a signal, will either fire a signal to the next neuron in the

brain or will not. In this model, the processing layer is the neuron, the input

is the signal from the previous neuron and the output is the signal sent to

the next neuron. For more complex networks, we can have more than one

hidden layer but one hidden layer is often sufficient.

31

The signal coming from each node in the hidden layer is either 1 or 0,

representing whether the neuron fires a signal or not, respectively. The vector

~w contains the constants used to amplify the components of the input vector

to a particular node (the entire signal ~x is sent to each hidden layer node). For

our computations, we will need a different vector with real numbered entries

for each node in the hidden layer. Then when we transfer the processed

signal from the hidden layer to the output layer, we will need another set

of vectors ~w to amplify the signal going to the output layer. The goal of

training a neural network is to find entries for each of these weight vectors

that minimize the error.

Let us now turn our attention to exactly how the signal is processed in

a typical hidden layer node. If we turn back to Figure 6, we notice that

each node in the hidden layer is connected to every input node. That means

for each node in the hidden layer, we will need a real-valued constant to

amplify each component of the inputted signal. In the character recognition

example, the input has 35 entries. Thus, for each node we will need a vector

of weights ~w with thirty five entries, each entry corresponding to the entry

in the input vector. Then we will take the dot product of ~x and ~w, add it to

the real-valued rest state b, a real number, to get what we call the prestate.

If this new sum is large enough, σ will map it to a number roughly equal to

1. Else, σ will map it to a number close to 0. The image of the combined

signal under σ is called the state. In summary, if we consider the ith node

in the hidden layer and a signal ~x ∈ Rn with weight vector ~wi (also in Rn),

32

we have:

~x→ ~wi
T~x+ bi︸ ︷︷ ︸

Prestate

→ σ
(
~wi
T~x+ bi

)︸ ︷︷ ︸
State

.

A graphical representation of this process is given in Figure 7.

output layer

e
σβ((~wi)

T~x+ b)

((~wi)
T~x+ b)

A
A
AAU

hidden layer

e e e eq q q q q q q qx1 xn
input layer

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�

���
���

���
���

���
���

���

Figure 7: Processing the signal in the ith cell

If we have more than one hidden layer node, we will need a separate weight

vector ~wi for each node. In this case, let W (0) denote the matrix of weight

vectors for each of the k hidden layer cells with W (0)T = [~w1 ~w2 . . . ~wk]
T . Let

the entries of ~b(0) represent the initial states of each of the k hidden layer

nodes. Since each of the signals coming out of the hidden layer toward the

output layers will need to be similarly processed, we will need another matrix

of weights and another vector of initial states for the output layer. Denote

this matrix and this vector as W (1) and ~b(1), respectively.

Then the first processing of the signal yields:

~x→ (W (0))T~x+~b(0) → σ((W (0))T~x+~b(0)).

33

Then we can calculate our estimate, ŷ, of our target ~y using

ŷ = W (1)T [σβ((W (0))T~x+~b(0))] +~b(1),

as shown in Figure 8.

e output layer

y1 = (~w)T [σβ((W (0))T~x+~b(0)] + b(1))

e e e e e eq q q q q q q q hidden layer

e e e eq q q q q q q qx1 xn
input layer

S
S
S
S
S
S

�
�
�
�
�
�

!!!!!!!!!!!!!

����������������

���������������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q
Q

aa
aa

aa
aa

aa
aa

a

PP
PP

PP
PP

PP
PP

PP
PP

��
��
��
��
��
��
��
��

!!
!!
!!
!!
!!
!!
!

�
�
�
�
�
�
�
�

S
S
S
S
S
S

Q
Q
Q
Q
Q
Q
Q
Q

�
�
�
�
�
�

S
S
S
S
S
S

aa
aa

aa
aa

aa
aa

a

PP
PP

PP
PP

PP
PP

PP
PP

XXX
XXX

XXX
XXX

XXX
XXX

XXX

���
���

���
���

���
���

���

��
��
��
��
��
��
��
��

!!
!!
!!
!!
!!
!!
!

�
�
�
�
�
�

S
S
S
S
S
S

Figure 8: Estimating the first component of the target

In Figure 8, we only estimated y1, the first component of ŷ. To finish

the mapping we would have to estimate the other N − 1 components of ~y

originally shown in Figure 6. Figure 6 and the explanation above describe

how the signal is processed by a neural network to map the input vector ~x

to some estimate of the target vector ŷ ≈ ~y. But how are the entries of W (0)

and W (1) chosen? The entries are chosen to minimize the error. Observe we

can write the error for the transformation of any one vector ~x→ ŷ as

E =‖ ~y − ŷ ‖2 .

Assuming no initial state vectors ~b(0) and ~b(1), the error will be a function of

34

the weight matrices W (0) and W (1). If we have 1, 000 vector pairs (in this

case, images of letters) in the data set, then we can calculate the average error

by totaling the individual errors and dividing by 1, 000 (average error is by

definition the total error divided by the number of observations). MATLAB

uses a technique called back-propagation of error that gives you a way to

calculate the gradient of the error function as you change the parameters of

the weight matrices. The gradient is then used by the method of steepest

descent to find entries for the weight vectors that minimize the error. Using

this information, it is possible to then approximate entries that represent a

local minimum of the error. With repeated initializations, it is possible to

get close enough to entries associated with the global minimum. This process

is called training. For more information, see Hundley [3].

In the character recognition example, we use a data bank of images of

letters to train the neural network and obtain values for the entries of the

weight matrices. Once we have trained the neural network, it is possible to

scan new (and possibly illegible) images and correctly identify the character

without human intervention. If we wanted to increase the accuracy of our

network, we could consider using more than 35 rectangles, more hidden layer

nodes, or a larger data bank of images, though at the cost of processing

power.

What are the drawbacks to neural networks? Well for one, deciding upon

the architecture and the number of hidden nodes needed is not trivial. In ad-

dition, neural networks are data-intensive, requiring an exhaustive amount

35

of data. Consequently, they are primarily used for identification, charac-

terization, and recognition purposes and less so for time series forecasting,

though they may be applied to forecasting exchange rates and other data

where availability is not an issue. A final drawback, as far as economics is

concerned, is that statistical significance and values of coefficients are hard

to tease out of the neural network.

4 Data Clustering

In the previous section, we learned about neural networks. In the charac-

ter recognition sample, we knew ahead of time that there were twenty-six

different letters in the alphabet. So each image could be mapped to one of

only twenty-six vectors in N26. These vectors are called labels because they

allows us to know how many groups or targets we will need. In the character

recognition sample, we need to assign each input to one of twenty-six vectors.

Without labels, we would have more difficulty grouping letters. The best

we could do is to group similar looking letters together. If we grouped a

collection of letters, then we would expect to get at most 26 groups. Though

typically, we do not know how many groups will be needed a priori. Data

clustering is one way of tackling this problem. It is useful for reducing the

dimensionality of a data set and classifying unknown data entries into groups.

Consider the data points in Figure 9. Each point lies in R2. The goal

of data clustering is to assign each cluster to a single point in the cluster’s

36

neighborhood. In many circumstances, we want the centroid of the cluster.

When the data points are already grouped together in clear and distinct

bunches, our task is easy. However, this is not always the case.

t tt tt

t ttt
ttt -

t

t
t

Figure 9: Example clustering

Consider data set X, an m× n matrix. Then each row vector, x(i) ∈ Rn.

We will use Voronoi Cells to partition Rn into k cells, each cell with a specific

center. Voronoi Cells will be instrumental when partitioning our data into

groups. We give a definition below provided by Hundley [3].

Definition. Let {c(i)}ki=1 be points in Rn. These points define k Voronoi

Cells, where the jth cell is defined as:

Vj = {x ∈ Rn such that ‖ x− c(j) ‖≤‖ x− c(i) ‖, i = 1, 2, . . . , k}

If the distances of the data point to the centers of two different cells, we

assign x to the cell with the smallest index.

In other words, we assign a data point to Voronoi Cell j if the distance

37

(e.g., under the Euclidean metric) from the center of Vj to the data point is

less than or equal to the distance of the data point to every other center.

If the data lie in R2 as in Figure 9, then we can partition a bounded

rectangle around the points as given in Figure 10. Here, each data point is

assigned to one of three cells, each with its own center. To draw Voronoi

cells, first draw dashed lines connecting adjacent centers, followed by solid

lines perpendicularly bisecting each of the dashed lines. These solid lines

form the boundaries of the Voronoi Cells.

r rr r r
e

@
@
@
@
@
@
@
@

r rr r
e
�
�
�
�
�
�
�
�

r r r
e

Figure 10: Example Voronoi diagram

Notice that the centers in Figure 10 are not well placed. Ideally, we would

want to have a similar number of data points in each cell and to avoid empty

cells. Fortunately, we have three algorithms to help us. They are the LBG

algorithm, the Self-Organizing Map, and the Neural Gas Algorithm.

38

4.1 The LBG Algorithm

Of the three algorithms, the LBG is the simplest computationally. It uses a

membership function and measurement of error in order to move the centers

that represent the Voronoi Cells. The membership function allows us to par-

tition the data set X into groups. For all three algorithms, the membership

function assigns a data point x ∈ X to the ith Voronoi Cell if the distance

between x and c(i) is less than or equal to the distance between x and all of

the other centers. Mathematically, if we are trying to assign each data point

to one of p groups, we could write the membership function as:

m(x) = i iff ‖ x− c(i) ‖= min
j=1: p

{‖ x− c(j) ‖}. (2)

We also need some measure of how good a center represents the data

points in the cell. Denote the number of data points in the ith cell as Ni and

the total number of data points as N . Then for any one cluster, we define

the distortion error for the cell i as:

Ei =
1

Ni

N∑
k=1

‖ x(k) − c(i) ‖ (χi(x
(k)))

where χi((x
(k))) = 1 if x(k) is assigned to the ith cell, otherwise χi((x

(k))) = 0.

Because of the χi(x
(k)) term, only cells assigned to the ith center by the

membership function will contribute to the distortion error of the ith cell.

With the Euclidean metric on Rn, the center that minimizes the error will be

39

the centroid of the data in the cell. Also, we can define the total distortion

error as the sum of the distortion errors of each of the p cells.

LBG Algorithm. Let X be a matrix of N data points, and let C denote

a matrix of p centers. We randomly initialize p centers and reassign each

center to minimize the total distortion error. Then we:

• Assign each data point to center of cluster based on Equation 2.

• Make the new center the centroid of data in the cluster.

• Repeat as long as distortion error is decreasing.

Note that the p centers are chosen randomly and then the cells are drawn.

From there, the centers are then placed in the centroid of the cell. The cells

are redrawn with the centroids chosen as the new centers. This process

continues as long as the distortion error is declining.

Notice that in this algorithm there is no penalty for empty cells in the

error calculation. So if a center originally placed with 0 data points, then

the cell has no centroid and the center will not move unless by chance other

data points are added to the redrawn cells. Moreover, the error for an empty

Voronoi Cell is 0, even though empty cells are indicative of a poor grouping.

So empty cells are not penalized and may remain empty throughout the

iterations. While the LBG algorithm will certainly improve upon a randomly

initialized assignment of p centers, the overall fit of the data can be heavily

dependent on the initial clustering. For example, if we placed p centers

40

throughout the plane, we may very well obtain 3 empty cells in one run

while in another we may obtain none.

Although the LBG is the fastest of the three algorithms discussed here to

implement, it is not without its drawbacks. For instance, the choice of p, the

number of centers to use in the data set, is arbitrary and we could still end

up with empty cells as in Figure 10. To prevent empty cells from occurring

we could choose random data points to be our first centers. However, even

this adjustment only guarantees that our initial cells have at least one data

point, which is only slightly better than having empty cells. This is because

the center will continually be assigned the value of the data point unless

other data points are somehow added to the cell.

Together, the dependency of the quality of the clustering on the initial

placement and the need for an arbitrary choice of p are two of the biggest

drawbacks of the LBG. Fortunately, the Self-Organizing Map and the Neural

Gas Algorithm will overcome these limitations.

4.2 Kohonen’s Map

Kohonen’s Map (also called the Self-Organizing Map), improves upon the

LBG Algorithm because it gives us a powerful way to tailor the placement

of centers to fit the data. In each iteration of the algorithm, the LBG only

allows us to move the center within a given Voronoi Cell. Kohonen’s Map,

on the other hand, allows us to shift the centers, to move the boundaries,

and to affect the membership of the data points.

41

The general idea of Kohonen’s Map is that we will take a structure (e.g.,

a rectangular or hexagonal lattice) of vertices and edges and impose it upon

a data set. Then we will invoke the algorithm to adjust the placement of the

centers and the distances between the center until the structure is tailored

to the distribution of the data.

Consider the picture displayed in Figure 11. If we suspect that the data

r rr r r

r r rr

r r r
e1

e3

e2

e4
e

e

3

2

4

1e

e

Figure 11: Initial allocation and lattice structure

can be clustered into a rectangular-like shape, then we would want a rectan-

gular relationship defining our lattice of connections. After establishing our

lattice, we would randomly place the centers in the data set as shown on the

left. On the right side, the solid lines represent the boundaries of the Voronoi

Cells and the dashed lines the connection between the cells. Notice that the

connections are also rendered on the left side. If we choose the correct pa-

rameters for our algorithm, we should be able to get the clustering given in

Figure 12. Notice that in Figure 12, neighbors in the lattice from Figure 11

42

r rr r r

r r rr

r r re1e4

e2

e3

Figure 12: Hypothetical allocation

are neighbors in the diagram and that the distribution of the centers mirrors

the distribution of the data points. This is what we mean when we say that

we will impose the lattice on the data and tailor it to match the density of

the data. We are preserving the relationships from the lattice in the data set.

Ideally, we would like to also ensure that points close together in the data set

will be assigned to centers close together in the original lattice. This kind of

mapping is called a topology preserving. Kohonen’s Map does not guarantee

that the assignment is topology preserving, although it does preserve the

data density.

So how does Kohonen’s Map work? Suppose we had wanted to impose the

lattice from Figure 11 on the data with the initialization of centers shown

in the picture. Now we will need some way to update the centers. The

general idea is that we will choose a random point x from the data, and

move all centers toward it. However, we will want to move the closest center

43

cw the most and centers farther away by a smaller amount. This allows us to

increase the fit of the centers one at a time while having a minimal impact

on the centers far away. However, we move all of the centers by some amount

to ensure that all the centers will be placed inside the region containing the

data points.

For Kohonen’s Map, we will need two metrics: dI(i, w) and d(x and cw).

To measure distances between centers, we will use dI(i, j), which gives the

distance between the ith and jth centers. The easiest metric is simply the

number of edges connecting the centers in the lattice. In Figure 11, we would

let dI(1, 1) = 0, dI(1, 2) = 1, and dI(1, 3) = 2. The other metric d(x, y) is

what we will use to measure the distances between data points or between a

data point and a center. For our purposes, we will use the standard Euclidean

metric.

We will also need a little more notation in order to understand how the

centers are updated. Let c(i)(k) denote the center of the ith cell at time k.

Then c(i)(k + 1) refers to the center of the ith cell at time k + 1. Let xk be

the randomly chosen data point at time k with closest center cw. We will

denote the distance between cw and c(i)(k) as dI(i, w). Also, we need two

parameters ε(k) and λ, that control the size of the shift and the separation

between the centers, respectively.

Then the formula for updating the ith is:

c(i)(k + 1) = c(i)(k) + ε(k) ∗ exp

(
−d2

I(i, w)

λ(k)2

)
(x− c(i)(k)),

44

with all terms in this formula as they were defined in the preceding para-

graphs. This formula shifts all centers in the direction of x but shifts the

closest center, cw, by ε(k)×e0 = ε(k). The next closest center will be shifted

by

ε(k)× e
−12

λ(k)2 ,

which will be less than ε(k) for values of λ(k) < 1. The centers further away

in the lattice will hardly move at all. Thus, every iteration, we are moving

each center in the direction of the randomly chosen data point and changing

the distance between the centers. As we randomly cycle through the data

points, our centers will generally move toward the centroids of the clusters,

and will distribute themselves to match how the data is spread out in Rn.

Generally, we desire adaptability early on, when we are tailoring the struc-

ture the the data; and stability later, when we wish to preserve the previously

unfolded structure. Let εi and λi be the initial values of our parameters with

εf and λf denoting the final values. We generally choose εi and λi to be rela-

tively large and εf and λf to be relatively small. If we want each of these pa-

rameters to slowly approach their final values, we can let ε(k+ 1) = εi(
εf
εi

)
k

tmax

and λ(k + 1) = λi(
λf
λi

)
k

tmax where tmax is the number of iterations in the al-

gorithm. This way, during the initial cycle, k = 0 and (ε(k), λ(k)) = (εi, λi).

During the last cycle, k = tmax, and (ε(k), λ(k)) = (εf , λf). Now we are

ready for Kohonen’s Map algorithm.

Kohonen’s Map.

45

• Initialize εi, εf , λi, λf , tmax

• Choose random x ∈ X

• Find closest center, cw

• Update all centers:

c(i)(k + 1) = c(i)(k) + ε(k) ∗ exp

(
−d2

I(i, w)

λ(k)2

)
(x− c(i)(k))

• Update λ, ε.

• Repeat until tmax cycles have been achieved.

After a sufficient number of cycles (there is no good way of estimating an

optimal value for tmax beforehand), the centers will generally move toward

each of the centroids of the data clusters. Kohonen’s Map is sometimes called

Self-Organizing Map because the original structure, whether a rectangular

lattice or a sphere, will contort itself to match the data. In Figure 11, we

saw that the original lattice spread out to match the data. The centers were

placed inside clumps of data points, and the neighbors of the centers in the

square lattice were also neighbors in the data set. Of course, this approach

assumes we know an appropriate structure to impose upon the data, which

may not always be the case (especially for data with higher dimension). For

this reason, we will also want to consider the Neural Gas algorithm, which

allows us to construct the connections between centers.

46

Before we begin discussing the Neural Gas Algorithm, let us instead con-

sider an application of Kohonen’s Map provided by Doug Hundley [3]. Sup-

pose we were in charge of designing the layout of a zoo and that the zoo

would house one of each of the following sixteen animals:

• Doves, hens, ducks, geese, owls, hawks, and eagles

• Foxes, dogs, and wolves

• Horses, zebras, and cows

• Cats, tigers, and lions

To simplify the layout for visitors, we would want animals with similar char-

acteristics close by. That is, we would want to place the birds in one general

cluster, the canines in another, the felines in a third, and the remaining large

mammals in a fourth.

If we inspected each of the animals, we could easily make observations

about size (small, medium, or large), structure (two legs or four legs, hair,

hooves, mane, and feathers) and whether it likes to fly, run, or swim. With

twelve characteristics, we could construct vectors in R12 for each of the an-

imals, with each entry corresponding to a binary variable of whether the

animal had a specified characteristic. So our data is in R12 but our zoo lay-

out is in R2. We will want to use Kohonen’s map to place animals that share

similar vectors in R12 next to each other in our blueprints.

If we just randomly place the animals on the map, our blueprints would

appear something like Figure 13. To generate Figure 13, we created a hexag-

47

Figure 13: Initial placement

onal grid in R2 with each vertex representing a possible cage location. Then

we assigned each cage to a random point in R12. Last, for each data point

representing an animal, we found the closest center and wrote the animal’s

name in the location in the center’s position in the lattice. Admittedly, the

choice of hexagonal was arbitrary. We could have easily used a triangular or

rectangular grid as well.

Observe that under the random initialization of centers, the dog is as-

signed to a Voronoi Cell next to the cow. Hence, on the grid, they appear as

neighbors. Also, we see that the goose and the horse are adjacent, and the

cat and the dove are nearby. Not only is this setup confusing for visitors but

frankly, we might be concerned for the dove’s safety.

In order to place similar animals next to each other, we could now proceed

48

to update the centers according Kohonen’s Map. Unfortunately, MATLAB

does not provide a graphical interface to watch the centers get updated. How-

ever, from our understanding of Kohonen’s Map, we know that somewhere in

R12 centers adjacent in the grid will slowly be pulled closer together. Since

animals sharing common features are generally close by in R12, the result is

that the centers that are neighbors on the lattice will gradually be pulled

closer to the locations of those same neighbors in R12. Even though the data

points of the animals are stationary, the end result is that at the end of

the algorithm, centers that are close according to the lattice will be placed

around similar animals. Also, centers that are relatively far from each other

in the lattice will drift apart. This helps ensure that similar animals are

assigned to centers close together on the lattice.

The specific center to which each animal is assigned to is shown in Fig-

ure 14, though the hexagonal lattice showing the connections between centers

is not visible. Neither are the centers corresponding to empty Voronoi Cells

visible. From the picture, we can see that Kohonen’s Map did a pretty good

job. Notice how the birds are grouped in the lower right, the large mammals

in the lower left, and the felines in the center left. Only the wolf, the dog,

and the fox are spread out. Overall, Kohonen’s Map arranged the animals

by similarities relatively well. In fact, some very similar animals were placed

on top of each other in Figure 14. This means that two similar animals were

placed in the same Voronoi cell, though this might be something we would

want to correct if we were in charge of the zoo.

49

Figure 14: Placement after Kohonen’s Map

4.3 The Neural Gas Algorithm

The Neural Gas Algorithm is the final data clustering algorithm we will con-

sider. The main difference between Kohonen’s Map and the Neural Gas Al-

gorithm is that Kohonen’s Map presumes a lattice to be imposed on the data

set. The Neural Gas Algorithm finds a structure hidden in the data through

a topology preserving map. The algorithm constructs the map by creating

connections between neighboring centers during each iteration. We will only

discuss the Neural Gas Algorithm from a general perspective because most

of the details are similar to Kohonen’s Map.

In the Neural Gas Algorithm, we will first need to randomly place the

centers. We choose a random data point x and find its closest center cw,

where w denotes the “winning” center because it is closest. We will use the

50

distance metric again to find the center closest, but not equal, to cw, which we

will denote as c1. Then we will connect the two centers and rank all centers

based on their proximity to cw. In Figure 15 connecting two centers simply

means that we draw an edge between them. We can construct an ordering

on the p centers based on their proximity to cw, which we will denote as

V = {w, i1, i2, i3, . . . , ip−1}. At a given moment of time, V (j) will represent

the index of the j(th) closest center to cw. Our metric for the Neural Gas

Algorithm is then

dng(i, w) = j − 1

where i has position j in V . Alternatively, we could also say that V (j) = i.

This means that dng(w,w) = 1− 1 = 0, which is one of the requirements for

dng to be a metric.

Next, we move all centers toward the data point, with those closest to

cw (according to dng) moving more than those further away. If cw and c1

are not reconnected within a certain amount of time (as measured by cycling

through data points), then we will disconnect them. In Figure 15 we would

disconnect two vertices by removing the edge connecting them. After tmax

iterations have transpired, the connections still present will be the ones in

our topology preserving map.

When would we use the Neural Gas Algorithm instead of Kohonen’s Map?

Doug Hundley [3] provides the following example. Suppose we were trying to

navigate an obstacle course where empty regions indicated obstacles and blue

51

dots where it is safe to travel (see Figure 15). To navigate the course, all we

need to know is a path between a finite number of points. In order to make it

simpler to analyze, we would want to use the Neural Gas Algorithm to assign

each point to a cluster and then connect neighboring clusters. When we run

the Neural Gas Algorithm in MATLAB, we find that the path represented by

the solid lines in Figure 15 is safe to travel. Notice that in this example, we

Figure 15: Obstacle course and the neural gas topology

are not concerned about the shapes of the Voronoi Cells, only the topology

preserving map joining their centers.

52

5 The Modeling Approach: A Case Study

This application was originally conceived as an attempt to use learning algo-

rithms to guide investment strategies. Our idea was that gambling paradigms

could be used to select investments. We formulated strategies based on the

n-armed bandit problem. After collecting some data–which is described in

the appendix–we discovered that gambling paradigms are fundamentally ill-

suited for investments. The rest of this section is dedicated to understanding

why our gambling models provided poor results and adjusting our approach

in light of our findings.

5.1 The n-armed Bandit Problem

What is the n-armed bandit problem? Suppose we enter a room that has

n slot machines with the goal to make as much money as possible. To do

so, we will have to estimate the payouts of the different machines and stick

with those that are most profitable. We will need to balance the need to

explore the payouts of all of the slot machines with the need to exploit the

machine we think is optimal. This tradeoff is at the heart of the n-armed

bandit problem. In his work [3], Hundley gives three strategies, each with

varying measures of exploration and exploitation.

It is worth mentioning that this approach assumes that the payouts are

what we call stationary, which simply means that the distribution of payouts

is generally consistent over time. In contrast, a nonstationary time series is

53

one in which the expected value or variance of the data changes over time.

Figure 16 gives an example of a stationary sequence on the top and a non-

Figure 16: A stationary time series and a nonstationary one

stationary time series on the bottom. The upper series is stationary because

the expected value and the variance of the series are generally constant. If

we look at the lower time series, we can see that the distribution changes.

You can even see a faint V-shape in the data while there are also instances

54

of two or three sequential years that are characterized by extreme volatility.

These two trends suggest that not only does the variance change, but so does

the expected value. So the data is clearly nonstationary.

However, if the data set is stationary, then the n-armed bandit model

works. So let us now introduce some some notation. Let

Q(a) = The expected payout for slot machine a.

Define Qt(a) as our average return for slot machine a. We could calculate

Qt(a) =
r1 + r2 + . . .+ rna

na

with na indicating the number of times we have played slot machine a and

ri, for 1 ≤ i ≤ na, denoting the return for the ith trial of slot machine a. We

will use Qt(a) as our estimate for Q(a). If we assume that the probabilities

do not change as we continue to play, then the law of large numbers states

that the returns for a particular slot machine must converge to the expected

return after arbitrarily many trials. That is

lim
t→∞

Qt(a) = Q(a).

To execute our strategies, we will need to initialize Q0(a) = 0 for all n

slot machines. The first algorithm is the Greedy Algorithm, which says to

exploit the slot machine with the highest payout. In the presence of a tie,

55

then we would randomly select one. Define at+1 as the machine we select at

time t + 1. By the Greedy Algorithm, we would then choose at+1 = i such

that

Qt(i) = max{Qt(1), Qt(2), . . . , Qt(n)}.

If the expected returns are all negative, then this strategy will find the one

that causes us to minimize our losses. If one or more of the expected returns

are positive, this algorithm will likely cause us to exploit a single slot machine

before we would even have the opportunity to estimate the returns of any of

the other potential winners, which would clearly be undesirable.

The ε-Greedy algorithm attempts to correct this shortcoming. The algo-

rithm is almost identical to the Greedy Algorithm except that we will choose

ε > 0 with ε being the probability that we play a random slot machine. One

disadvantage of this strategy is that even after we are fairly confident we

can identify the winning machine, we still explore all other machines with

probability ε. Ideally, we would want ε→ 0 as time progresses.

We need some mechanism that decreases the likelihood that we will ex-

plore other (non-winning) machines over time and that increases the likeli-

hood that we exploit the winning machine. This approach is called positive

reinforcement. Define πt(a) as the probability of choosing slot machine a at

time t and a∗t as the machine associated with the highest average return at

time t. Then we will want to have πt(a
∗) → 1 and πt(a) → 0 for a 6= a∗ as

t → ∞. One way to accomplish this is to move πt(a
∗) toward one by some

56

fixed percentage, 0 < β < 1 of the difference between one and itself. Denote

this percentage as β with 0 < β < 1. Then we will update πt(a
∗) using the

formula

πt+1(a
∗) = πt(a

∗) + β[1− πt(a∗)]

and then moving all other probabilities, πt(a) toward 0 by the same β multiple

of the difference separating πt(a) and 0

πt+1(a) = πt(a) + β[0− πt(a)].

This strategy allows us to sample all n machines early on but also ensures

that we will eventually exploit the machine we feel most confident in, thus

maximizing our winnings. Of the three strategies we considered, positive

reinforcement is the one that best manages the tradeoff between exploration

and exploitation. As such, it was the one we first used to guide the construc-

tion of our investment algorithms in our initial simulations.

5.2 Analytical Formulation

Analytically, we are constructing a function f : R2 → R2. In the stocks and

bonds example, our domain consists of the returns of the two investments at

time t, denoted rs(t) and rb(t), respectively. Denote the percentage of our

portfolio in stocks at time t as St. Likewise, Bt will represent the proportion

of our portfolio invested in bonds at time t. We want our function to tell us

57

how to change our portfolio, so we would write the following:

(St+1 − St, Bt+1 −Bt) = f(rs(t), rb(t))

If we state that the portfolio must be fully-invested in stocks and bonds,

then we have the constraint that St + Bt = 1. Then Bt = 1 − St, and if we

have a function that tells us how to update our stocks, then the constraint

dictates how we must update bonds. So consider a new function g : R2 → R

such that

St+1 = g(rs(t), rb(t)) + St

The function g will be used to change our allocation in our stock exposure

between time periods. Like the n-armed bandit problem, g is the reward

function. If we wanted static targets, then we would let g(t) = 0 for all t.

Another possibility for g is

g(rs(t), rb(t)) =

 α when rs(t) > rb(t)

−α when rs(t) ≤ rb(t)

for α ∈ [−1, 1]. For our empirical section, we will compare the returns

generated when we set α to −1, 0, and 1.

Why are we interested in these specific forms? The premise of the n-

armed bandit model, and reinforced learning in general, is that there is some

feedback mechanism. The feedback mechanism is usually to converge to the

58

“winner.” Yet in the case of investments, there is some reason to believe

that we might rather take advantage of value and converge to investment

that underperformed in the last period. That is, we may rather want to buy

low and sell high.

As an aside, notice that we only include the returns from the last period

in the domain. If we included more than one period’s return and we wanted

to converge to the underperforming investment, the danger is that we might

start to overallocate in the investment that cumulatively underperforms. If

we just use the previous observation’s returns, then it is easier to avoid this

risk. In order to make comparisons easier, we want the domain of the function

that converges to the winner to be the same as the one that converges to the

loser. So we want to restrict the domain of both of these functions to R2.

Notice that for the constant allocation functions (e.g., our standards), the

choice of domain is irrelevant because the range is {0}.

Our goal is to maximize cumulative returns after accounting for costs.

Although we will not introduce costs directly, we will constrain ourselves to

switching a maximum of 1 percent of our assets across investments during a

single time interval, measured as roughly one month. Under this assumption,

|α| ≤ 0.01, and a maximum of 12 percent of our portfolio can be traded in

any given year. So our expected holding time for a given investment would be

over 8 years. Given that we can find no-load funds with no trading penalties

if traded after a certain time-period (anywhere between three months and a

year), an individual investor would have no trading costs using this approach.

59

We should mention that in our simulations, we use the performance of

the indexes instead of the performance of the index funds because the data

is more available. Since index fund returns closely mirror the returns of their

index, our findings should also apply to index funds.

Let R denote the cumulative return of our portfolio at the end of our

sample. If we assume negligible costs, then our cumulative return is given by

R =
n∑
i=1

Sirs(i) +Birb(i)

=
n∑
i=1

Sirs(i) + (1− Si)rb(i)

=
n∑
i=1

Si[rs(i)− rb(i)] + rb(i).

Since the rates of returns of stocks and bonds, rs(t) and rb(t), are predeter-

mined by the market, the only way to maximize R is to choose an optimal

time-path for St. We already assumed the recursion relation

St = St−1 + g(rs(t− 1), rb(t− 1)),

which means that we will need to find a function g that provides superior

returns, which will be our goal for the remainder of this section.

60

5.3 Initial Trials

Since we are trying to use the n-armed bandit model to inform our model, our

hypothesis is that strategies using positive reinforcement will provide better

returns. So if an asset posts a comparatively high return in one period,

we would want to devote more of our portfolio to that asset in the next.

Recall that for this approach to work, the returns of investments have to be

stationary. Even if the payouts are not perfectly stationary, as long as the

relative performance is consistent over time, our approach should work. To

test whether the relative performance is consistent, we will run three quick

simulations.

In our simulations, we will look at the returns of three assets: U.S. stocks,

Japanese stocks, and U.S. bonds. We will further divide our total time period

into three rounds covering the years 1970-1980, 1981-1990, and 1991-2008,

respectively. Our goal is to assess the extent to which past performance

predicts future performance.

Our first simulation is given in Figure 17. This graph shows the returns

for the three assets over the first time period, which starts in 1970 and ends

in 1980. The returns are shown as percentage increases. So if an asset gains

100 percent in the time period, then it essentially doubles. In the first round,

we see that Japanese stocks performed the best and U.S. stocks performed

the worst, with U.S. bonds performing in between.

In our second round, we observe that the relative returns of the three

assets changed slightly but that the magnitudes changed severely. In Fig-

61

Figure 17: Returns for assets in round 1

Figure 18: Returns for assets in rounds 1 and 2

ure 18, the returns for Japanese stocks in the second round were twice what

they were in the first, while the ratio of the returns for U.S. stocks were

even larger. U.S. bonds performed somewhat consistently but their returns

62

also increased. In terms of relative performance, Japanese stocks posted the

highest returns in both rounds but U.S. stocks overtook U.S. bonds in the

second round. Overall, this suggests that the cumulative returns for assets

are volatile, even if we aggregate the returns for each decade. This suggests

that we may not be able to infer too much about future gains from the past.

Figure 19: Returns for assets for all rounds

The returns for the last round are shown in Figure 19. Note that these

returns are in dollars of the day and do not account for inflation. Since the

third round lasted roughly twice as long as each of the first two, we would

expect that the returns in the third round would be roughly equal to the

sum of the returns in the first two rounds. Yet, only U.S. stocks met this

expectation. U.S. bonds posted larger returns in the second round, which

lasted ten years, than the third round, which lasted eighteen. Moreover,

Japanese stocks posted significant losses, losing roughly half of their value in

63

the third time period even though they were the strongest performers in the

first two rounds.

Overall, the picture for the n-armed bandit approach is troubling. There

appears to be little correlation between past returns and future returns.

Moreover, the magnitudes of the returns and their relative rankings appear

highly volatile. Even more disconcerting, the correlation between the past

and present returns appears to be negative, which runs counter to our as-

sumptions of stationarity. This suggests that we will need a different model,

which we will develop in the next section.

5.4 Economic Theory

We saw in the last section that based on three quick simulations, our n-armed

bandit model was likely to run into some difficulty. Our goal for this section

is to find an economic theory that can explain the behavior of the financial

assets under the last three simulations. The economic paradigm we will use

is called informational cascades [11].

The premise of the model is essentially as follows. We assume that all of

the information needed to accurately predict an asset’s return is distributed

among all investors, with no single investor having complete information.

Instead, each investor has incomplete information about each asset’s return.

Suppose that investor A, based on the information available to him, de-

cides to invest in a given asset. Suppose also that investor B was indifferent

between investing in that same asset and another prior to A’s decision. Given

64

the multitude of investors out there, it is reasonable to think that investor B

is unsure what A knows that B does not. It is also reasonable to think that

B assumes A knows something not available to him.

Under the information cascade paradigm, A’s purchase will induce B to

buy. After all, B was formerly indifferent but now thinks that A knows

something he did not. So B will follow A’s example. Then other formerly in-

different investors will purchase that same investment, generating a cascade.

This cascade will continue until someone decides to sell, under which case we

might find that the cascade reverses direction.

Under this paradigm, investors buy and sell in droves, suggesting that

the prices of these assets will often fluctuate around their true worth, which

we could define as the asset’s hypothetical value if everyone had perfect

information. Consequently, we will want to sell each asset at the peak of its

cascade and purchase it at the trough, which is another way of saying “buy

low and sell high.”

So how will we implement this? Recall from the n-armed bandit section

that we originally proposed shifting one percent of our portfolio from the

underperforming asset to the overperforming asset, or from the losing asset

to the winning one. Under this new framework of informational cascades,

we will want to shift from the winning asset to the losing asset. In order to

see which strategy is optimal, we will conduct formal simulations in the next

section.

65

5.5 Further Scenarios

In this section, we will compare three different strategies. The first two should

already be familiar. We will refer to the positive reinforcement strategy as

the conventional approach because it was originally expected to work. We

will refer to the informational cascade strategy as the contrarian approach

because it runs contrary to the original model. In between is what we will

call the constant approach, in which we will pick initial allocations at the

beginning of the sample and stick with those allocations. So if we invested

25 percent in stocks initially, then at each trading period we will reallocate

our portfolio to ensure 25 percent in stocks. If g is the function we use to

update the percentages, then under the constant approach, we would set

g = 0.

To review, we will implement the following three strategies:

• the contrarian (shift to loser)

• the constant (no shift)

• the conventional (shift to winner)

and assess how each performed under three different simulations.

In each simulation, we will allow our strategies to switch between two or

three assets. We will also either trade every month or trade every 30 trading

days, though we will specify which. In addition, we will measure performance

in terms of the future gains for each dollar originally invested.

66

The first simulation assumes that our investor will choose to invest in

U.S. stocks and bonds at each time period. Since Swensen [7] argues that

bonds give inferior returns compared to stocks, we want to ensure that each of

the three portfolios remains slanted toward equities. So we choose an initial

allocation in stocks of 95 percent, with the remainder invested in bonds.

However, if bonds systematically underperform stocks and our contrarian

approach gravitates toward the underperforming asset, then without any

correction, we will have a significant exposure in bonds. To prevent this, we

will stipulate that a minimum of 90 percent of our portfolio must be invested

in stocks. Note that this is only needed for the contrarian approach, because

the conventional approach will gravitate toward stocks and the constant is

by definition static.

Figure 20: Performance of portfolios of U.S. stocks and bonds from 1958–
2008

67

Figure 20 shows how each of these three strategies perform. We see that

the contrarian approach outperformed the other two, as predicted by the

informational cascade framework. Notice that the conventional approach

performed the worst. The conventional approach underperformed the con-

trarian by roughly 15 percent. Since the time period was 50 years, then this

means the contrarian approach only beat the conventional approach by less

than 1 percent per year. At first, this may not appear that significant.

What we did not mention, however, was that the contrarian strategy not

only posted superior returns but was safer as well. This is because during

downturns, when stocks lose a significant portion of their value, the contrar-

ian approach had generally maximized its bond exposure. Thus, investors

who are near retirement or who desire to redeem their portfolio due to other

financial circumstances may find the contrarian approach even more advan-

tageous.

One caveat must be noted before we proceed. Although in the first simu-

lation, we stipulated a minimum stock allocation of 90 percent, this number

was somewhat arbitrary. Had we chosen a lower minimum allocation, our

contrarian approach would have yielded lower returns because it would have

invested more heavily in bonds. It would generally keep increasing its share

of bonds until it hit the maximum allocation allowed. Since bonds perform

worse than stocks over long time intervals, a larger bond exposure would

likely have generated lower returns, though at lower risk. In order to compare

strategies with similar average bond exposures, and hence risk, we stipulated

68

that 0.90 ≤ St ≤ 1.00. Had we stipulated that 0.50 ≤ St ≤ 0.60, the relative

returns would likely have been unchanged. We should note that portfolios

that do not attempt to control changes in risk may produce different results.

In our second simulation, we construct portfolios consisting of U.S., U.K.,

and Japanese stocks from 1970–2008. We also trade every month, instead of

every 45 days. Furthermore, we initially allocated fifty percent of our port-

folio in U.S. stocks, with the remainder evenly split between Japanese and

U.K. stocks. Since there is no reason to expect that any asset will outperform

the other, we do not impose any stipulations, with the exception that we can

only allocate somewhere between 0 and 100 percent of our portfolio in each

asset. In the contrarian and conventional approach, we reallocate among the

winning and losing assets each round, leaving the middle asset untouched.

Figure 21: Performance of portfolios of U.S., U.K., and Japanese stocks from
1970–2008

69

From Figure 21, we see that the contrarian approach realized significantly

better returns than the other two. In fact, the contrarian investor over this

time period enjoyed nearly double the returns of the conventional investor.

What accounted for this large difference? The answer lies in the occurrence of

a Japanese stock market bubble during the 1980s. The contrarian approach

performed the best because it was slowly divesting its Japanese stocks when

they were increasing in value and so was only minimally exposed to the

Japanese stock market when the bubble burst.

Figure 22: Allocation in Japanese stocks on left and in gray with Japanese
stock index in black and on the right under the contrarian algorithm.

Figure 22 shows how our contrarian approach implemented its strategy.

It depicts the level of the Japanese stock market index–with the index at

1970 equal to one–while simultaneously illustrating our contrarian approach’s

exposure over our time interval. There are two line graphs, each with its

own corresponding axis. The gray line reveals the percentage of our portfolio

70

invested in Japanese stocks and is measured on the left axis. The dark

line shows how the Japanese stock index performed over the course of the

simulation and its axis is on the right. We can see how the contrarian portfolio

first decreases its exposure in the Japanese stock market as it continues to

rise in the early part of our simulation. Just as the bubble burst, the average

stock in the index was worth roughly fifteen times what it was worth in the

beginning of the simulation. With almost no exposure during the crash, our

contrarian approach experienced minimal losses and then proceeded regain

its exposure in Japanese stocks once they were more realistically valued.

It is worth mentioning that because of the presence of the Japanese stock

bubble, the returns of each of the three strategies depend on the time period

chosen. Had we chosen our sample to start from 1980 or 1988, then the con-

trarian approach would have borne the brunt of the bubble and would have

invested in Japanese stocks after they were corrected. Since Japanese stocks

never recovered from the crash, this means that the contrarian approach

would have underperformed the other two. So judgment about current con-

ditions is critical for all investors, especially beginning investors. An investor

would be wise to look at the performance over the last ten years or more

before choosing initial allocations.

Our last simulation spans from 1970 to 2008 and concerns U.S. stocks

and the Europe-Asian-and-Far-East financial index, which was designed by

Morgan Stanley to capture the average returns in the European, Asian, and

Pacific regions. Although it is impossible to invest in the index directly, there

71

are index funds designed to mirror the index, though the availability of index

fund data is much more limited, which is why we use the index values for

our simulations. Our initial allocation in U.S. stocks was sixty percent, with

the rest invested in the EAFE index.

Figure 23: Performance of portfolios of U.S. stocks and the EAFE index from
1970–2008

Figure 23 shows that there is almost no difference between the returns of

the three strategies after thirty years, which is rather surprising. How could

this happen? Our theory of cascades tells us that we want to take advantages

of the cascades to sell at the peaks and buy at the troughs. Yet if the

cascades of both investments are synchronized, then there is no opportunity

to switch out when desired. If we look at Figure 24, we can see that the

EAFE index is more synchronized with U.S. stocks than the portfolios in

the first two scenarios over the years 1970 to 2008. The synchronization

72

Figure 24: Cascades for simulations 1, 2, and 3, respectively

73

is apparent because both the EAFE and U.S. stocks hit peaks and troughs

around the same time. Moreover, they exhibit similar cumulative returns for

most of the time sample.

Figure 25: A summary of the three simulations

Figure 25 presents a summary of our three simulations. In two of the

simulations, the contrarian approach performed best. In the last simulation,

the differences were negligible because of reasons already discussed. These

results suggest that our cascade model works and that the n-armed bandit

model was flawed as an investment strategy.

So what can we conclude? Implemented correctly, the contrarian ap-

proach can provide higher yields and may reduce the risk from speculation,

or stock bubbles. However, under certain conditions it may also provide no

additional returns or may even yield lower returns. As we noted previously,

the returns are highly sensitive to initial conditions and risk tolerance. Our

74

advice for a beginning investor is to look at the last ten years or so before

choosing initial investments and to use judgment when initializing starting

allocations.

6 Conclusion

In our application, we first tried to frame the asset-decision problem for a

portfolio in terms of the n-armed bandit model. However, this model as-

sumes stationarity. Given the surprising nonstationary behavior evident in

our assets’ returns, we then turned to economic theory for guidance in for-

mulating alternative approaches. We found that an algorithm inspired by

the theory of informational cascades, which simply increases its exposure in

recently underperforming assets, appears to outperform the other approaches

considered in two out of the three simulations, with no significant difference

in the third scenario. In the future, we would want to assess how to han-

dle portfolios consisting of several assets instead of the two- or three-asset

portfolios considered in this paper.

A Choice of α

One logical question to ask is how our contrarian algorithm would have per-

formed with a different choice of α. Recall that α is the variable we are

using to rebalance our portfolios in the contrarian and conventional strate-

75

gies. Also, if α is too big, then the turnover in our assets may limit our

performance.

We will consider how the returns in each of the scenarios varies for differ-

ent values of α in [0, 2]. The first scenario we looked at involved a portfolio

with U.S. stocks and bonds from 1958 to 2008. Figure 26 shows that the

returns were not too sensitive on our choice of α. The optimal choice of α in

this interval appears to be somewhere between 1 and 1.5 percent.

Figure 26: Returns for each α in scenario 1

In the second scenario, concerning Japanese, U.K., and U.S. stocks, the

returns seemed to be more sensitive to α. Notice from Figure 27 that the

returns increase relatively rapidly as α moves from 0 to 1. Just before 1, the

slope decreases before increasing again. This is likely due to the fact that

right around 1, we hit our constraint. Remember that we stipulated that we

could not hold negative assets, or sell assets we did not have (in the real world,

76

this can be done by “shorting” on an investment). For values of α near 1, we

become completely divested of Japanese stocks just before the Japanese stock

market bursts. One of the primary reasons that the contrarian strategy out

performed the others in this scenario is because it whittled away its exposure

to the Japanese stocks when they were surging. Thus, once we are divested

from Japanese stocks, there are fewer opportunities for our algorithm to take

advantage of, so the slope flattens. Note however that returns still increase

as α increases, so there are clearly some further gains associated with an

increasing α.

Figure 27: Returns for each α in scenario 2

In the third scenario, we see that increasing α actually lowers our returns,

though the returns appear to be less sensitive to α compared to the second

scenario. All in all, Figure 28 reveals that our contrarian approach is not

infallible and that a smaller αminimizes our risk that the contrarian approach

77

Figure 28: Returns for each α in scenario 3

will significantly underperform a portfolio with static targets.

B Data for the Empirical Application

The data used in the application came from a variety of sources. Most

instrumental was Yahoo Finance. Daily data for the returns of bonds came

from the website of the Federal Reserve Bank in St. Louis while the monthly

data concerning the MSCI EAFE was obtained from the MSCIBarra website.

Last, the data for the Nikkei 225 and the FTSE 100 was obtained in from

a combination of Yahoo Finance and Wren Research, the latter of which is

available at http://www.wrenresearch.com.au/downloads/index.htm.

The stock and bond daily data sets were combined. Any observation

that was missing for one of the assets was dropped for the other and the

78

data were merged by date. Then every 30 observations were combined and

the cumulative return was calculated as the product of the daily returns.

The monthly returns were calculated directly with minimal manipulation.

The bond market returns was calculated as follows. First, we calculated

the value of newly-issued bonds (6-month Treasury Bills) on the secondary

market by subtracting the interest rate from 100. (According to the author’s

research, short-term government interest rates are implicit. For example, a

one-year bond carrying a 7% interest rate would be purchased for roughly

$93 and redeemed for $100). Using this information, we can calculate the

change in value over time according to changes in the interest rate for newly

issued bonds. Then to find the total return for a bond, you add the percent

change in value together with the amount of interest accrued while the bond

was held. In total, this gives a total long-term return consistent with the

returns posted on the bond markets.

References

[1] The Mathworks Inc. (n.d.). Image types in the toolbox. In Image
processing toolbox. Retrieved at http://www.mathworks.com/access/
helpdesk/help/toolbox/images/f14-13543.html.

[2] D. C. Lay, Linear algebra and its applications. Addison Wesley, 2003.

[3] D. R. Hundley An introduction to empirical modeling. Unpublished
Available at http://people.whitman.edu/hundledr/courses/M350.

html.

[4] S. Gonzalez, “Neural networks for macroeconomic forecasting: a com-
plementary approach to linear regression models,” Working Papers–
Department of Finance Canada 2000–2007, Department of Finance

79

Canada, undated. Retrieved at http://ideas.repec.org/p/fca/

wpfnca/2000-07.html.

[5] G. Dangelmayr, S. Gadaleta, D. Hundley, and M. J. Kirby, “Time series
prediction by estimating Markov probabilities through topology preserv-
ing maps,” in Proc. SPIE Vol. 3812, p. 86-93, Applications of Science
and Neural Networks, Fuzzy Systems, and Evolutionary Computation II,
Bruno Bosacchi; David B. Fogel; James C. Bezdek; Eds., presented at
the Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence, pp. 86-93, Nov. 1999.

[6] G. Fabrikant, “Yale endowment grows 28%, topping $22 billion,” New
York Times, 2007.

[7] D. F. Swensen, Unconventional success: a fundamental approach to per-
sonal investing. Free Press, 2005.

[8] “Chimp beats stockbrokers in their trade,” Seattle Times, 2007.

[9] B. G. Malkiel, “Returns from investing in equity mutual funds 1971 to
1991,” The Journal of Finance, vol. 50, pp. 549–572, June 1995.

[10] A. Baker, “Money for old hope,” The Economist, February 2008.

[11] S. Bikhchandani, D. Hirshleifer, and I. Welch, “Learning from the be-
havior of others: conformity, fads, and informational cascades,” The
Journal of Economic Perspectives, vol. 12, pp. 151-170, Summer 1998.

80

