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Abstract. This paper introduces the reader to quadratic forms defined over
finites field in the general sense. In short, a quadratic form f ∈ Fq [x1, . . . , xn]
with n indeterminates is a homogeneous polynomial of degree-2 with coeffi-
cients taken from the field Fq . We will classify all quadratic forms as being
one of three fundamental types and compute the number of solutions to an
arbitrary quadratic form equation f(x1, . . . , xn) = b, where f is one of the
three types. Finally, we consider that the zeros of a quadratic form f (i.e.
solutions to the equation f(x1, . . . , xn) = 0), can form subspaces of F

n

q
. The

maximum size of such a subspace can be shown only to depend on q (the field
characteristic), the number of indeterminates n, and the particular type of f .
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1. Introduction

The solution of polynomial equations in multiple variables represents a funda-
mental area of mathematics. For example, what are the solutions (x, y, z) to the
equation x3 + x2y2z + z2 + yz + 2xz3 = 0 if x, y, z ∈ R? In this paper, we inves-
tigate quadratic forms, which are a special type of polynomial. More specifically,
a quadratic form is a homogeneous polynomial of degree 2. From the preceding
example, if we consider that each solution (x, y, z) is a vector in the vector space
R3, what can be said about the set of all solutions? In general, this question is
rather daunting. Note, however, that the field of interest R is infinite in size. In
this paper, we will be dealing exclusively with finite fields.

Suppose that Fq is a finite field with q elements. The zeros of a quadratic form
(in n indeterminates) f ∈ Fq[x1, . . . , xn] are all n-tuples, or vectors in Fn

q that
satisfy the equation f(x1, . . . , xn) = 0. We present a theorem which determines the
number of such zeros that an arbitrary quadratic form has. In light of the fact that
subsets of these zeros generate subspaces of the vector space Fn

q , we can also state
the size of the maximal subspaces.

The algebraic theory of quadratic forms was first introduced by Ernest Witt in
a 1937 paper. However, while quadratic form theory over local and global fields
seemed to thrive throughout the 20th century, it was not until the late 1960’s,
thanks to the work of Pfister, that quadratic form theory over general fields grew
in popularity. Much of the content herein is motivated by a comprehensive text on
finite fields by Rudolf Lidl and Harald Niederreiter [4]. A recent forerunner in the
field of quadratic forms is T.Y. Lam, and the reader is referred to Lam [5]. More
accessible background information on abstract algebra and specifically, fields, can
be obtained from Gallian [3].

The next section is devoted to a brief review of fields, and more specifically, finite
fields. We then cover some important results and theorems regarding fields that
will be helpful throughout the rest of the paper.

In section 3 we present the definition of a quadratic form as well as some of
their fundamental properties. Section 4 looks at a key result which establishes that
quadratic forms defined over Fq , where q is odd, are diagonalizable. In particular,
close attention is paid to the idea of equivalent quadratic forms. This idea is very
instrumental in proving later theorems. Specifically, in section 5 we prove that any
arbitrary quadratic form defined over a finite field is equivalent to a quadratic form
of one of three types.

Finally, sections 6 and 7 both concern the solutions of a given quadratic form
equation. Important theorems are presented that allow us to deduce about the
number of solutions to the equation f(x1, . . . , xn) = b, where f is a quadratic form.
Finally, in section 8 we determine the size of the maximal subspaces of Fn

q generated
by the zeros of a quadratic form f ∈ Fq[x1, . . . , xn].
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2. Background

2.1. Fields. In order to understand the behavior of quadratic forms over finite
fields, it is first important to know what a field is. Specifically, one must have some
familiarity with the properties of finite fields. Recall that a field is a special kind
of ring in which there exists a multiplicative identity, every nonzero element has a
multiplicative inverse, and in which the multiplicative operation is commutative.
To be more precise, we present the following complementary definitions.

Definition 1. A ring (R, +, ·) is a set R, coupled with two binary operations,
denoted by + and ·, such that:

1. R is an abelian group under the operation +.
2. (a · b) · c = a · (b · c) for all a, b, c ∈ R.
3. The distributive property holds, such that for all a, b, c ∈ R, a · (b + c) =

a · b + a · c and (b + c) · a = b · a + c · a. [4]

An obvious example of a ring is the set of all integers. However, as we shall see
shortly, the integers do not form a field.

Definition 2. A field F is a commutative ring with a multiplicative identity in
which every nonzero element has a multiplicative inverse.

One example of a field is the set of rational numbers Q. Commutativity under
multiplication holds trivially, and any nonzero rational number p

q where p, q ∈

Z \ {0} has a multiplicative inverse q
p . The set of integers is not a field because

there does not exist an integer x such that 2 · x = 1. However, the set Z does form
an integral domain, which we will now define.

Definition 3. An integral domain is a commutative ring with identity e 6= 0
where ab = 0 implies that a = 0 or b = 0.

One might ask why the definition of an integral domain has been stated. To
answer that, we state an important theorem that connects finite fields to finite
integral domains.

Theorem 1. Every finite integral domain is a field.

The proof of Theorem 1 relies on listing the elements of the integral domain
and multiplying each one by a nonzero element a contained in the set. It is then
a simple matter of realizing that the new set of elements obtained are all distinct,
and thus one of them must equal the identity e. The result follows.

Also of considerable use when constructing finite fields is the polynomial ring

R[x], where R is any ring. Elements of R[x] are called polynomials in the indeter-
minate x with coefficients in R. In addition, any given element has only finitely
many nonzero coefficients. We usually write this element as

n
∑

k=0

akxk = a0 + a1x + · · · + anxn

where ak ∈ R for all 1 ≤ k ≤ n.

2.2. Finite Fields. In this section, we consider some important properties of finite
fields and establish a set notation to be followed in future sections. Specifically, we
consider the question of what possible sizes a given finite field can have. Two short
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theorems are instrumental in arriving at the desired conclusion. However, we must
first define what is meant by the term characteristic.

Definition 4. If R is an arbitrary ring and there exists a positive integer n such
that nr = 0 for every r ∈ R, (The expression nr represents the element r added to
itself n times) then the least such positive integer n is called the characteristic of
R and R is said to have characteristic n. If no such positive integer n exists, then
R is said to have characteristic 0. [4]

This naturally leads to a theorem addressing the possible characteristic of any
finite field. For a detailed proof, the reader is referred to [4].

Theorem 2. A finite field has prime characteristic.

For the next theorem, we need to know the following definition, which is pre-
sented for reference.

Definition 5. Let f ∈ K[x] be of positive degree and F be an extension field of
K. Then f is said to split in F if f can be written as a product of linear factors
in F [x]–that is, if there exist elements α1, α2, · · · , αn ∈ F such that

(1) f(x) = a(x − α1)(x − α2) · · · (x − αn).

The field F is a splitting field of f over K if f splits in F and if, moreover,
F = K(α1, α2, · · · , αn). [4]

In short, the splitting field F of a polynomial f over K is the smallest field
containing all the roots of f . For more information regarding the theory behind
field extensions and the ideas covered thus far, the reader is referred to [4], [3] or
[2].

Now we arrive at a key property of finite fields: every finite field has size pn

where p is a prime and n is a positive integer. Furthermore, any two finite fields of
identical size pn are isomorphic. The theorem goes as follows.

Theorem 3. For each prime p and each positive integer n, there is a unique finite
field, up to isomorphism, of order pn. [3]

The proof of Theorem 3 involves considering the splitting field F of the poly-
nomial f(x) = xq − x ∈ Fp[x] over Fp. Counting multiplicity, f has pn roots over
F . Using the derivative test, we have that f ′(x) = qxq−1 − 1 = −1 in Fp[x]. In
other words, f ′ has no roots at all . Thus, f and f ′ have no roots in common,
and so all the roots of f in F are unique (see [4]). We then consider the set
S = {a ∈ F : aq − a = 0}. It follows that S is a subfield of F with q elements (see
[3]). From Lemma ??, S contains all the roots of xq − x, and so f must split in S.
Thus, F = S and is a finite field with q elements.

As for subfields of finite fields, it turns out that every subfield of Fq for q = pn,
has order pm where m divides n. One final interesting thought on finite fields is
that the set of non-zero elements in Fq form a cyclic group under multiplication.
We denote this group by F∗

q .
Now that we have established that every finite field has order pn for some prime p

and positive integer n, we will write Fq to denote any field of order q. It is assumed
here that q = pn for some prime p and n > 0. Moreover, we write Fq[x] to denote
the field of polynomials in the indeterminate x with coefficients in Fq . Of course,
we will be dealing with polynomials in multiple indeterminates, and so we consider
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frequently the polynomial ring Fq [x1, · · · , xn]. The elements of Fq[x1, · · · , xn] are
expressions of the form

(2) f = f(x1, · · · , xn) =
∑

ai1···in
xi1

1 · · ·xin

n

with coefficients ai1···in
∈ Fq.

2.2.1. Example. Consider that if we can find a polynomial f ∈ Fp[x] of degree n
that is irreducible over Fp, we can construct a field extension Fp(α) of order pn

where α is any root of f . Let us construct the finite field F32 using this method.
We start by finding a degree-2 irreducible polynomial in F3[x]. It is easy to verify
that f(x) = x2 + 1 is irreducible over F3. Thus, the ideal < f(x) > is maximal
and so the factor ring F3/ < f(x) > is a field. The elements of this field are listed
below. Note that multiplication and addition are computed mod x2 + 1.

0 1 2
x 2x 1 + x

2 + x 1 + 2x 2 + 2x

Alternatively, we could just find the splitting field for the polynomial x9 − x over
F3. However, this method is more cryptic and cumbersome to resolve in an actual
computation.

Note that in the example just mentioned, p = 3 and n = 2. Since 1 is the only
positive divisor of 3 besides 3 itself, it follows that there exists only one proper
subfield of F3/ < x2 + 1 >, namely, the subfield F3. This particular subfield is
generated by the element 1.

3. Quadratic Forms

It is possible to define a quadratic form in a more abstract setting or in a manner
more akin to linear algebra. For the purpose of simplicity, we take the latter
approach.

Definition 6. A Quadratic Form in n indeterminants over Fq is a homogeneous
polynomial f(x1, x2, . . . , xn) ∈ Fq [x1, x2, . . . , xn] of degree 2, or the zero polynomial.
In general then,

(3) f(x1, x2, . . . , xn) =
n

∑

i,j=1

aijxixj

where each aij is an element of Fq.

Note that by homogeneous we mean each term has the same degree. We are
also interested in solutions to the equation f(x1, . . . , xn) = b where f is a quadratic
form over Fq and b ∈ Fq . The following definition will thus prove useful.

Definition 7. A quadratic form f over Fq represents the value a ∈ Fq if the
equation f(x1, x2, . . . , xn) = a has a solution in Fn

q .

We can define a quadratic form in a more compact way by associating with it
a coefficient matrix A, where the row i column j entry is simply aij . If q is odd
(i.e. p 6= 2), we can write the mixed terms as 1

2
aijxixj + 1

2
ajixjxi. Thus, we can

arrange that aij = aji to get a symmetric coefficient matrix A. By convention, all
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coefficient matrices are made symmetric when q is odd. Now, if we define x as the
column vector of indeterminates x1, x2, . . . , xn, we can write f as just

xT Ax.

In expanded form this reads

(4) f(x1, x2, . . . , xn) = (x1, x2, . . . , xn)











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





















x1

x2

...
xn











.

If the coefficient matrix A of f has rank n, then we say that f is nondegenerate.
Equivalently, f is nondegenerate if det A 6= 0.

3.1. Equivalence. Two quadratic forms f and g over a finite field Fq are equivalent
if f can be transformed into g using a linear substitution of the form x = Cy, where
C is an n× n nonsingular matrix, x is the indeterminate vector for f , and y is the
indeterminate vector for g. If f and g are two equivalent quadratic forms, we can
relate their respective coefficient matrices, A and B, as follows:

B = CT AC(5)

xT Ax = (Cy)T A(Cy) = yT (CT AC)y = yT By.(6)

4. Quadratic Forms Over a Finite Field Fq Where q is Odd Are

Diagonalizable

This section establishes a result that will be useful in proving the existence of
categories of quadratic forms in the q-odd case. That is, we will prove that any
quadratic form falls into one of three types. The proofs of the following two results
can be found in [4] and are stated only for reference.

Lemma 1. If q is odd and the quadratic form f ∈ Fq[x1, x2, . . . , xn], n ≥ 2,
represents a ∈ F∗

q , then f is equivalent to ax2
1+g(x2, . . . , xn), where g is a quadratic

form over Fq in at most n − 1 indeterminates. [4]

Using Lemma 1 and induction on the number of indeterminates n, it is possible
to prove the following theorem, noting first that a diagonal quadratic form looks
like

n
∑

i=1

aiix
2
i .

Theorem 4. Every quadratic form over Fq, q odd, is equivalent to a diagonal
quadratic form. [4]

4.1. Example. We will show the process by which to find an equivalent diagonal
quadratic form to f(x1, x2, x3) = x2

1 + x1x2 + 2x2x3 + x2
2 + 2x2

3 over F3. The
general idea is quite simple as we need only apply Lemma 1 repeatedly. Eventually,
depending on the order of f , we will obtain the desired equivalent diagonal quadratic
form. To begin, the coefficient matrix A of f is given by

A =





1 2 0
2 1 1
0 1 2



 ,
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and det(A) = 1(2 − 1) − 2(4) + 0 = 1 − 8 = −7 = 2.
Thus f is nondegenerate. If f were degenerate, we would end up with an equiv-

alent quadratic form that has less than n indeterminates. Note that f(1, 1, 1) = 1,
and so f represents 1. We now construct C, a nonsingular matrix with (1, 1, 1) as
the first column. This will transform f into an equivalent quadratic form with 1 as
the coefficient of x2

1. Thus,

C =





1 0 0
1 1 0
1 0 1



 .

Saving some computation,

CT AC =





1 1 0
1 1 1
0 1 2



 .

Substituting into Equation (6) and expanding yields

(y1, y2, y3)





y1 + y2

y1 + y2 + y3

y2 + y3



 = y2
1 + 2y1y2 + y2

2 + 2y2y3 + y2
3 .

In hindsight, the goal of the above transformation was to get the coefficient of x2
1

to be f(1, 1, 1) = 1. This was already the case before we made the transformation,
but going through the steps anyway better illustrates the entire process. We can
rewrite the above equation as

y2
1 + 2y1y2 + (y2

2 + 2y2y3 + y2
3) = (y1 + y2)

2 − y2
2 + (y2

2 + 2y2y3 + y2
3)

= (y1 + y2)
2 + 2y2y3 + y2

3 .

Substituting z1 = y1 + y2 and z2 = y2, z3 = y3, we get

z2
1 + 2z2z3 + z2

3 .

Note that the substitution here can be written in matrix form as C2z = y where

C2 =





1 2 0
0 1 0
0 0 1



 .

Now we can apply the same algorithm to 2z2z3 + z2
3 . This will certainly lead

us to an equivalent diagonal quadratic form. But it is relatively easy to guess the
substitution w1 = z1, w2 = z2, and w3 = z2 + z3. In matrix form it is C3w = z

where

C3 =





1 0 0
0 1 0
0 2 1



 .

Applying this transformation we get

w2
1 − w2

2 + w2
3 = z2

1 − z2
2 + z2

2 + 2z2z3 + z2
3 = z2

1 + 2z2z3 + z2
3 .

The resulting quadratic form is diagonal, so we are done.
In retrospect, observe that

CC2C3w = x.
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Let B = CC2C3. Multiplying the matrices yields

B =





1 2 0
1 0 0
1 1 1



 .

Since Bw = x and B is nonsingular, the quadratic form we started with is equiva-
lent to the diagonal one we ended with.

5. The Existence of Categories

It is nice to be able to diagonalize any quadratic form over a field of odd order q.
However, diagonalization is impossible when q is some power of 2. This is simply
because of the fact that every finite field of even order has 2k elements for some
positive integer k, and therefore has characteristic 2. This means that a + a = 0
for all elements a in the field.

Consider that for characteristic-2 fields, the equation (x1 + x2)
2 simplifies to

x2
1 + x1x2 + x2x1 + x2

2 = x2
1 + x2

2. In the general case, we have

x2
1 + x2

2 + · · · + x2
n = (x1 + x2 + · · · + xn)2.

Of course, this is equivalent to a quadratic form of one variable via the nonsingular
substitution z1 =

∑n
i=1 xi and zi = xi for 2 ≤ i ≤ n. Consequently, we must be

careful when trying to prove results pertaining to quadratic forms over a general
finite field Fq.

The primary purpose of classifying all quadratic forms is to make it easier to
prove generalized theorems about them. For example, how many different zeros
can any quadratic form possibly have? The important ideas that follow make
it feasible to address such questions. The result in the following section will be
instrumental in establishing the existence of three fundamental types of quadratic
forms.

5.1. Important Definitions. Before continuing, we must consider a few impor-
tant definitions.

Definition 8. Let G be a finite abelian group of order |G| with identity 1G. A
character χ of G is a homomorphism from G into the multiplicative group U
of complex numbers of absolute value 1. Thus χ : G → U such that χ(g1g2) =
χ(g1)χ(g2) for all g1, g2 ∈ G.

Following is a special character that will be useful in determining the number of
solutions to a quadratic form equation.

Definition 9. Let q be odd and let η be the real-valued function of F∗
q with η(c) = 1

if c is the square of an element of F∗
q and η(c) = −1 otherwise. Then η is called

the quadratic character of Fq.

And finally we present another function useful when the number of indetermi-
nates in a quadratic form is even.

Definition 10. For a finite field Fq the integer-valued function v on Fq is defined
by v(b) = −1 for b ∈ F∗

q and v(0) = q − 1.
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5.2. Reduction Result. In order to prove that there are only three different types
of quadratic forms, we must first be able to pull off cross terms, or as they are more
commonly named, hyperplanes.

Lemma 2. A nondegenerate quadratic form f ∈ Fq [x1, . . . , xn], q odd, n ≥ 3, is
equivalent to x1x2 + g(x3, . . . , xn), where g is a nondegenerate quadratic form over
n − 2 indeterminates.

Proof. First consider f in the form

(7) f(x1, x2, . . . , xn) =
∑

1≤i≤j≤n

aijxixj .

By Theorem 6.21 of [4], f is equivalent to a diagonal quadratic form in n inde-
terminates (given that f is non-degenerate). Thus, we can assume without loss of
generality that f is diagonal. We will now show that f is equivalent to a quadratic
form in which the coefficient of x2

1 is 0. We write

(8) f(x1, x2, . . . , xn) =
∑

1≤i≤n

aiix
2
i .

Now we want to make a substitution of the form

x2 = rz1 + z2

x3 = sz1 + z3 where r, s ∈ Fq

xi = zi for i 6= 2, 3

where r and s are to be determined. This yields the quadratic form

a22(r
2z2

1 + 2rz1z2 + z2
2) + a11z

2
1 + a33(s

2z2
1 + 2sz1z3 + z2

3) + g1(z4, . . . , zn)

The coefficient on z2
1 is then equal to a22r

2 + a33s
2 + a11. This gives us the

nondegenerate quadratic form h1(r, s) = a22r
2 + a33s

2, which we want equal to 0.
To find solutions for r and s, solve h1(r, s) = −a11 over F2

q . By Theorem 6.26 of

[4], the number of solutions to h1(r, s) = −a11 over F2
q is

(9) q + ν(−a11)η (−∆) = q − η (−∆) .

Note that ∆ = det A, where A is the coefficient matrix of h1. Now we can’t have
both r and s equal to 0 since a11 6= 0 by assumption. Thus there exists at least one
nontrivial solution for r and s such that the coefficient on z2

1 is 0.
Now let f be as in (7) with a11 = 0 (the substitution above has already been

applied so f is no longer diagonal). Since f is nondegenerate, not all a1j can be 0,
and so we may assume that a12 6= 0. The nonsingular linear substitution

x2 = a−1
12 (y2 − a13y3 − · · · − a1nyn),

xi = yi for i 6= 2,

transforms f into a quadratic form of the type

y1y2 +
∑

2≤i≤j≤n

cijyiyj .
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The nonsingular substitution

y1 = z1 − c22z2 − c23z3 − · · · − c2nzz

yi = zi for i 6= 1,

then yields an equivalent quadratic form z1z2 + g(z3, . . . , zn), where g must clearly
be nondegenerate.

�

The main result in Lemma 2 can be applied repeatedly to any quadratic form
until only the last two indeterminates remain, xn−1 and xn.

5.3. Proving that the Three Types are Complete. Here we present essentially
an extension of a theorem contained in [4], since we cover the case when q is odd
in addition to the q-even case. The main idea is to apply Lemma 2 repeatedly and
then to consider the possible forms in the last two indeterminates. The q-even case
relies on the following lemma. Its proof can be found in [4].

Lemma 3. A nondegenerate quadratic form f ∈ Fq[x1, . . . , xn], q even, n ≥ 3, is
equivalent to x1x2 + g(x3, . . . , x4), where g is a nondegenerate quadratic form over
Fq in n − 2 indeterminates. [4]

Theorem 5. If f is a quadratic form in n variables defined over Fq, then f is
equivalent to a nondegenerate quadratic form having order m, for some 0 ≤ m ≤ n,
of exactly one of the following types.

1. x1x2 + x3x4 + · · · + xm−1xm

2. x1x2 + x3x4 + · · · + xm−3xm−2 + (α1x
2
m−1 + α2xm−1xm + α3x

2
m), αi ∈ Fq

3. x1x2 + x2x3 + · · · + xm−2xm−1 + ax2
m, a ∈ F∗

q

Proof. If f is degenerate and has order m < n, then we can rewrite it as an
equivalent nondegenerate quadratic form in m indeterminates. So we will assume
that f is nondegenerate with m indeterminates. If m is odd, then using induction
on m and Lemma 2 if q is odd, or Lemma 3 if q is even, one shows that f is
equivalent to a quadratic form x1x2 + x3x4 + · · · + xm−2xm−1 + ax2

m with a ∈ F∗
q .

This is a quadratic form of type 3 from above, so we are done.
If m is even, then using induction on m and Lemma 2 for q odd, or Lemma 6.29

of [4] for q even, one shows that f is equivalent to a quadratic form of the type

(10) x1x2 + x3x4 + · · · + xm−3xm−2 + α1x
2
m−1 + α2xm−1xm + α3x

2
m

If the quadratic in the last two indeterminates is irreducible over Fq , then f is of
type 2 and we are done. Otherwise, the quadratic α1x

2
m−1 + α2xm−1xm + α3x

2
m

reduces to (axm−1 + cxm)(bxm−1 + dxm), in which case we make the substitution

ym−1 = axm−1 + cxm

ym = bxm−1 + dxm

yi = xi for i < m − 1.

This yields the equivalent quadratic form y1y2 + y3y4 + · · ·+ ym−3ym−2 + ym−1ym,
which is of Type I.

�
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5.4. Example. Consider the quadratic form f(x1, x2, x3) = x2
1 + 2x1x3 + 3x2

2 +
x2x3+x2

3 over the field Z5. It is easy to verify that this is a nondegenerate quadratic
form by computing the determinate of its coefficient matrix. Using the method of
section 4, we find that f is equivalent to

g1(y1, y2, y3) = 3y2
1 + 2y2

2 + y2
3 .

We now use the algorithm in the proof of Lemma 2 to find the substitution

x1 = z1

x2 = 2z1 + z2

x3 = 2z1 + z3.

This yields the equivalent quadratic form

g2(z1, z2, z3) = 3z1z2 + 4z1z3 + 2z2
2 + z2

3 .

We now use the substitution (also obtained in the proof of Lemma 2)

z1 = t1

z2 = 2(t2 − 4t3)

z3 = t3.

Applying this gives yet another equivalent quadratic form:

g3(t1, t2, t3) = t1t2 + t2t3 + 3t22 + 4t23.

Finally, we apply the substitution

t1 = u1 − 3u2 − u3

t2 = u2

t3 = u3,

to get

g4(u1, u2, u3) = u1u2 + 4u2
3.

According to Theorem 5, the quadratic form we have been working with is Type
III.

6. The Number of Solutions of a Given Quadratic Form Equation

What separates a finite field with even order from one with odd order are two
primary facets. First, the characteristic of any finite field with q even is 2, since
q = pk for p prime is even if and only if p = 2. As was stated earlier, adding
any element to itself yields 0, which means that every element is it’s own additive
inverse. The other interesting thing to consider is that x2 = a will always have a
solution for a ∈ Fq when q is even. Observe that aq−a = 0 ⇒ aq = a ⇒ (aq/2)2 = a.

Note that since q is even, the element aq/2 always makes sense because q/2 is an
integer.

In an attempt to generalize things, I will cover both the q-odd and q-even cases
when counting the number of solutions to a quadratic form equation. Before stating
the theorem, it will be useful to consider the following lemmas; the proof of the
first can be found in [4].
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Lemma 4. For odd q, let b ∈ Fq, a1, a2 ∈ F∗
q , and η be the quadratic character of

Fq. Then

(11) N(a1x
2
1 + a2x

2
2 = b) = q + ν(b)η(−a1a2).

Lemma 5. Given a finite field Fq and some element b ∈ Fq,

(12)
∑

c∈Fq

ν(c)η(b − c) = qη(b).

Proof. By definition,
∑

c∈Fq
η(b − c) = 0. Thus,

∑

c∈Fq

ν(c)η(b − c) = (q − 1)η(b) +
∑

c∈F∗

q

(−1)η(b − c)

= (q − 1)η(b) −
∑

c∈F∗

q

η(b − c)

= (q − 1)η(b) − (0 − η(b − 0))

= qη(b).

�

Lemma 6. For any finite field Fq we have

(13)
∑

c∈Fq

ν(c) = 0,

and for any b ∈ Fq,

(14)
∑

c1+···+cm=b

ν(c1) · · · ν(ck) =

{

0 if 1 ≤ k ≤ m,
ν(b)qm−1 if k = m,

where the sum is over all c1, . . . , cm ∈ Fq with c1 + · · · + cm = b. [4]

The proof of this uses induction on m and fairly straightforward manipulations
of sums.

Now we are ready to find the number of solutions to an arbitrary quadratic form
equation.

Theorem 6. Let f(x1, . . . , xn) be a quadratic form defined over Fq having order
m, 1 ≤ m ≤ n, and let b ∈ Fq. Then, the number of solutions
(15)

N(f(x1, . . . , xn) = b) =















qn−m(qm−1 + ν(b)q
m−2

2 ) if f is of Type 1

qn−m(qm−1 − ν(b)q
m−2

2 ) if f is of Type 2

qn−m(qm−1 + η(ab)q
m−1

2 ) if f is of Type 3, q odd
qn−m(qm−1) if f is of Type 3, q even.
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6.1. Type 1 Case. Proof. We will assume that f has been reduced to a nonde-
generate quadratic form in m indeterminates. Thus, there are n−m free variables,
which will simply introduce the multiplicative factor qn−m to the number of solu-
tions. First note that N(x1x2 = b) = q − 1 if b 6= 0 and N(x1x2 = b) = 2q − 1
if b = 0. In both cases, we can write N(x1x2) = q + ν(b). Recall that a Type I
quadratic form looks like

x1x2 + x3x4 + · · · + xm−1xm.

Now, if m = 2k, then

N(x1x2 + x3x4 + · · · + xm−1xm = b) =
∑

c1+···+ck=b

N(x1x2 = c1) · · ·N(xm−1xm = ck)

=
∑

c1+···+ck=b

[q + ν(c1)] · · · [q + ν(ck)].

By Lemma 6 the cross terms in the last sum go to zero, and so we have

N(x1x2 + x3x4 + · · · + xm−1xm = b) =
∑

c1+···+ck=b

qk + ν(c1) · · · ν(ck)

= qk
∑

c1+···+ck=b

1 +
∑

c1+···+ck=b

ν(c1) · · · ν(ck)

= qkqk−1 + ν(b)qk−1

= qm−1 + ν(b)q
m−2

2 .

This concludes the proof in the Type 1 case.

�

6.2. Type 2 Case. Proof. We consider the case that q is odd. The proof for even
q is vaguely similar and can be seen in [4]. We will again assume that f has been
reduced to an equivalent nondegenerate quadratic form g, where g is of Type 2 and
has m indeterminates. There are thus n−m free variables in f , which will introduce
the multiplicative factor qn−m to the number of solutions. Recall that for Type
2, g(x1, . . . , xm) = x1x2 + · · ·+ xm−3xm−2 + α1x

2
m−1 + α2xm−1xm + α3x

2
m, where

αi ∈ Fq and the quadratic in the last two indeterminates is irreducible. Carrying
out the nonsingular substitution

yi = xi for 1 ≤ i ≤ m − 2

ym−1 = xm−1 + α2(2α1)
−1xm

ym = xm,

we get the equivalent quadratic form

(16) h(y1, . . . , ym) = y1y2 + · · · + ym−3ym−2 + α1y
2
m−1 +

(

α3 − α2
2(4α1)

−1
)

y2
m.
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Since m is even, we have m = 2k for some k ∈ Z+. Moreover, for c1, . . . , ck ∈ Fq,

N(h(y1, . . . , ym) = b) =
∑

c1+···+ck=b

N(y1y2 = c1) · · ·N(ym−3ym−2 = ck−1)

·N
(

α1y
2
m−1 +

(

α3 − α2
2(4α1)

−1
)

y2
m = ck

)

=
∑

c1+···+ck=b

[q + ν(c1)] · · · [q + ν(ck−1)]

·[q + ν(ck)η
(

−α1

(

α3 − α2
2(4α1)

−1
))

]

=
∑

c1+···+ck=b

qk

+
∑

c1+···+ck=b

ν(c1) · · · ν(ck−1)ν(ck)η
(

−α1α3 + α2
2(4)−1

)

= qkqk−1 + η
(

α2
2 − 4α1α3

)

ν(b)qk−1.

We must now show that η(α2
2 − 4α1α3) = −1. Suppose that η(α2

2 − 4α1α3) =
0. Then by Lemma 4, N(α1y

2
m−1 +

(

α3 − α2
2(4α1)

−1
)

y2
m = 0) = q + ν(0)(0) =

q. This contradicts the fact that α1y
2
m−1 +

(

α3 − α2
2(4α1)

−1
)

y2
m is an irreducible

quadratic. Now suppose that η(α2
2 − 4α1α3) = 1. Again, using Lemma 4 we

have that N(α1y
2
m−1 +

(

α3 − α2
2(4α1)

−1
)

y2
m = 0) = q + ν(0)(1) = 2q − 1, which

gives the same contradiction. In the case that η(α2
2 − 4α1α3) = −1, we have

N(α1y
2
m−1+

(

α3 − α2
2(4α1)

−1
)

y2
m = 0) = q+ν(0)(−1) = q−(q−1) = 1. Therefore,

our claim is true.
From this, we deduce the number of solutions to our equivalent quadratic form

equation h(y1, . . . , ym) = b to be

(17) N(h(y1, . . . , ym) = b) = q2k−1 − ν(b)qk−1 = qm−1 − ν(b)q
m−2

2 .

The number of solutions to the equation f(x1, . . . , xn) = b is thus

qn−m
(

qm−1 − ν(b)q
m−2

2

)

.

�

6.3. Type 3 Case. Proof. We will assume that f has been reduced to a nonde-
generate quadratic form in m indeterminates. Thus, there are n−m free variables,
which will simply introduce the multiplicative factor qn−m to the number of solu-
tions. Recall that f(x1, . . . , xm) = x1x2 + · · ·+ xm−2xm−1 + ax2

m for some a ∈ F∗
q .

If q is even, there is always a unique solution to the equation x2 = c for c ∈ Fq,

namely x = cq/2. Thus, we can choose x1 through xm−1 independently and there
will be a unique value of xm such that f(x1, · · · , xm) = b. Therefore,

N(f(x1, . . . , xm) = b) = qm−1.

For q odd, we explicitly write the number of solutions as
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∑

c1+c2=b

N(x1x2 + · · · + xm−2xm−1 = c1)N(ax2
m = c2)

=
∑

c1+c2=b

(qm−2 + ν(c1)q
m−3

2 )(1 + η(ac2))

=
∑

c1∈Fq

(qm−2 + ν(c1)q
m−3

2 )(1 + η(a(b − c1)))

=
∑

c1∈Fq

[

qm−2 + qm−2η(ab − ac1) + ν(c1)q
m−3

2 + q
m−3

2 ν(c1)η(a)η(b − c1)
]

= qm−1 + qm−2
∑

c1∈Fq

η(ab − ac1) + q
m−3

2

∑

c1∈Fq

ν(c1) + q
m−3

2 η(a)
∑

c1∈Fq

ν(c1)η(b − c1)

= qm−1 + q
m−3

2 η(a)
∑

c1∈Fq

ν(c1)η(b − c1)

= qm−1 + q
m−3

2 η(a)qν(b)

= qm−1 + q
m−1

2 η(ab).

The second to last step applied Lemma 5. This completes the proof.

�

7. Zeros of a Quadratic Form

Often times, we are interested in the solutions (x1, . . . , xn) ∈ Fn
q to the equation

f(x1, . . . , xn) = 0 where f is a quadratic form over Fq . Such solutions are said to
be zeros of f . Later on, we will see that subspaces of Fn

q can be generated from
the zeros of f .

Using Theorem 6, it is easy to compute the number of zeros of any quadratic
form f . If f is Type I and nondegenerate with n indeterminates, then it has

qn−1 + ν(0)q
n−2

2 = qn−1 + (q − 1)q
n−2

2 = qn−1 + qn/2 − q
n−2

2 zeros. In general, the
number of zeros of a quadratic form f of order m with n indeterminates is

(18)

qn−m(qm−1 + (q − 1)q
m−2

2 ) if f is of Type 1,

qn−m(qm−1 − (q − 1)q
m−2

2 ) if f is of Type 2,

qn−m(qm−1 − q
m−1

2 ) if f is of Type 3, q odd, and
qn−m(qm−1) if f is of Type 3, q even.

8. Finding the Size of the Maximal Subspace of Zeros

Recall that a vector space V is a set of elements defined under addition and scalar
multiplication with a zero vector. Moreover, V is closed under these two operations.
For a more complete definition, see [4] or [3]. A set S ⊂ V is a subspace of V if
it contains the zero vector and is closed under the two operations. The simplest
example of a vector space is Rn, which is the set of all n-tuples of real numbers.
We can write such a vector as (a1, a2, . . . , an) where ai ∈ R for 1 ≤ i ≤ n.

Thus, the zeros of an arbitrary quadratic form f defined over the field F are
simply vectors in the vector space Fn. It is also possible to construct subspaces of
Fn using only these zeros. However, for large order quadratic forms, these subspaces
become increasingly difficult to compute and validate.
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Our ultimate goal in this section is to relate the size of the maximal subspaces of
zeros for an arbitrary quadratic form f to its order and type. It is relatively straight
forward to come up with a conjecture to this dependence. However, proving the
size of the maximal subspaces is of considerable difficultly. For now, we start with
some simple examples.

Consider the Type I quadratic form

x1x2 + x3x4 over F3.

A vector space can be generated from the zeros (1, 0, 1, 0) and (1, 0, 0, 0). This
vector space is actually a subspace of F3 ⊕F3 ⊕F3 ⊕F3. The main goal is to throw
in as many zeros as we can while maintaining the property that every subspace
element is a zero.

From the two vectors above, we generate the following subspace:

{(0, 0, 0, 0), (1, 0, 1, 0), (2, 0, 2, 0), (1, 0, 0, 0), (2, 0, 0, 0),

(2, 0, 1, 0), (1, 0, 2, 0), (0, 0, 1, 0), (0, 0, 2, 0)}.

Thus, drawing from a fairly simple example, it seems that the size of the maximal
subspace of zeros for this quadratic form is 9. This leads us to make the following
conjecture.

Conjecture 1. If f is a Type I quadratic form over Fq with order n, then the size
of its maximal subspace of zeros is given by q

n
2 .

Recall that a Type II quadratic form over a field Fq is written as x1x2 + x2x3 +
· · ·+ xn−3xn−2 + α1x

2
n−1 + α2xn−1xn + α3x

2
n, where the quadratic in the last two

indeterminates is irreducible. That is, there are no nontrivial zeros in F2
q to the

equation α1x
2
n−1 + α2xn−1xn + α3x

2
n.

Consider the Type II quadratic form f(x1, x2, x3, x4) = x1x2 + 3x2
3 + 2x3x4 + x2

4

over Z5. It is relatively tedious but straightforward to verify that the quadratic in
the last two indeterminates is in fact irreducible. The 4-tuple (1, 1, 2, 2) is a zero of
f and generates the subspace

{(0, 0, 0, 0), (1, 1, 2, 2), (2, 2, 4, 4), (3, 3, 1, 1), (4, 4, 3, 3)}.

I was unable to find any other zeros that can be added to this set without
violating closure under addition. Thus, it is my conjecture that 5 is the size of the
maximal subspace. To make sense of this, consider that x1x2 is the only hyperplane
of f , and so 5 is simply q to the power of the number of hyperplanes. That is,

5 = 5
n−2

2 = 5
n
2
−1. For Type I quadratic forms, we ended up with essentially the

same result except that the number of hyperplanes was given by n
2

instead of n
2
−1.

Conjecture 2. If f is a Type II quadratic form over Fq with order n, then the size
of its maximal subspace of zeros is given by q

n
2
−1.

Now consider the Type III quadratic form

x1x2 + x3x4 + 2x2
5 over F3.

Note that the last term can only take on the values 2 or 0. If we generate a
subspace of zeros where x5 = 0, we will get something very similar to the above ex-
ample. Otherwise, suppose we start with the elements (2, 1, 1, 2, 1) and (0, 1, 0, 1, 0).
This generates the subspace
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{(0, 0, 0, 0, 0), (0, 1, 0, 1, 0), (0, 2, 0, 2, 0), (2, 1, 1, 2, 1),

(1, 2, 2, 1, 2), (1, 0, 2, 2, 2), (2, 0, 1, 1, 1), (2, 2, 1, 0, 1), (1, 1, 2, 0, 2)}.

Notice that this has size 9, which is equal to 3
n−1

2 .

Conjecture 3. If f is a Type III quadratic form over Fq with order n, then the

size of its maximal subspace of zeros is given by q
n−1

2 .

9. Conclusion

The theory of quadratic forms is heavily rooted in abstract algebra. As a result,
many of the problems in the subject require a graduate level of mathematics to
solve. In this paper, we primarily focused on defining quadratic forms exactly,
classifying the three types a given form can assume, and proving some results
for each type. Specifically, we looked at the number of solutions to the equation
f(x1, . . . , xn) = b where f is a quadratic form in n indeterminates over the field Fq.
We also derived the number of zeros of f or the number of solutions to the equation
f(x1, . . . , xn) = 0. Finally, we considered the maximally-sized subspaces that can
be generated from the set of zeros of a quadratic form and produced conjectures
for each type.

There still remains much to be learned of quadratic forms, and as stated earlier,
many of these concepts would require a more advanced knowledge of abstract alge-
bra. For example, one might ask how many unique maximally-sized subspaces can
be generated from the zeros of f . In order to reasonably tackle this problem, I sug-
gest looking at [5] closely. Additionally, it would be interesting to investigate higher
degree polynomial equations such as quintic or quartic forms. How many zeros do
they have and how would these results compare to those for quadratic forms? A
paper on the nonsingular zeros of quintic forms over finite fields by David Leep,
[1], could be a helpful starting point to analyze this problem. These questions and
numerous others would be of particular interest to anyone diligently researching
within the field.
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