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1. Introduction

A fundamental result in finite Abelian group theory is the so-called structure theorem,

which uniquely presents a finite Abelian group as the direct product of cyclic groups of

prime-power order. Analogous to this is a result in the theory of vector spaces which reduces

the question of vector isomorphism to the question of basis cardinality. These are in fact just

two of a collection of theorems which serve to analyze and pick apart algebraic structures by

certain size factors, or cardinal invariants. In this paper we consider questions of this type

along with a much subtler class of problem which arises from the introduction of topological

properties into Abelian groups and vector spaces.

A group is a set equipped with a binary associative operation which also has an identity

element and an inverse function. We typically express these conditions symbolically as

(a+ b) + c = a+ (b+ c), a+ 0G = 0G + a = a, and a+ (−a) = 0G, where a, b, c are arbitrary

group elements and 0G denotes the group identity. An Abelian group is commutative in

addition to its associativity, so that the identity a + b = b + a holds identically. A group

G is a p-group if for every g ∈ G there exists a nonnegative integer k such that pkg = 0G,

where pkg = g + g + . . . + g the pk-fold sum . The socle of an Abelian p-group G is the

set of all g ∈ G such that p1g = 0G (this is necessarily a subgroup of G). By using the

finite field Zp we can define an intuitive vector space structure on the socle K. After all

this, we can define the p-height of a socle element g to be the largest integer k such that

g ∈ pkG, where the height is denoted by ∞ if no such integer exists. The p-height function

is an excellent example of a vector space valuation. These valuations make up the bulk of

the paper. We examine their general definition and their elementary properties before using

them to introduce metric topological structure on the socle.

The main problem which we analyze concerns nested sequences of closed subspaces of a

valuated vector space. Specifically, the property of freeness relays the existence of a vector

space basis which is in some sense optimal with regard to the valuation structure. Thus we

have to consider both the vector space structure over the field and the valuation structure.
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2. Vector Spaces

In this section we outline the basic linear algebra ideas we will use throughout the paper.

Let F be a field. An Abelian group (V,+) is called a vector space over F if there exists

a function · : F × V → V which satisfies the following formulas for all α,β ∈ F and all

v,w ∈ V :

1v = v

α(v + w) = αv + αw

(α +F β)(v) = αv + βv

α(βv) = (αβ)v.

Be careful in noting the distinction between the addition in the field and the addition in

the group V , which should be clear from context. For the rest of this paper, we shall assume

that V is a vector space over some arbitrary field F .

3. Subspaces

Given a nonempty set of vectors H ⊆ V , we say that H is a subspace of V whenever the

restrictions of the addition and scalar functions of V to H×H and F×H respectively satisfy

the vector axioms above.

This is equivalent to the following statement: given any v,w ∈ H and α ∈ F , we have

αv ∈ H and v + w ∈ H.For a proof, see [1] refer to this form as the ‘subspace test.’ We

sometimes denote the statement ‘H is a subspace of V ’ with the symbols H ≤ V .
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4. Quotient Spaces

Let V be a vector space and let U ⊆ V be a subspace of V . Given any v ∈ V , we define

the left coset of U containing v to be the set of all elements w of V such that v − w ∈ U

(hereafter we simply call this set a coset). We denote this by v+U . It is straightforward to

see that v + U = {v + u : u ∈ U} for any v ∈ V . This creates a partition of V (two cosets

of U are either equal or disjoint). For if v′′ ∈ v + U ∩ v′ + U , then v′′ − v and v′′ − v′ are

both elements of U . Now suppose that w ∈ v + U . This is equivalent to w − v belonging to

U . Then w − v′ = (w − v) + (v − v′′) + (v′′ − v′) ∈ U , as U is closed under addition. But

then w ∈ v′ + U , so that v + U ⊆ v′ + U . By switching v and v′ in this argument, we have

the inclusion v′ + U ⊆ v + U . Thus the two cosets are equal whenever they intersect, and

we have that the cosets form a partition of V .

Given a subspace U , we can define vector space operations on the collection of cosets of U .

Specifically, we define for any v, v′ ∈ V and any scalar α the following (v + U) + (v′ + U) =

(v + v′) +U and α(v +U) = (αv) +U . We can show that the set V/U = {v +U : v ∈ V } is

a vector space over F with these operations.

First, we need to show that the operations are well-defined. If v + U = v′ + U and

w + U = w′ + U , we need to show that (v + U) + (w + U) = (v′ + U) + (w′ + U). We know

that v−v′ ∈ U and w−w′ ∈ U . Subspaces are closed under addition, so (v−v′)+(w−w′) ∈ U .

Then rearranging we have (v+w)− (v′+w′) ∈ U . Thus (v+w) +U = (v′+w′) +U , so that

addition is well-defined. Similarly, α(v − v′) ∈ U , as U is closed under scaling. Applying

right distributivity, we have αv − αv′ ∈ U . Then (αv) + U = (αv′) + U . Thus scaling is

well-defined.

Now that we know that coset addition is well-defined, we construct an additive identity

element. Specifically, the coset 0 + U will serve as additive identity. It is simple to check

that for any v ∈ V , we have (v + U) + (0 + U) = (0 + U) + (v + U) = v + U .

None of the rest of the vector space axioms require any reference to the subspace U ,

instead relying exclusively on the vector properties of V . That is, associativity of coset
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addition only requires that the addition function be well-defined, after which the property

follows immediately from associativity of vector addition. Thus, we omit the proofs of the

other properties and state that V/U = {v + U : v ∈ V } is a vector space over F under the

previously defined operations.

5. Linear Transformations

Let V and W be vector spaces over the same field. A function φ : V → W is called a

linear transformation if for all v, v′ ∈ V and all α ∈ F we have φ(v +V v
′) = φ(v) +W φ(v′)

and φ(α ·V v) = α ·W φ(v).

Note that we have written the scaling operation slightly differently so that the difference

between the two vector spaces is apparent. Essentially, a linear transformation maps V

onto a subspace of W in a highly symmetric fashion. This is encompassed by the following

theorem.

Theorem 1. Let φ : V → W be a linear transformation between F -vector spaces. Then

the kernel of φ, ker(φ) = {v ∈ V : φ(v) = 0W} is a subspace of V , and the image of φ,

im(φ) = {φ(v) : v ∈ V } is a subspace of W . For any w ∈ φ(V ), the set φ−1(w) is in

bijective correspondence with ker(φ) and the quotient operations v + ker(φ) +w + ker(φ) =

v +w + ker(φ) and α(vker(φ)) = (αv)ker(φ) define a vector space on the space of cosets of

ker(φ), a vector space which is naturally isomorphic to φ(V ).

Proof. We prove the first part using the subspace test. Let v, v′ ∈ ker(φ), so that φ(v) =

0W = φ(v′). Then φ(v + v′) = φ(v) + φ(v′) as φ is a linear transformation. But this sum is

just 0W as 0W is the additive identity for W .

Now suppose that α ∈ F . Then φ(αv) = αφ(v). But φ(v) = 0W = 0W +0W = φ(v)+φ(v),

so that we can write αφ(v) = α(φ(v) + φ(v) = αφ(v) + αφ(v) by right distribution. Then

cancellation gives αφ(v) = 0W . Thus φ(αv) = 0W and αv ∈ ker(φ).

Then the subspace test tells us that ker(φ) is a subspace of V .
4



We prove that im(φ) is a subspace using the same method. Note that 0V ∈ V and φ(0V ) =

0W together yield 0W ∈ im(φ), so that the set is nonempty. If w1 = φ(v1) and w2 = φ(v2),

then w1 + w2 = φ(v1 + v2) ∈ im(φ). If α ∈ F , then αw1 = αφ(v1) = φ(αv1) ∈ im(φ). Thus

im(φ) is closed under addition and scaling and im(φ) is a subspace.

If w = φ(v) for some v ∈ V , then we define a function Ψ from φ−1(w) ⊆ V to ker(φ) by

the rule Ψ(v′) = v′ − v. This is a mapping from φ−1(w) to ker(φ) for if φ(v) = w = φ(v′),

then φ(v′ − v) = φ(v)− φ(v′) = 0V . We claim that this a bijection. For if Ψ(v′) = Ψ(v′′) for

two vectors v′, v′′ ∈ φ−1(w), then v′ − v = v′′ − v. Cancellation gives v′ = v′′. If u ∈ ker(φ),

let v′ = u+ v. Then Ψ(v′) = u+ v − v = u, so that Ψ is surjective.

�

Given two vector spaces V and W , we sometimes want to build a new vector space which

contains each of the two as subspaces (or more precisely, which contains isomorphic copies

of each of V and W , a concept we will define later). One method to do this is by taking

pairs (v, w) where v ∈ V and w ∈ W and defining the operations componentwise. That is

to say, (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and α(v, w) = (αv, αw). Proving that all the

vector space axioms hold in this structure is tedious so we omit. Denote this new structure

by V ⊕W , the direct sum of V and W . Note that the subspaces V ′ = {(v, 0W ) : v ∈ V } and

W ′ = {(0V , w) : w ∈ W} ‘look’ the same as V and W , respectively (the pairs of spaces are

isomorphic, which we shall define later).

We can extend this approach from the case with two vector spaces to the case involving

an arbitrary family of vector spaces {Vi}i∈I , where I is an indexing set. We define
∏

i∈I Vi,

the direct product of the Vi, as the set of all functions f : I → ∪i∈IVi satisfying the inclusion

f(i) ∈ Vi for all i ∈ I.

The direct product has a natural vector space structure, with vector addition and scaling

done much the same as in the direct sum. If we have f, g ∈
∏

i∈I Vi, then define f + g

pointwise, so that (f + g)(i) = f(i) +i g(i), where we use the subscript to emphasize that
5



the addition is taking place within the vector space Vi. Similarly define (αf)(i) = α ·i f(i).

The vector space axioms are satisfied.

The direct product is very simple to define but it lacks a few useful properties. These

properties are satisfied by one of its subspaces. Let
⊕

i∈I Vi denote the subset of
∏

i∈I Vi

which contains only those functions which have finite support, i.e. f ∈
⊕

i∈I Vi if f(i) = 0i

for all but finitely many i ∈ I. Then this is a subspace which we name the direct sum of the

Vi.

Note that if I is finite (only finitely many Vi), then the direct sum and the direct product

are the same, as there cannot be infinitely many i ∈ I with f(i) 6= 0i for some f ∈
∏

i Vi.

Thus if there are only two spaces V1 and V2, the two definitions of ‘direct sum’ agree with

one another.

6. Bases

Given a nonempty set S of vectors in V , a linear combination in the vectors S is an

expression of the form α1v1 + . . .+ αkvk, where for all i we have αi ∈ F and vi ∈ S.

Now we can precisely formulate the span of S. Let F denote the set of all subspaces of V

which contain S as a subset, that is F := {H ≤ V : S ⊆ H}. Now let span(S) = ∩H∈FH.

We claim that this is a subspace of V .

We apply the subspace test listed previously. Suppose that v, w ∈ span(S) and α ∈ F .

Given any H ≤ V with S ⊆ H we have that span(S) ⊆ H, so that v,w ∈ H. Since H is a

subspace by hypothesis, we have v+w ∈ H. Similarly, αv ∈ H. Since H was selected merely

as an arbitrary subspace of V containing S, we have v + w,αv ∈ span(S). This completes

the proof.

Now we have a characterization of the span in terms of linear combinations: given

nonempty S ⊆ V , the subspace span(S) is the set of all linear combinations of elements

of S. To prove this, let L denote the set of all linear combinations of elements of S. Since

span(S) is a subspace of V , it must contain all linear combinations of elements of S. Thus

L ⊆ span(S). On the other hand, L contains S and it is straightforward to check that
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L is a subspace of V . Thus L contains all linear combinations of elements of S, so that

span(S) ⊆ L. Thus L = span(S).

It is worth noting that calculating the span of a subspace is trivial, i.e. if S ≤ V , then

span(S) = S. Thus span(span(S)) = span(S) for all nonempty subsets S ⊆ V . Calculating

the span defines a function Φ mapping the family of nonempty subsets of V into itself which

is a prime example of a closure operator, which is merely a function on the subsets of a space

which satisfies the second equation Φ(Φ(S)) = Φ(S).

A spanning set for V is a set S of vectors in V satisfying span(S) = V . Thus if S is a

spanning set for V , any vector in V can be written as a linear combination of vectors in S.

Let S ⊆ V be a set of vectors in V . If for any finite subset {v1, . . . , vk} the equation∑k
i=1 αivi = 0V implies αi = 0F for all i, then we say that S is linearly independent.

Now we are able to state the definition of a basis for V . A basis for V is a linearly

independent spanning set for V .

7. Constructing Bases

Bases are useful when dealing with vector spaces, but we don’t as yet know whether or

not they always exist. Could there exist a vector space none of whose subsets were bases?

No, as the next theorem shows.

Theorem 2. Let V be a vector space. Suppose that S is a spanning set for V and J is a

linearly independent subset of V . Then there exists a subset S ′ ⊆ S such that S ′∩J = ∅ and

S ′ ∪ J is a basis for V .

In order to prove this theorem, we must have recourse to something called Zorn’s lemma.

Recall that a relation on a set X is a set R of ordered pairs (a, b) ∈ X2. A partial order

relation has the following properties: (a, a) ∈ R for all a ∈ X, if (a, b) ∈ R and (b, a) ∈ R

then a = b, and if (a, b) and (b, c) are in R, then so is (a, c). Typically we write a ≤R b to

denote (a, b) ∈ R, writing a ≤ b when the context is clear. A chain in a partially ordered

set X is a subset C ⊆ X such that if x, y ∈ C, then x ≤ y or y ≤ x. An upper bound for a
7



set B ⊆ X is an element y ∈ X such that b ≤ y for all b ∈ B. An element y ∈ X is maximal

if y ≤ z implies z = y.

Theorem 3. (Zorn’s lemma) Let X be a partially ordered set such that every chain in X

has an upper bound in X. Then given any element x ∈ X, there is a maximal element y ∈ X

such that x ≤ y.

We don’t prove Zorn’s lemma but instead refer to proofs in [2] and [3]. It should be noted,

though, that Zorn’s lemma is equivalent to the axiom of choice, and by using it we accept

some of the liabilities of that axiom. We also equip ourselves with a minor technical lemma

about chains.

Lemma 1. Let X be a partially ordered set and let C be a chain in X. If C is finite, then

C contains a greatest element. That is, there exists c ∈ C such that c′ ≤ c for all c′ ∈ C.

Proof. We prove this by induction on the size of the chain. If C has just one element, say

C = {c}, then c is trivially a greatest element for C. Now assume that the lemma holds

for all chains with size less than or equal to k, where k ≥ 1. If C is a chain in X with

|C| = k+ 1, then we can write C = {c}∪D, where c is an arbitrary element of C and c /∈ D.

Then D is also a chain, as it is nonempty, and so it must have a greatest element d, by the

inductive hypothesis. If c < d, then c′ ≤ d for all c′ ∈ C, and we are finished. Otherwise,

d < c, and by transitivity of partial orders we can conclude that c′ ≤ c for all c′ ∈ C. Then

c′ is the greatest element of C.

�

We now prove the basis theorem.

Proof. Remember that in the hypothesis of the theorem, J is a linearly independent subset

of V and S is a spanning set for V . If the set J is a spanning set for V , we are done. If J

is not a spanning set, there must be some s ∈ S such that {s} ∪ J is linearly independent.

Otherwise, all the elements of S are included in the span of J and J is a spanning set for
8



V . Thus we must have a (nonempty) collection T of subsets of S such that for all E ∈ T

have the properties that E ∪ J is linearly independent and E ∩ J = ∅. This set T is a

partially ordered set under normal subset inclusion. Does T fit the hypotheses of Zorn’s

lemma? Suppose that C is a chain in T . Can we find an upper bound for C in T? Let

P = ∪E∈CE be the union over all elements in the chain. We claim that P is an element of

T . For if we have a linear combination 0V = σnk=1αkvk for some v1, . . . , vn ∈ P , then there

must be elements E1, . . . , En such that vk ∈ Ek. But one of these Ek must include all the

others, by the technical lemma. Call this set Ei. This set Ei contains all the sets E1, . . . , En,

so that all the elements vk are contained in Ei. But Ei is linearly independent (because the

superset Ei ∪ T is linearly independent), so that we must have that αk = 0 for all k. To

prove that P ∩ J = ∅, we only point out that if w ∈ P , there must be an element of C

which contains w. But all of the sets in C are disjoint from J . Thus, every chain in T has

an upper bound contained in T , and we can apply Zorn’s lemma. Specifically, there is an

element of T containing s which is maximal under the inclusion relation. Label this element

A. Remember that this element of T is a subset of S with A ∪ J linearly independent. We

claim that A∩ J = ∅ and A∪ J is a basis. The first claim follows from the fact that A is an

element of T , and all elements of T are disjoint from J . From A ∈ T we can also conclude

that A∪ J is linearly independent. All that remains to be shown is that A∪ J is a basis for

V .

Suppose that some v ∈ V is not included in the span of A ∪ J . We claim that A ∪ v is

an element of T which properly includes A, contrary to the maximality of A under subset

inclusion. We know that (A ∪ v) ∩ J = (A ∩ J) ∪ (A ∩ v) = A ∩ v by the distributive laws

of set theory. Thus if (A ∪ v) ∩ J 6= ∅, we have v ∈ A, contradicting our hypothesis that

v /∈ span(A∪ J). If (A∪ v)∪ J is linearly dependent, we must have some linear dependence

relation in the elements of A∪J and the element v (because A∪J is linearly indepedent. But

we can solve this dependence relation for v to show that v ∈ span(A∪ J). Thus (A∪ v)∪ J

is linearly independent. But this is a contradiction, so A ∪ J is a spanning set for V . So

A ∪ J is a basis for V .
9
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Theorem 4. Every vector space has a basis. Any linearly independent subset J of vector

space V can be extended to a basis. That is, there exists a basis B for V containing J .

Proof. The set ∅ is vacuously linearly independent, and V is a spanning set for V . So let

J = ∅ and V = S in the above theorem.

�

8. Direct Sums and Direct Products

Recall the definition of a direct product : we are given a set I such that Vi is a vector space

over F for all i ∈ I. The direct product
∏

i∈I Vi is the set of all functions f : I → ∪i∈IVi

such that f(i) ∈ Vi for all i ∈ I. We compute the vector operation (addition and scaling)

pointwise: (f + g)(i) = f(i) +i g(i) and (α · f)(i) = α ·i f(i). We do not include the tedious

verification that this is a vector space (that the addition is commutative and associative,

the scaling distributes over addition, etc.). Recall also the direct sum of the Vi, which is the

subspace of
∏

i∈I Vi consisting of all functions of finite support.

For each j ∈ I, let τj : Vj → ⊕i∈IVi be defined by τ(x) = (vi)i∈I , where vi = x if i = j

and vi = 0i otherwise. The restriction of the codomain to ⊕i∈IVi is not vital–we can think

of each τj as a map τj : Vj →
∏

i∈I Vi. We sometimes refer to these as the set of inclusion

mappings. We state without proof that these are linear transformations. In a dual fashion,

for each j ∈ I we have a function πj :
∏

i∈I Vi → Vj by πj((vi)i∈I) = vj. These are the

projection mappings (they are also linear transformations). Note that for any j ∈ I, the

composition πj ◦ τj = 1j the identity transformation on Vj.

The utility of the inclusion and projection mappings becomes apparent in the light of the

following theorem.

Theorem 5. Suppose that Vj is a vector space for every i ∈ I. Let W be a vector space

and for each j ∈ I let φj : Vj → W be a linear transformation. Also, let ψj : W → Vj
10



be a linear transformation for each j ∈ I. Then there exists unique φ : ⊕i∈IVi → W and

ψ : W →
∏

i∈I Vi such that φ ◦ τj = φj and πj ◦ ψ = ψj for all j ∈ I.

Proof. We define φ(x) by ‘adding up the images’ of all the nonzero coordinates of x. More

precisely let x =
∑k

i=1 xi where each xi is nonzero and all the other coordinates of x are

zero. Then let φ(x) =
∑k

i=1 φi(xi). Then φ ◦ τj = φj because the function τj zeros out the

coordinates besides the j-th coordinate. If two such functions exist, say φ and φ′, then we

have φ ◦ τj = φ′ ◦ τj. But then

φ(
k∑
i=1

vi) =
k∑
i=1

(φ ◦ τj)(vi) =
k∑
i=1

(φ′ ◦ τj)(vi) = φ′(
k∑
i=1

vi).

So φ = φ′.

It is easier to prove the analogous facts for ψ. We define ψ(w) ∈
∏

i∈I Vi by (ψ(w))j =

ψj(w). Then (πj ◦ ψ)(w) = (ψ(w))j = ψj(w), so that ψ satisfies the equation πj ◦ ψ = ψj

for all j ∈ I. If there existed another solution, say π′ : W →
∏

i∈I Vi, then the two would be

forced to agree coordinate by coordinate and so would coincide.

�

9. Internal Direct Sums

Suppose that we are given a vector space V and a collection of subspaces of V , say

{Ui}i∈I . Then for each i ∈ I, we have the inclusion mapping ιi : Ui → V which maps vectors

to themselves. These mappings are quickly seen to be linear transformations. This fits the

hypotheses of the direct sum theorem of the previous section. Thus, we have the adding

transformation φ : ⊕i∈IUi → V as previously defined. We use the adding transformation to

define two important ideas. We say that the collection spaces {Ui} is linearly independent

whenever the function φ is injective. We say that the spaces {Ui} span V if the function

φ is surjective (this is equivalent to saying that their union is a spanning set for V ). If the

spaces are linearly independent and they span V , we say that V is the internal direct sum
11



of the spaces {Ui} and write V = ⊕i∈IUi. We now prove a simple criterion for determining

when a vector space is the direct sum of two subspaces.

Theorem 6. Suppose that V is a vector space and U and W are two subspaces of V . Then

V is the internal direct sum of U and W if and only if V = U+W = {u+w : u ∈ U,w ∈ W}

and U ∩W = {0V }.

Proof. Suppose that V = U ⊕ W and suppose x ∈ U ∩ W . Then φ(0, x) = φ(x, 0) = x

by definition of φ. But φ must be injective, so that x = 0V . If v ∈ V , then there exists

(u,w) ∈ U ⊕W (the vector direct sum) such that φ(u,w) = v, as φ is surjective. But the

definition of φ then gives u+ w = v.

Now suppose that U + W = V and U ∩ W = {0V }. If φ(u,w) = φ(u′, w′), then u +

w = u′ + w′. On rearrangement, we have u − u′ = w′ − w ∈ U ∩ W = {0V }. Thus

u − u′ = w′ − w = 0V , and (u,w) = (u′, w′). So φ is injective. If v ∈ V , there must exist

u,w ∈ V such that u+ w = v, so that φ(u,w) = v. Thus φ is surjective. So V = U ⊕W .

�

We now prove a useful structural theorem about general vector spaces. Specifically, this

theorem allows us to divide up a vector space along a given subspace.

Theorem 7. Let V be a vector space and let U ⊆ V be a subspace of V . Then there exists

a subspace W of V such that V is the internal direct sum of W and U , i.e. V = U ⊕W .

Proof. By the basis theorem, we can pick a basis B for U . This is a linearly independent

subset of V by definition, so we can extend this to a basis B′ for V . Let W = span(B−B′).

Then B′ − B is a basis for W . Every element of V can be written uniquely as a linear

combination of elements of B. If we divide this linear combination into a sum of two vectors,

one a linear combination in B and the other a linear combination in B′ − B. Thus every

element of V has a unique representation as a sum of an element of U and an element of W .

�
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10. Some set theory

Now that we have laid out the basic definitions for the linear algebra in the paper, we turn

to the set theoretic aspects. Let X and Y be two sets. A function φ : X → Y is said to be

injective (or an injection) if φ(x) = φ(x′) implies x = x′. To say that φ : X → Y is injective

is equivalent to asserting the existence of a left inverse for φ, which is a function κ : Y → X

which satisfies κ ◦ φ = 1X (the identity function on X).

A function ψ : X → Y is said to be surjective (or an surjection) if given any y ∈ Y , there

exists an x ∈ X satisfying the equation ψ(x) = y. This is equivalent to the existence of a

right inverse for ψ, which is a function ε : Y → X satisfying ψ ◦ ε = 1Y .

A function τ : X → Y which is both injective and surjective is called bijective (or a

bijection). These functions necessarily possess both left and right inverses and in fact these

inverses coincide.

There are a few elementary properties of injections, surjections, and bijections which we

will use. Most importantly, if f : X → Y and g : Y → Z are injections (alternately,

surjections or bijections), then the composite function gf : X → Z is necessarily injective

(surjective, bijective).

What does it mean to say that the set {1, 2, 3} and the set {2, 3, 4} have the same size?

Or, in more elementary terms, the set {G,C, S} and the set {grape, cherry, strawberry}.

In the first case, we have an easy bijection f from the first to the second set given by

f(x) = x+ 1. In the second case we match the fruits to the first letters of their names.

Two sets X and Y have the same cardinality if there exists a bijection φ : X → Y .

This is quickly seen to be an equivalence relation–it partitions the universe of sets into

classes by cardinality. Often it is difficult to construct directly a bijection τ : X → Y . In

this case we exploit a related but weaker notion. Let X and Y be sets. If there exists an

injection φ : X → Y then we say that Y is at least as large as X. This is made into a useful

idea by the following theorem.

13



Theorem 8. (Cantor-Schroeder-Bernstein theorem). Given sets X,Y and injections φ1 :

X → Y and φ2 : Y → X, there exists a bijection τ : X → Y .

For a proof, see [2]. This is truly powerful, because it allows us to reduce the construction

of a bijection to the construction of two injections, which are often easier to describe.

If X and Y are sets with φ : X → Y a bijection, then we write |X| = |Y | and say that the

two sets share the same cardinality. We define operations on cardinalities, |X||Y | = |X×Y |

and |X|+ |Y | = |(X ×{0})∪ (Y ×{1})|, where A×B is the Cartesian product of A and B.

A fundamental theorem of set theory says that if X ∪ Y is infinite, then |X||Y | =

max{|X|, |Y |} = |X|+ |Y | (the long proof is contained in [2]). An inductive argument tells

us that if X1, . . . , Xk are sets with infinite union, then Πk
i=1|Xi| = maxki=1|Xi| = σki=1|Xi|.

This allows us to quickly calculate the cardinality of finite products and unions of sets, pro-

vided we know which set has the greatest cardinality. For example, the Cartesian product of

R with itself, R×R has cardinality |R|, as R is infinite. Note that this rule fails dramatically

if the union of the sets is finite. For example, if A = {1, 2, 3}, then |A× A| = 9 > 3 = |A|.

The ‘smallest’ infinite cardinality is |N|. To prove this, we must show that given any infinite

set X there is an injection mapping N into X. We construct this injection inductively. Let

φ(1) be any arbitrary element of X (there must exist such an element or X is empty). Now

suppose that φ(1), . . . , φ(n) have all been selected such that no two coincide. There must

exist an element φ(n + 1) in X − {φ(1), . . . , φ(n)}, or else X is a finite set. Thus we have

defined φ over the entire set N as an injection. So any infinite set is at least as large as the

positive integers.

11. Set Theory and Linear Algebra

Let φ : V → W be an injective linear transformation. Then for any linearly independent

set S ⊂ V , we have that the image set φ(S) is linearly independent in W .

For if α1φ(v1) + . . . + αkφ(vk) = 0W for vi ∈ V and αi ∈ F , then we can use the linear

properties of φ to write φ(α1v1 + . . .+αkvk) = 0W . Since φ(0V ) = 0W = φ(α1v1 + . . .+αkvk),
14



and φ is injective, we must have
∑k

i=1 αivi = 0V . But S is linearly independent, so that

αi = 0F for all i. Thus φ(S) is linearly independent.

We describe a similar interaction between surjections and spanning sets. Let ψ : V → W

be a surjective linear transformation, and suppose that S ⊆ V is a spanning set for V . Then

the image set φ(V ) is a spanning set for W . For if we take an arbitrary element w ∈ W , we

can always find some v ∈ V which satisfies ψ(v) = w, as ψ is a surjection. Since S spans V ,

we can find a linear combination in S equaling V , that is
∑k

i=1 βivi = v, where βi ∈ F and

vi ∈ S. Then w = ψ(v) = ψ(
∑k

i=1 βivi) =
∑k

i=1 βiφ(vi). Thus we can take any element of

W and write it as a linear combination in φ(V ). This proves that φ(V ) is a spanning set for

W .

Combining these two results, we can see that if τ : V → W is a bijective linear transfor-

mation, and B ⊂ V is a basis for V , then τ(B) is a basis for W .

12. All Finite Subsets

Theorem 9. Suppose that S is an infinite collection of sets, each of which is finite. Then

|S| = | ∪A∈S A|. (An immediate consequence of this is that for any infinite set X, if Xf is

the collection of all finite subsets of X, then |Xf | = |X|).

Proof. Define X = ∪A∈SA. Then X is infinite, for if X is finite, then the power set P (J)

has finite order 2|X|. Thus there are only finitely many subsets of X, and thus only finitely

many elements of S, contradicting the hypothesis that S is infinite. Thus we can apply our

facts from set theory to write |X × X| = |X2| = |X|. Then induction and the equation

|(Xk ×X)| = |Xk+1| (trivial to verify) give us that |Xn| = |X| for any positive integer n.

Let Y = ∪n∈NX
n. For every positive integer k, let φk : Xk → X be a bijection. This

allows us to define a bijection from Y to N × X by sending the element (x1, . . . , xm) to

(m,φm(x1, . . . , xm)). Thus |Y | = |N×X| = |X| as X is infinite and N is the smallest infinite

set.

Now we can show that |S| ≤ |X|. Using the axiom of choice (for the second time), for each

A ∈ S we take the finitely many elements of A and list them in any order we like, forming
15



a vector v of size |A|. Now map A to v, an element of Y . Our mapping must be injective,

for if the lists for two sets coincide, they must share all elements and therefore be the same

set. Thus we have an injection mapping |S| into Y , so that |S| ≤ |X|.

Since S is infinite, we have the equation |S| = |S × N|. Apply the axiom of choice once

more to select for each set A ∈ S an enumeration {x1, . . . , xm}. Let ψ : S×N→ X be given

by φ(S, i) = xi, if S has at least i elements, and x1, if S doesn’t have i elements. Then every

element of X is in the image of ψ. This follows from the definition of X: we just pick A

containing x ∈ X and then some integer j must have φ(A, j) = x.

This surjection gives us the relation |X| ≤ |S × N| = |S|. Then the previous relation

|S| ≤ |X| and the Cantor theorem give us |S| = |X|.

�

13. Invariance of Basis Size

Theorem 10. Suppose that V is a vector space over F and S and T are two bases for V .

Then |S| = |T |; that is, there exists a bijection φ : S → T .

Proof. For a given x ∈ S, let f(x) be any finite subset of T such that x is contained in

the span of f(x) (this requires the axiom of choice). We can always manage to find such

a finite subset because T is a spanning set for V . Define f(S) = {f(x) : x ∈ S}. Let

C = {f−1(Y ) : Y ∈ f(S)}. We claim that this is a partition of S into finite sets.

First, we show that the sets f−1(Y ) are finite. If some x′ ∈ S has f(x′) = Y with f−1(Y )

infinite, then the subspace generated by Y contains infinitely many linearly independent

vectors (the elements of f−1(Y )). But Y consists of only finitely many vectors in T , and so

it cannot have infinitely many linearly independent vectors in its span, by elementary linear

algebra. Thus all the sets f−1(Y ) are finite.

Now we show that the sets f−1(Y ) form a partition of S. This is trivial: if x ∈ f−1(Y ) ∩

f−1(Y ′), then f(x) = Y and f(x) = Y ′. Also, x ∈ f−1(f(x)).

So we have shown that the sets f−1(Y ) form a partition of S into finite sets. This gives

us S = ∪Y=f(x):x∈Sf
−1(Y ). The function f induces a bijection from the collection C to the

16



set f(S) given by f−1(f(x)) → f(x). Since f(S) is just a collection of finite subsets of T ,

we have |f(S)| ≤ |T |. The previous proposition tells us that |S| = |C| = |f(S)| ≤ |T |.

Then we can merely switch S for T in the preceding discussion and get |T | ≤ |S|. The

Cantor theorem then applies: because |S| ≤ |T | and |T | ≤ |S|, we have |S| = |T |.

�

Now a particularly nice formula regarding the direct sum of two vector spaces is possible.

If we denote the dimension of a vector space V by dim(V ), then we have the following:

dim(V1 ⊕ V2) = (dim(V1)) + (dim(V2)).

We prove this by first letting B be a basis for V1 and C be a basis for V2. Then the set

{(b, 0) : b ∈ B} ∪ {(0, c) : c ∈ C} has cardinality |B| + |C| by definition. It is also a

spanning set for V ⊕W , because if v1 =
∑k

i=1 αibi and v2 =
∑k

i=1 βici (adding zeros to make

the number of indices equal if necessary), then (v1, v2) =
∑k

i=1 αi(bi, 0) +
∑k

i=1 βi(0, ci).

Linear independence is trivial to see: if
∑k

i=1 γi(bi, 0)+
∑k

i=1 δi(0, ci) = (0, 0), then the linear

independence conditions on B and C give γi = δi = 0. Thus S is a basis for V1 ⊕ V2 and

dim(V1 ⊕ V2) = (dim(V1)) + (dim(V2)).

14. The Well-Ordered Set T

Let T := {0, 1, 2, . . .} ∪ {∞} be ordered with the integer order, with the additional rule

that if k is an integer, then k < ∞. Then every nonempty subset of T has a least element.

For if a nonempty subset A of T contains no integers, it must have only ∞ as an element.

Then ∞ is the least element. Otherwise A ∩ {0, 1, . . .} 6= ∅. The claim then follows from

the well-ordering property of the integers : every nonempty set of integers which is bounded

from below has a least element. This is proven in [2].
17



15. Valuations

Let V be a vector space over a field F . A function ν : V → T is called a valuation if it

satisfies the following conditions for all α ∈ F − {0F}, x, y ∈ V :

ν(x+ y) ≥ min{ν(x), ν(y)}

ν(αx) = ν(x)

ν(0V ) =∞.

An ordered pair (V, ν) where V is a vector space and ν : V → T is a valuation is referred

to as a valuated vector space. Sometimes we will refer to V as a valuated vector space, unless

the context is unclear.

Now we prove the subadditivity of valuations: if ν(x) < ν(y), then ν(x+y) = ν(x). Again

we note that ν(−y) = ν(y) and ν(x + y) ≥ ν(x). Then we have ν(x) = ν(−y + x + y) ≥

min{ν(y), ν(x+y)} ≥ ν(x). Then we must have equality in all cases: min{ν(y), ν(x+y)} =

ν(x) and so ν(x) = ν(x+ y). We will frequently call this the additive rule for valuations.

16. Homogeneous Valuations

Given a valuated vector space (V, ν), we define the value spectrum of V to be the set

ν(V ∗) = {ν(v) : v 6= 0V } ⊆ T . If the value spectrum of V consists of a single element, then

we say that V is homogeneous. If the value spectrum is finite, we say that the space is finite

spectral.

Constructing these spaces is almost the same as defining them: for a given k ∈ T and a

vector space V , we can endow V with a homogeneous valuation by defining νk : V → T by

ν(x) = k for x nonzero and ν(0V ) =∞. We omit the straightforward proof that this defines

a valuation.
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17. Subspaces

Let k ∈ T . Then we define V (k) = {v ∈ V : ν(v) ≥ k} ⊆ V . Since we are assuming

ν(0V ) = ∞, we have ∞ ∈ V (k) for all k ∈ T . We prove that V (k) is a subspace of V

for all k ∈ T . Suppose that x, y ∈ V (k), so that min{ν(x), ν(y)} ≥ k. Then ν(x + y) ≥

min{ν(x), ν(y)} ≥ k. So x+ y ∈ V (k). If α ∈ F and x ∈ V (k), we distinguish two cases. If

α = 0F , then αx = 0V , and ν(αx) = ∞ ≥ k. So αx ∈ V (k). If α 6= 0F , then ν(αx) = ν(x)

by definition of a vector space valuation. So αx ∈ V (k).

Thus V (k) is a subspace of V for any k ∈ T .

18. Direct Sums and Direct Products

Let {(Vi, νi)}i∈I be a collection of valuated vector spaces. We can construct their vector

space direct sum and product,
⊕

i∈I Vi and
∏

i∈I Vi as described above. We can also define

a valuation structure on each of these structures by the rule νπ(x) = min({νi(xi)}i∈I). This

quantity always exists because T is well-ordered, so we know that νQ defines a function from∏
i∈I Vi to T .

We prove that νQ is a valuation on
∏

i∈I Vi. We can then restrict νQ to get a valuation

on
⊕

i∈I Vi.

If α is a nonzero scalar and x = (xi)i∈I is an element of
∏

i∈I Vi, then νi(αxi) = νi(xi) for

any i, as the functions νi are all valuations. Thus νQ(αx) = νQ(x) for any nonzero scalar α

and vector x = (xi)i∈I .

Now suppose that y = (yi)i∈I is another, not necessarily distinct, element of
∏

i∈I Vi. Again

we have by the definition of valuation that νi(xi+yi) ≥ min({νi(xi), νi(yi)}) for all i ∈ I. But

this second quantity, K = min({νi(xi), νi(yi)}), is at least equal to J = min({νQ(x), νQ(y)}.

Thus if we take the minimum over all the indices i, νQ(x+ y), it must also be greater than

or equal to J . But this is just the conditin νQ(x+ y) ≥ min({νQ(x), νQ(y)}). Thus νQ is a

valuation.
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19. T -homomorphisms

Let (V1, ν1) and (V2, ν2) be two valuated vector spaces. A linear transformation φ : V1 → V2

is called a T -homomorphism if it satisfies ν2(φ(x)) ≥ ν1(x) for all x ∈ V1. We see that T -

homomorphisms are closed under composition, i.e. if φ1 : V1 → V2 and φ2 : V2 → V3 are two

T -homomorphisms (where Vi is valuated under νi), then

ν3((φ2 ◦ φ1)(x)) = ν3(φ2(φ1(x))) ≥ ν2(φ1(x)) ≥ ν1(x).

Of course, linear transformations are closed under composition (see [1]). Linear trans-

formations are also closed under linear combinations, i.e. if {fi : V → W}ni=1 is a finite

set of linear transformations and {αi}ni=1 is a set of scalars, then
∑n

i=1 αfi is also a linear

transformation. Do T -homomorphisms enjoy this same property? Yes.

Proving that T -homomorphisms are closed under linear combinations is equivalent to

proving that the collection A of T -homomorphisms between V1 and V2 forms a subspace of

the space of linear transformations between V1 and V2. So we must prove that A is nonempty

and closed under both scaling and addition.

First, note that the zero transformation v1 → 0V2 is a T -homomorphism. The linearity of

this function is trivial and the valuation property follows from the condition that ν2(0V2) =

∞. So A is nonempty. Now we prove that A is closed under addition of functions. If

φ : V1 → V2 and ψ : V1 → V2 are both T -homomorphisms, then so is their sum ψ + φ. For

we have the inequality

νV2(φ(x) + ψ(x)) ≥ min{νV2(φ(x)), νV2(ψ(x))} ≥ νV1(x).

Scaling by zero scalar is equivalent to showing that the zero transformation is a T -homomorphism,

which we have already shown to be true. If α ∈ F − {0F}, then we have νV2((αφ)(x)) =

νV2(φ(x)) ≥ νV1(x). Thus we have proven that T -homomorphisms are closed under linear

transformations.
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20. Embeddings and Isometry

We distinguish a special class of T -homomorphisms. In group theory, an embedding is an

injective group homomorphism. The name refers to the fact that an embedding φ : G→ H

‘sticks’ G into H without losing any structure. An embedding between valuated vector

spaces (V, ν1) and (W, ν2) is an injective linear transformation ψ : V → W which preserves

valuations, i.e. ν2(ψ(v)) = ν1(v) for all vectors v ∈ V . An isometry (the analogue of an

isomorphism) is a surjective embedding. If there exists an isometry τ : V → W then we say

that V and W are isometric or have the same isometry class (because isometries determine

an equivalence relation).

We can exhibit a case of isometry and embedding. Suppose that V is a valuated vector

space under ν : V → T and U is a proper subspace of V . Then ν|U is a valuation on U , and

the inclusion map i : U → V is trivially an embedding.

More interestingly, suppose that V1 and V2 are both homogeneous vector spaces. Then we

have the following theorem:

Theorem 11. Homogeneous spaces V1 and V2 are isometric if and only if they have the

same dimension (are isomorphic) and value spectrum.

Proof. We prove the forward direction first. Since an isometry φ is necessarily a vector space

isomorphism, we only need to show that isometric homogeneous spaces have the same value

spectra. But if we take a nonzero vector x ∈ V1, we have that the value spectrum of V1 is

equal to {ν1(x)}. But an isometry preserves valuation and carries nonzero vectors to nonzero

vectors, so the value spectra agree. Thus the dimensions and value spectra agree.

Now suppose that the dimensions agree and both value spectra equal {β}. Then we have

a vector space isomorphism φ : V1 → V2. We claim that this must also be an isometry.

Again, note that the function φ maps nonzero vectors to nonzero vectors, and 0V1 to 0V2 . If

x 6= 0V1 , then ν2(φ(x)) = β = ν1(x). Similarly, ν2(φ(0V1)) = ν2(0V2) =∞ = ν1(0V1). Thus φ

is an isometry.

�
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21. Valuated Quotient Spaces

Let (V, ν) be a valuated vector space and let U be a subspace. Then we can form the

quotient space V/U as described earlier. Then we can define a valuation µ′ : V/U → T

on V/U as follows: for any v ∈ V , let µ(v + U) = sup({ν(v + u) : u ∈ U}). Here sup

denotes the least upper bound of a set, the minimal element of T greater than or equal to

all elements of that set. We might first ask if this is defined for arbitary v ∈ V . But we can

remark that for any v ∈ V , the set {ν(v + u) : u ∈ U} ⊆ T must satisfy one and only one

of three possible cases. If ∞ ∈ {ν(v + u) : u ∈ U}, then ∞ = sup({ν(v + u) : u ∈ U}). If

∞ /∈ {ν(v + u) : u ∈ U}, but the set {ν(v + u) : u ∈ U} contains arbitrarily large integers

(equivalently, contains infinitely many elements), then∞ = sup({ν(v+u) : u ∈ U}), because

no integer will suffice as an upper bound, yet ∞ must as any integer is less than ∞. In the

last case, {ν(v+ u) : u ∈ U} consists of a finite set of integers. But an elementary inductive

argument shows that every finite set of integers has a maximum, which is necessarily the

sup of the set. So the function µ : V/U → T is well-defined. Is it necessarily a valuation?

First we let α be a nonzero scalar and let v ∈ V . Does L := µ(v + U) equal L′ :=

µ(α(v + U))? Yes, which we prove by first showing that L′ is an upper bound for the

set {ν(v + u) : u ∈ U}, so that L ≤ L′. We then reverse the argument, so that L′leqL,

from which L = L′ follows. Let w ∈ v + U . Then ν(w) = ν(αw), as α is nonzero. So

ν(w) ≤ L′, as L′ is an upper bound for the set {ν((αv) + u) : u ∈ U}. Thus L′ is an

upper bound for {ν(v + u) : u ∈ U}, and so L ≤ L′. We can reverse this argument, noting

that v + U = α−1((αv) + U) (where α−1 is of course nonzero), to see that L′ ≤ L. Thus

µ(α(v + U)) = µ(v + U).

Now suppose that v and v′ are vectors in V . Do we have the inequality µ(v + v′ + U) ≥

min{µ(v +U), µ(v′ +U)}? Without loss of generality, let K = min{µ(v +U), µ(v′ +U)} =

µ(v + U).

Again we distinguish three cases. First, suppose both cosets v + U and v′ + U contain

elements of maximum valuation (that is, elements v+u and v′+u′ such that ν(v+u′′) ≤ ν(v+
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u) and ν(v′+u′′′) ≤ ν(v′+u′) for all u′′, u′′′ ∈ U). Then µ(v+v′+U) ≥ ν(v+v′+(u+u′)) ≥ K,

as u+ u′ ∈ U .

Second, suppose that only one of the two cosets attains its supremum. Then we must have

that the value range of this coset is an infinite set of integers, the only case where a coset

can fail to meet its supremum. Note that in this case, the µ-value of the coset is ∞. If this

coset is the smaller of the two, then they both must have infinite valuation. Then given any

integer K, we can find elements v+ u1 and v′+ u2 of the two cosets such that ν(v+ u1) and

ν(v′ + u2) are both greater than or equal to K. Then

µ((v + v′) + U) ≥ ν(v + u1 + v′ + u2) ≥ min{ν(v + u1), ν(v′ + u2)} ≥ K.

So µ((v+v′) +U) ≥ K for any integer K, and we conclude µ((v+v′) +U) =∞. If the coset

which fail to meet its valuation is the larger of the two, then we can repeat the argument,

substituting in a maximizer for the value range of the other coset in place of v+u1 or v′+u2.

Lastly, suppose that both cosets fail to meet their supremum. Then as above we can find

elements of each coset with valuation greater than any fixed integer K. Their sum also has

valuation greater than K, and is an element of the coset sum. Thus the inequality follows,

and we have the µ defines a valuation on V/U .

22. The Valuation Pseudometric

Let (V, ν) be a valuated metric space. Define d mapping V ×V into the nonnegative reals

by the rule d(x, y) = 2−ν(x−y) (where we define 2−∞ = 0). Typically we write d(x, y) instead

of d((x, y)) for brevity’s sake. Then this defines a pseudometric, which has the following

properties for all x, y, z ∈ V :

d(x, x) = 0

d(x, y) = d(y, x)

d(x, y) + d(y, z) ≥ d(x, z).
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The names of the properties are identity, symmetry, and triangle inequality. By hypothesis

ν(0V ) = ∞, so that we have d(x, x) = 2−ν(x−x) = 2−ν(0V ) = 2−∞ = 0 for any x ∈ V .

Since −1 6= 0F , we have ν(x − y) = ν(−1(x − y)) = ν(y − x) for all x, y ∈ V . Then

we have d(x, y) = 2−ν(x−y) = 2−ν(y−x) = d(y, x). Let k = min{ν(x − y), ν(y − z)} and

let K = max{ν(x − y), ν(y − z)}. Then ν(x − z) = ν((x − y) + (y − z)) ≥ k, so that

d(x, z) ≤ 2−k ≤ 2−k + 2−K = d(x, y) + d(y, z).

The pseudometric determined by a valuation distinguishes a collection of subsets of V

called a topology on V . A subset U ⊆ V is in this collection (or is called open) if and only if

for every x ∈ U there exists some r > 0 so that d(x, y) < r implies y ∈ U . The open ball of

radius r > 0 centered at x ∈ V , denoted Br(x), is the set of all y ∈ V satisfying d(x, y) < r.

Thus we can say that a subset of V is open if and only if it is a union of open balls. Note

that ∅ and V are both trivially open, the latter satisfying V = ∪v∈VB1(v). Importantly,

open balls themselves are open sets. Also, arbitrary unions and finite intersections of open

sets are themselves open sets. We do not prove these facts but instead refer to [3].

Extremely important to consider are the closed sets determined by a topology. These

are the complements of the open sets, {V − U : Uopen}. By the DeMorgan Laws for set

complements and the previously stated results on the unions and finite intersections of open

sets, we can say that arbitrary intersections and finite unions of closed sets are themselves

closed. In order to show that a subsetN of V is closed, it suffices to show that the complement

V −N is an open subset of V .

23. Hausdorff Valuations

The valuation pseudometric is defined for any valuated vector space (V, ν). However, the

pseudometric lacks an important property which we define now. A function d : V × V → R

with nonnegative range has the property of positive definition if d(x, y) = 0 implies x = y

for all x, y ∈ V .

A pseudometric which has positive definition is called a metric or a distance function. This

is important because the topology determined by a metric is Hausdorff : given any distinct
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x, y ∈ V there exist open sets Ux and Uy such that x ∈ Ux and y ∈ Uy, and Ux ∩ Uy = ∅

(sometimes this is referred to as a T2 space). This is fairly easy to prove: suppose that

x 6= y, so that d(x, y) = r > 0. Then the open balls of radius r
4

centered at x and y

respectively satisfy the requirements for a Hausdorff space. For if z ∈ Br/4(x) ∩ Br/4(y),

then d(x, y) ≤ d(x, z) + d(z, y) < r/4 + r/4 < r = d(x, y), a contradiction.

What are the Hausdorff valuation pseudometrics, or valuation metrics? This question

obviously involves the set V (∞) = {x ∈ V : ν(x) =∞}. By hypothesis, 0V ∈ V (∞). What

happens when nonzero y ∈ V (∞)? Then for any x ∈ V , we have d(x + y, x) = 2−ν(y) = 0.

Thus we cannot obtain a valuation metric if V (∞) is nontrivial. Is the converse true: if

V (∞) is trivial, can we obtain a valuation metric?

The answer is yes, because of the way we defined d. The pseudometric d vanishes (satisfies

d(x, y) = 0) if and only ν(x−y) =∞, because 2−k > 0 for all integers k. Since V (∞) = {0V },

we have x−y = 0V , so that x = y. Thus the valuation metrics are those exactly those whose

vector spaces satisfy V (∞) = {0V }.

We designate those valuated metric spaces (V, ν) satisfying V (∞) = {0V } as Hausdorff

valuated vector spaces.

24. Topological Properties

Here is an example of the connection between the valuation structure and the topological

structure which arises from the valuation metric. Specifically, we show that if the valuation

is more or less ‘trivial,’ then the topology is similarly trivial.

Suppose that (V, ν) is a homogeneous Hausdorff valuated vector space with ν(V ∗) = k <

∞. Then the topology determined by the valuation metric is uninteresting–it gives us no

interesting structure at all. For if we take any x ∈ V , we can form the open ball B of

radius 2−k about x. This is an open set in the metric topology by definition. But this open

ball contains only x, for any other y ∈ V has d(x, y) = 2−ν(x−y) = 2−k so that y /∈ B.

Thus the singleton x is open for every x ∈ V . Then given any subset W ⊆ U , the union

∪w∈W{w} = W is open, as unions of open sets are open. Thus every subset of V is open
25



in this topology, and the valuation topology on V is in this case just the set of all subsets

of V (the power set of V ). This topology is called the discrete topology, and it gives us no

interesting structure or information.

25. A splitting lemma

Recall that if V is a vector space and U is a subspace of V , then there exists a subspace

W such that V = W ⊕ U (although this W is by no means unique). The following lemma

shows that the valuation structure is preserved over internal direct sums.

Lemma 2. Suppose that V is a T -valuated vector space and β ∈ T . If V is the internal

direct sum W ⊕ V (β), then this decomposition preserves T -valuations. That is, the mapping

(w, v)→ w + v from the valuated direct sum to the space V preserves valuations.

Proof. For all nonzero w ∈ W ⊆ V , we have that ν(w) < β, or else the sum is not internal

direct. Thus if v = w + v′, where w ∈ W and v′ ∈ V (β), we have ν(v) = ν(w) = ν⊕(w, v′).

Thus the decomposition preserves T -valuations.

�

26. Freeness

We prove the following simple lemma:

Lemma 3. Let V be a homogeneous vector space with basis {bi}i∈I and value spectrum {β}.

Then V is isometric to ⊕i∈I
〈
bi
〉

under the mapping φ which carries αi1bi1 + . . . + αikbik to

the function which equals αijbij for ij in the linear combination and 0V everywhere else.

Proof. We omit the proof that φ is a vector space isomorphism, as it is only tedious. It

essentially repeats the proof that α1b1 +α2b2 → (α1b1, α2b2) is a linear transformation. This

follows from {b1, b2} being a basis. Since both spaces are homogeneous with value spectrum

{β}, we have that they are isometric.

�
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A valuated vector space V is called free if it is isometric to the valuated direct sum of

homogeneous spaces. That is, V ≈
⊕

i∈I Vi, where each Vi is homogeneous. This allows us

to generalize the proof that two homogeneous vector spaces are isometric if and only if they

are isomorphic with identical value spectra.

First we prove a closure-type lemma.

Lemma 4. Let {Vi}i∈I be a collection of free valuated vector spaces. Then the valuated direct

sum
⊕

i∈I Vi is also free.

Proof. Each Vi can be written as
⊕

j∈JiWj for a set {Wj}j∈Ji of homogeneous vector spaces.

We label the corresponding isometries as φi : Vi →
⊕

j∈JiWj for every i ∈ I. Let x ∈
⊕

i∈I Vi.

We want to write x as a function x′ from K = ∪i∈IJi to ∪i∈I ∪j∈Ji Wj such that x(a) ∈ Wa

for all a ∈ K. Thus if a ∈ Ji, we define x′(a) = φi(x(a)). This fulfills the requirements

for the direct sum definition. The mapping x→ x′ is linear and isometric, but we omit the

proof. �

Theorem 12. A valuated vector space is free if and only if it is isometric to a T -valuated

direct sum ⊕β∈TVβ, where each Vβ is homogeneous with value spectrum {β}.

Proof. This is simple in the ’if’ direction, for each homogeneous space is of course free and

so is their direct sum by the previous proposition. The opposite direction, we assume that

V = ⊕i∈IVi (where each Vi is one-dimensional) and we create Cβ = {i ∈ I : νi(V
∗
i ) = β}

and then form the direct sum Vβ = ⊕i∈CβVi. Then Vβ is homogeneous and V is isometric to

⊕β∈TVβ.

�

For each homogeneous vector space in the above theorem Vβ, we have some basis Bβ. Then

let B = ∪β∈TBβ. This is a basis for the direct sum, so its preimage under the isomorphism

φ is a basis for V . We call such a basis a free basis and note that if v = a1b1 + . . .+ akbk for

bi ∈ B, then ν(v) = min({ν(bi)}ki=1. If we can construct such a basis, then we have in effect

created an isometry using the universal property of direct sums from ⊕b∈B
〈
b
〉

to V . Thus
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proving that a space is free is the same as proving that it has a free basis (i.e. a basis which

has the above additive property on valuations).

We prove the following lemma which we apply later.

Lemma 5. Suppose that V is a vector space with finite value spectrum. Then V is free.

Proof. We induct on the size of the value spectrum |ν(V ∗)|. If the size is 1, then the space

is homogeneous, and isometric to ⊕i∈I
〈
bi
〉
, where {bi}i∈I is a basis for V . Assume that

for k ≤ N , a valuated vector space with k elements in its value spectrum is free. Now

assume that V has N+1 elements in its value spectrum, and let β be the maximum of these,

β = max(ν(V ∗)). Then we can make the internal direct sum decomposition V = Wβ⊕V (β),

which preserves valuations. The space V (β) is homogeneous with value spectrum {β}, and

the space Wβ has a strictly smaller value spectrum, as all of the elements of Wβ have valuation

less than β by the internal direct sum criterion. Thus Wβ is free by induction, and V is a

direct sum of free spaces, as the homogeneous space V (β) is free.

�

27. Vector Space Aside

Suppose that Vi for i ∈ {1, 2, 3} are vector spaces, and let V = V1 ⊕ V2 ⊕ V3. Let

U1 = {(x, y, z) ∈ V : x = 0V1} and U2 = {(x, y, z) ∈ V : x = 0V1 , y = 0V2}. Then

U2 ⊆ U1 are subspaces of V and U1/U2 is isomorphic to V2. U1 is the kernel of the projection

transformation π1 : V → V1 and U2 is the image of the inclusion transformation τ3 : V3 → V .

Of course, images and kernels are always subspaces and the inclusion is trivial.

Why is U1/U2 isomorphic to V2? Let B be a basis for V2 and let B′ = {(0, b, 0)+U2 : b ∈ B}.

These are distinct, because (0, b, 0) + U2 = (0, b′, 0) + U2 implies b − b′ = 0V2 Then B′ is a

basis for U1/U2, because it is trivially spanning and linearly independent. So the classification

theorem applies.
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28. Induced Isometries

We have already defined isometry. The following lemma shows that if φ is an isometry

from V to W , then φ maps a subspace V (α) onto the corresponding subspace W (α).

Lemma 6. If β ∈ T and β 6= ∞, then the set V (β+) = {v ∈ V : ν(v) > β} is a subspace

of V . Also, if φ : V → W is an isometry of T -valuated vector spaces, then the restrictions

φ|V (β) : V (β)→ W (β) and φ|V (β+) : V (β+)→ W (β+) are both isometries.

Suppose that φ : V → W is an isometry of T -valuated vector spaces. Suppose that

v ∈ V (β). Then ν2(φ(v)) = ν1(v) ≥ β. Thus φ maps isometrically V (β) onto W (β).

Since the image of V (β+) is contained in W (β+) and the preimage of W (β+) is necessarily

contained in V (β+), we can see that φ maps V (β+) onto W (β+). Thus the restrictions are

isometries.

29. Ulm Spaces

Let V be a valuated vector space, and let β ∈ T . As above, we have the subspace V (β).

For β < ∞, we can construct the valuated quotient space Uβ = V (β)/V (β+). Recall that

the valuation on this space is given by νV (β)/V (β+)(x+V (β+)) = sup({ν(x+y) : y ∈ V (β+)}).

We denote the β-th Ulm space V (β)/V (β+) as Uβ. We show that Uβ is homogeneous. To

prove homogeneity, we take x ∈ V (β)− V (β+) and calculate νUβ(x+ V (β+)). If y ∈ V (β+),

then ν(x) < ν(y) and so νV (x+y) = min({ν(x), ν(y)}) = β. Then the entire coset x+V (β+)

has valuation β, and so νUβ(x+ V (β+)) = β. Then Uβ is homogeneous with value spectrum

{β}. If β < ∞, then we define the βth Ulm invariant Uβ(V ) := dim(V (β)/V (β+)), and

if β = ∞, we define Uβ(V ) := dim(V (∞)). The Ulm invariants are used to describe free

valuated vector spaces very precisely.

Suppose that V is a free T -valuated vector space and as above we have V = ⊕β∈TVβ, where

each Vβ is homogeneous with value spectrum {β}. For any β ∈ T , define Wβ− = ⊕δ<βVδ

and Wβ+ = ⊕δ>βVδ. Then V = Wβ− ⊕ Vβ ⊕ Wβ+ . If Uβ
1 and Uβ

2 are defined as above,

then U1
β = V (β) and U2

β = V (β+), so that Uβ is isometric to U1/U2 ≈ Vβ. We prove that
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the βth Ulm space of V is isometric to U1
β/U

2
β . But if V ≈ W , then V (α) ≈ W (α) and

V (α+) ≈ W (α+). Then the quotients are isometric, and we are done.

We can prove the following theorem, which provides a nice generalization of the classifi-

cation of vector spaces by dimension:

Theorem 13. Suppose that V and W are free T -valuated vector spaces. Then V and W are

isometric if and only if Uβ(V ) = Uβ(W ) for all β ∈ T .

Proof. Suppose that V and W are free T -valuated vector spaces. Following the earlier propo-

sition we have V = ⊕β∈TVβ and W = ⊕β∈TWβ, with appropritate homogeneity conditions

(ie νV (V ∗β ) = {β} and so on). If the spaces are isometric under φ : V → W , we have

the isometries induced on their subspaces which forces identical Ulm invariants. If the Ulm

invariants are equal, then we have isometry for the summands, Vβ ≈ Wβ, because the di-

mension and value spectra agree for two homogeneous spaces. This compels isometry by the

universal property of T -homomorphisms. �

30. Basic Subspaces

Now we construct a sequence of homogeneous subspaces of V . By the linear algebra work,

for each β ∈ T − {∞} we have a subspace Bβ such that V (β) is the internal direct sum

Bβ ⊕V (β+). By the previous lemma, this sum preserves T -valuations. Thus Bβ is isometric

to V (β)/V (β+) for all β <∞, because the spaces are vector space-isomorphic and share the

same value spectra. Note that while there may be many possible subspaces which ‘work’ for

Bβ, they are all unique up to isometry.

We can use the inclusion homomorphisms Bβ → V to construct the unique adding ho-

momorphism φ :
⊕

β∈T Bβ → V . By the homogeneity of the spaces Bβ and the rule that

if ν(x1) < ν(x2) < . . . < ν(xk) then ν(x1 + . . . + xk) = ν(x1), we can conclude that the

transformation φ is injective.

Thus we have an injective linear transformation φ :
⊕

β∈T Bβ → V , which we can consider

quite naturally as inclusion ((a, b)→ a+ b).
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If β ∈ T and we look at the decomposition V = Wβ⊕V (β), we can assume that the direct

sum
⊕

δ<β Bδ is contained in Wβ. We are allowed this because we can inductively form the

subspaces Bβ so that they all belong to Wβ. If β ∈ T ∗, let γβ : V → Bβ be the projection

for the decomposition V = Wβ ⊕ Bβ ⊕ V (β+), given by w + b + v → b, mapping onto the

space Bβ. Let B∞ = V (∞), and using V = W∞ ⊕ B∞, let γ∞ : V → B∞ be the projection

onto B∞, mapping w + b→ b.

Then we can can apply the universal property of direct products to create a mapping

ψ : V →
∏

β∈T Bβ. This takes v to a vector whose coordinates are the images of v under the

projection mappings γβ for β ∈ T .

Lemma 7. The mapping ψ is an embedding.

Proof. First we prove that ψ is injective. Since ψ is a linear transformation, all we have to

do is prove that the kernel is trivial, i.e. ker(ψ) = {0V }.

Suppose that v ∈ ker(ψ). Then we can write v = w + b, where w ∈ W∞ and b ∈ B∞ =

V (∞). Since ψ(v) has ∞-th coordinate equal to zero, we have v = w. Thus v = 0V or v has

finite valuation. Suppose that v has finite valuation k. Then γk(v) = 0, because v ∈ ker(ψ).

But we have a decomposition v = w + v′ + b, where w ∈ Wk, v
′ ∈ Bk and b ∈ V (β+). Thus

v′ = 0V . But then w = 0V , for otherwise we would have a smaller valuation for v, by the

additive rule. But of coure then we have b = 0V , or else the valuation of v is larger than k.

So ψ is injective. Now we prove that ψ preserves valuations.

The case where v = 0V is trivial, as ψ is linear. Suppose that v is nonzero, and let j be

minimal such that ψ(v)j is nonzero. In the first case, assume that j is finite. Then suppose

that ψ(v)j = y. We have v = w+y+b in the decomposition Wj⊕Bj⊕V (j+). We must have

w = 0V or the additive rule applies and we get a contradiction. But then the valuation of

ψ(v) is merely ν(y) = j. If j is infinite, then we refer to the decomposition v = w+ b, where

w ∈ W∞ and b ∈ B∞. The additive rule forces w = 0V , so that v = b. Then ν(ψ(v)) = ν(b).

Thus ψ is an isometry.

�
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We call B =
⊕

β∈T Bβ a basic subspace for V . Clearly, B is a free valuated vector space.

The crucial property of B is that when we consider it as a subspace of a free, Hausdorff

valuated vector space V , it must be dense in the topology determined by the metric. That

is, given any v ∈ V and ε > 0, there exists b ∈ B such that d(b, v) < ε. We record this as a

lemma.

Lemma 8. Suppose that V is a Hausdorff valuated vector space and B ⊆ V is a basic

subspace for V . Then B is dense in V

Proof. By the above, we have V ⊆
∏

β∈T Bβ. Since B is a subspace of V , we know that

0V ∈ B. For any nonzero x ∈ V and ε > 0, we take an integer K > 0 such that 2−K < ε.

Then we ‘zero out’ the first K terms of the product notation x = (x1, x2, . . . , xK , . . .) by

subtracting the element x′ = (x1, x2, . . . , xK , 0, 0, 0, . . .). Then the difference x − x′ has

valuation at least K + 1, and the distance d(x, x′) ≤ 2−(K+1) < 2−K < ε. Thus B is dense in

V .

�

31. Nice Homomorphisms

We distinguish a special class of T -homomorphisms. A nice T -homomorphism f mapping

from V to W satisfies the equation f(V (β)) = W (β) for all β ∈ T . Note that by the

definition of T -homomorphism, we already have f(V (β)) ⊆ W (β). This allows us to define

nice homomorphism as one satisfying the inclusion W (β) ⊆ f(V (β)). Every element w of W

must have a preimage v such that νV (v) = νW (w), by definition of T -homomorphism. Also,

all nice T -homomorphisms are surjective. We make a quick observation in the form of the

following lemma.

Lemma 9. Let N be a subspace of V . Then the natural homomorphism φ : V → V/N given

by φ(v) = v +N is nice if and only if every coset of N has an element of maximum value.
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Proof. Suppose that φ is nice. Let x + N be a given coset of N in V . Then there exists

n ∈ N such that νV (x + n) = νV/N(x + N), as φ is nice. But νV/N(x + N) ≥ νV (x + n′) for

all n′ ∈ N . Thus x+ n is an element of maximum valuation.

Now suppose that every coset of N has an element of maximum value. Also, suppose that

νV/N(x+N) ≥ β. Pick an element x+n of x+N of maximum value. Then β ≤ νV/N(φ(x)) =

νV/N(x+N) = νV (x+ n). Thus x+N ∈ φ(V (β)). So φ is a nice T -homomorphism.

�

If a subspace N induces a nice natural homomorphism V → V/N , then we say that N

itself is nice. We follow this observation with a quick topological characterization of nice

subspaces, applicable only to Hausdorff spaces.

Lemma 10. Suppose that V is a Hausdorff valuated vector space. Then a subspace N ⊆ V

is nice if and only if it is closed in the topology determined by the metric.

Proof. Suppose that N is nice. We prove that N is a closed subspace of V . For suppose that

x ∈ V −N . Then the coset x+N has an element x+n of maximum value, say β (β is finite

as V (∞) = {0V } and x /∈ N). Let ε = 2−(β+1). Then the open ball about x of radius ε must

not intersect N . For if d(x, n) < ε for some n ∈ N , we must have 2−ν(x−n) < ε < 2−β. But

then ν(x− n) > −β, contradicting maximality of β.

Now suppose that N is not nice. We prove that N is not closed. For if N is not nice,

there must exist some coset x + N of N with no element of highest value. Thus we would

have a sequence x + n1, x + n2, . . . such that ν(x + nk) ≥ k. Now let ε > 0. By calculus,

we know that there exists some integer K > 0 such that 2−K < ε. But then d(x,−nK) < ε.

Thus −nk ∈ Bε(x), and every open ball about x contains an element of N . But then V −N

is not open, for there is no open ball about x strictly contained within V −N . So N is not

closed.

Thus the equivalence follows.

�
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Now we can prove a useful splitting result that allows us to break up a valuated vector

space according to the behavior of a nice T -homomorphism.

Theorem 14. Suppose that f : V → W is a nice surjective T -homomorphism with kernel

N and W free. Then N ⊕W ′ is isometric to V for some W ′ ≤ V .

Proof. Since W is free, we have some set of summands {wi}i∈I . For each wi, let αi = ν(wi).

Then the nice f must have some xi ∈ V (αi) satisfying f(xi) = wi. But νV (xi) ≤ νV (wi) = αi,

so that νV (xi) = νW (wi).

Let W ′ = span{xi}i∈I . If we form the direct sum N ⊕W ′, we want an isometry to or from

V . Let v ∈ V . Then f(v) = ⊕nk=1skwk, the sum taken over the finite support of f(v), by the

freeness of W .

Then let

φ(v) = (
n∑
k=1

skxk, v −
n∑
k=1

skxk) ∈ W ′ ⊕N.

If φ(w) = (
∑n

k=1 s
′
kx
′
k, v −

∑n
k=1 s

′
kx
′
k) satisfies φ(w) = φ(v), then the sums of the two

coordinates are in each case equal and so w = v. Thus, φ is injective.

If a ∈ W ′, b ∈ N , then φ(a+ b) = (a, b). So φ is surjective.

Previous results show that φ is linear, in particular the fact that f is linear itself.

Let f(v) =
∑k

i=1 aiyi. We have that ν⊕(φ(v)) = min({ν(v −
∑k

i=1 aixi, ν(
∑k

i=1 xi)). But

ν(v) ≤ νW (f(v)) as f is a T -homomorphism. The right hand side of this inequality is just

ν(
∑k

i=1 aiyi) = min({νW (yi)}ki=1). Then ν(x) ≤ ν(
∑k

i=1 aixi) and we have ν(v) = ν⊕(φ(v))

by the additive rule.

Thus φ is an isometry.

�

We apply this theorem and results from the previous section towards a version of Kulikov’s

theorem, which we prove now.
34



Theorem 15. (Kulikov’s Theorem). Let V be a T -valuated vector space. Then V is free if

and only if there exists a chain of subspaces U1 ⊆ U2 ⊆ . . . ... whose union is V and whose

value spectra are all finite.

Proof. Suppose that V = ⊕i∈I
〈
xi
〉

is free. For each k ∈ T , let c(k) = {i ∈ I : ν(xi) ≤ k},

the set of all summands of V with valuation less than or equal to k. We

Then let Uk = ⊕i∈c(k)
〈
xi
〉
∪ V (∞) for each k ∈ T . Each Uk must be a subspace of V . We

prove this by observing that scaling elements of either of the two sets in the union does not

require us to leave the set, and each of the two sets in the union is closed under addition.

The only possible problem arises when we add an element from the subspace ⊕i∈c(k)
〈
xi
〉

to an element from the subspace V (∞). But the nonzero elements of the first subspace all

have finite value, and the elements of the second subspace all have infinite value, so that if

x is from the first subspace and y is from the second subspace, then ν(x + y) = ν(x). The

finite support condition on direct sums insures that any element v of V is contained in some

Us. That is, for any v = (vi)i∈T , let J = {i ∈ T : vi 6= 0}. Since there are only finitely

many elements in J by definition of the direct sum, J must have a greatest element s or no

elements. In the first case, we have v ∈ Us. In the second case, v = 0V ∈ Uk for all k as

Uk is a subspace for all k ∈ T . All of these spaces are of finite value spectrum, specifically

ν(U∗k ) ⊆ {1, . . . , k}.

Now suppose that we have a chain U1 ⊆ U2 ⊂ . . . with each Uk having finite value

spectrum.

We can construct quotients U2/U1,U3/U2, . . .. Since each Uk has finite value spectrum,

and the quotient valuation of a coset is defined by the maximum value of any element within

the coset, each coset has an element of maximum value and Uk is a nice subspace of Uk+1.

Then the natural T -homomorphism φk : Uk+1 → Uk+1/Uk given by φ(x) = x+ Uk is nice by

a previous proposition.
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Since the quotient group has value spectrum equal to a subset of the value spectrum of the

space from which it was constructed, all of these such quotients have finite value spectrum.

But then they are free by lemma 3.

The nice natural homomorphisms φk+1 map the Uk+1 onto Uk+1/Uk. But the factors are

free, and so we have some Wk satisfying Uk+1 = ker(φk+1) ⊕ Wk. But the kernel of the

natural homomorphism φk+1 : Uk+1 → Uk+1/Uk is Uk. So we have some Wk satisfying

Uk+1 = Uk ⊕Wk. Define W0 = V1. Each of the Wk has value spectrum a subset of ν(Uk+1),

which is finite. Thus, all the Wk are finite.

Then inductively we have a sequence W0,W1,W2, ... of subspaces of V satisfying Uk =

⊕j<kWj. Let V ′ = ⊕∞k=0Wk, regarding this as an inclusion within V . Now no vector shows

up more than once in this sum, because the ‘partial sums’ contain any Um and are internal

direct. For the same reason, each vector v ∈ V is contained once.

Since V is the direct sum of free subspaces, it is itself free.

�

Corollary 1. Let V be a free valuated vector space and suppose that W is a subspace of V .

Then W is free.

Proof. Kulikov’s theorem tells us that we have a chain of finite-spectral subspaces U1 ⊆ U2 . . .

covering V , that is ∪∞n=1Un = V . Then W = W ∩ V = W ∩ (∪∞n=1Un) = ∪∞n=1(W ∩ Un), by

the distributive laws of set theory (see [3]). But W ∩ Un is a subspace of a finite-spectral

space and therefore finite spectral for all n ∈ N. So Kulikov’s theorem applies and W is free.

�

Notice how powerful Kulikov’s theorem is. To prove that a valuated vector space V is

free from the definition, we must construct a direct sum of homogeneous spaces D and an

isometry φ : V → D. If we apply Kulikov’s theorem, all that is required is a chain of

finite-spectral subspaces covering V .
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32. Primary Abelian Groups

Let G be an Abelian group with operation written + and identity element 0G (the subscript

distinguishes from 0 ∈ Z and 0 ∈ T ). Let g ∈ G. If there exists k ∈ N such that the k-fold

sum g+g+ . . .+g = k ·g = 0G, then there exists a least positive integer j satsifying j ·g = 0G

by the well-ordering property of N. In this case, we say that the order of g is j. Otherwise,

no such k exists and we say that g has infinite order. We write |g| for the order of g ∈ G.

Now suppose that p is a prime, and every g ∈ G satisfies |g| = pk for some k ∈ {0} ∪ N.

Then we say that G is p-primary.

Now we consider an idea which is in some sense dual to the idea of the order of an element

in G. Let x ∈ G and let n ∈ Z. If there exists y ∈ G such that n · y = x, then we write n|x

and say that n divides x.

We have some results on this definition which mirror properties of integers. For example,

if m,n ∈ Z satisfy the divisibility relation (in Z) m|n, and if n|g for a given g ∈ G, then

m|g as well. For if n = mt for some t ∈ Z and g = nh for some h ∈ G, then g = n · h =

(mt) · h = m · (t · h), so that m|g.

If G is p-primary, then for any g ∈ G we are interested in this question: what is the largest

power of p dividing g, if such exists? Whenever such an integer exists, we call it the p-height

of g, written ht(g). If infinitely many powers of p divide g, the result in the last paragraph

tells us that all powers of p divide g. In this case, we say that g has infinite height and write

ht(g) =∞.

Note that this defines a function ht : G → T , where T is the same well-ordered set that

we have been using in the previous journals.

The function ht : G→ T has many of the trappings of a vector space T -valuation, even if

G itself is potentially not a vector space over any immediately recognizable field.
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33. The Socle

Continuing the last section, G is an abelian p-primary group. Then we can define the socle

of G as the set G[p] = {g ∈ G : pg = 0G}. Since the function φ : G→ G given by φ(g) = pg

is a homomorphism for abelian G, this set, its kernel, is a subgroup of G.

If Fp = Zp is the finite field of order p, then we can consider G[p] as a vector space over F .

Denote the residue class in Fp containing n by n. The addition is already defined within the

group, and we define the scaling by the function σ : Fp×G[p]→ G[p] given by σ(n, g) = ng.

We don’t check the vector space axioms here, as they follow easily from elementary prop-

erties of Abelian groups, but we do check whether or not the scaling function is well-defined.

Let x = y and let g = h. Then x = y + sp for some s ∈ Z, because they share a residue

class modulo p. Then xg = xg = (y + sp)g = yg + s(pg) = yg = yh = yh, where the third

equality comes from g ∈ S and the fifth from addition being well-defined on G. Note that

the socle is the largest subgroup of G where nx = nx defines a scaling operation on the

residue classes modulo p. This follows from the equation p+ 1 = 1 in the residue system

modulo p, and so (p + 1)g = (1)g for all elements g in any vector space with Zp as scalars.

But then subtraction gives pg = 0G. So there is no larger subgroup of G over which n-fold

addition defines a scaling operation from the residue classes modulo p.

Since we have the function ht(g) defined on all of G, we can restrict the domain to obtain

ht|G[p] : G[p]→ T . Our claim is that ht|G[p] is a valuation on the Fp-vector space G[p].

It is true that ht(0G) = ∞, because if k ∈ N, then pk0G = 0G. Thus there can be no

greatest positive integer j satisfying some equation of the form pjy = 0G. So (ht|S)(0G) =∞.

Let x, y ∈ G[p] and let k = min{ht(x), ht(y)}. Assume that k is finite. Then we write

x = pkx′ and y = pky′ by the definition of infinite height and the result on divisibility in the

section on height. Then by commutativity, x+y = pkx′+pky′ = pk(x′+y′), so that pk|(x+y).

If k is infinite, then for any l ∈ N, we can write x = plx′′ and y = ply′′, so that pl|(x + y).

Then any pl divides x+ y. Thus in each of the two cases, ht(x+ y) ≥ min{ht(x), ht(y)}.
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Now we suppose that we have nonzero α ∈ Fp, with α−1 ∈ Fp its multiplicative inverse

modulo p. Let k ∈ N. Suppose there exists h ∈ G satisfying pkh = g. Scaling both sides by

α, we obtain α(g) = α(pkh) = pk(αh). Then pk|αg, so that ht(αg) ≥ ht(g). Applying the

same argument with the scalar α−1 and the vector α(g) gives the inequality ht(g) ≥ ht(αg),

so that the two valuations are in fact equal.

34. Analyzing G[p]

We prove a theorem which links the twin ideas of freeness in valuated vector spaces and

freeness in group theory. (A group is free if and only if it is group-theoretically isomorphic

to a direct sum of cyclic groups).

Theorem 16. Let G be a p-primary, abelian group. Then G is isomorphic to a direct sum

of cyclic groups if and only if G[p] is a free, Hausdorff, T -valuated vector space.

Proof. Suppose that G ≈ ⊕i∈ICi where each Ci is a cyclic group and the isomorphism is

φ : G → ⊕i∈ICi. Since G is p-primary, no element of G may have infinite order and all

the Ci are finite cyclic. The orders of elements are preserved under group isomorphism by

elementary abstract algebra, so the orders of the elements of the Ci must all be powers of p.

Thus the orders of the groups Ci must all be prime-power, by Cauchy’s theorem. Thus we

can write G ≈ ⊕i∈IZpki .

For any of these direct summands Hi = Zpki we know Hi[p] is a cyclic subgroup of Hi and

hence an image of a cyclic subgroup Gi of G. Then Hi[p] is homogeneous and therefore free.

Our next claim is this: G[p] ≈ ⊕i∈IHi[p]. Restrict φ to G[p]. Then φ|G[p] is a vector space

isomorphism with φ(G[p]).

We want to show that φ|G[p] is surjective. If we write the unique sum with nonzero terms

h1 + h2 + . . . + hk for h ∈ ⊕i∈IHi[p], then we have some g ∈ G satisfying φ(g) =
∑k

i=1 hi.

Then φ(pg) = pφ(g) = p(
∑k

i=1 hi) = 0⊕. But this implies pg = 0⊕ and pg = 0G because φ is

injective.
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Is φ|G[p] an isometry? Trivially, because φ(prg) = prφ(g), holds for all nonnegative integers

r and group elements g. So ht(φ(g)) = ht(g) for any g ∈ G[p]. This is the definition of an

isometry, given vector space isomorphism φ.

So we have a vector isomorphism of G[p] with ⊕i∈IHi[p]. Yet each of these summands

Hi[p] is free, hence G[p] is free.

We record some remarks on the converse. Suppose G is abelian and p-primary and that

G[p] is a free, Hausdorff, T -valuated vector space. We aim to show that G is isomorphic to

a direct sum of cyclic groups.

Because G[p] is free, we have an internal direct sum representation G[p] = ⊕i∈I
〈
gi
〉
, where

each gi ∈ G[p]. This set {gi} is a free basis for G[p], so that ν(
∑n

i=1 αigi) = min({ν(gi)}ni=1).

We can write gi = pht(gi)hi for some hi ∈ G. Informally, we want to represent every element

of G as a unique linear combination of elements in the sets
〈
hi
〉
. Let H = {hi}.

Let g ∈ G.

Suppose that |g| = pb. Then p(pb−1g) = 0G, implying that pb−1g ∈ G[p] and so we have a

representation pb−1g =
∑j

i=1 aigi =
∑j

i=1 aip
ht(gi)hi.

We can divide all the terms in the sum by pb−1 because the gi form a free basis for G[p].

This means that the lower bound on the height on the left of the equation is also a lower

bound for the height of each gi, so that pb−1|gi for each i ∈ [j]. If we divide all of the terms

in the sum by pb−1, we get the new sum s1 =
∑j

i=1 aip
ht(gi)−(b−1)hi, a linear combination in

the set H.

If g = s1, then we are done (as far as exhibiting g in the span of H).

If not, we still know that pb−1(g − s1) = 0G, so that we have pb−2(g − s1) ∈ G[p].

If pb−2(g−s1) ∈ G[p], then it equals some linear combination of the free basis for G[p]. But

again, we can divide by the leading power of p (in this case, pb−2) to find a linear combination

in H, call it s2, satisfying pb−2(g − s1 − s2) = 0G.

Then pb−3(g − s1 − s2) ∈ G[p]. If g − s1 − s2 = 0G, then we are finished finished as g is a

sum in H. Otherwise, we continue the process, adding more and more sn and reducing the
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exponent of p each time. Eventually we either get g − s1 − s2 − . . .− sk = 0G for some k or

finally exhaust the exponent on p.

If pb−b(g − s1 − s2 − . . . − sj) = 0G, though, we immediately have g = s1 + s2 + . . . + sj.

So we eventually create some sum in H equal to g.

So we have a representation of g ∈ G in the form g =
∑k

i=1 αihi. Is this unique?

If g also equals
∑k

i=1 βihi, where we expand the indexing to accomodate both supports.

Then
∑k

i=1(αi − βi)hi = 0G ∈ G[p]. Say that we modify the sum to range exclusively over

the i satisfying αi − βi 6= 0. If the maximum order of the hi for the i in question is pt, then

multiplying by pt−1 we see the all terms with smaller order vanish. But then we have a linear

combination in the {gi}i∈I in the form of the terms which do not vanish (at least one does

not vanish–the term with maximal order).

But then the coefficient on all these is 0, by uniqueness of representation by the free basis

for G[p]. Thus we can winnow down the coefficients αi − βi ‘from the top down’ and show

them to be identically zero.

So the representation is unique. Thus G is isomorphic to the direct sum ⊕i∈I
〈
hi
〉
.

�

35. Refinable Chain Condition

Suppose that V is a Hausdorff T -valuated vector space. We say that V satisfies the

refinable chain condition if for every ascending sequence of subspaces U1 ⊆ U2 ⊆ . . . satisfying

∪∞n=1Un there exists a sequence of closed subspaces C1 ⊆ C2 ⊆ . . . with Cn ⊆ Un and ∪∞n=1.

We sometimes abbreviate this by RCC.

Theorem 17. Suppose that V is a free Hausdorff T -valuated vector space. Then V satisfies

RCC.

Proof. If V is free then it contains a free basis W . For any β ∈ T , let Wβ consist of those

elements of T whose orders are not greater than β. Let Ci = span(Wi ∩ Ui). Is Ci closed?
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Let v = a1w1 + . . . + anwn, as the wi form a (free) basis for V . We want to show that

the coset v +Ci has an element of maximum value, but this is equivalent to showing that if

v /∈ Ci, then νV/Ci(v + Ci) is bounded by an integer. Let k = max({ν(wi)})ni=1, an integer

as V is Hausdorff and therefore none of the nonzero vectors wi have infinite valuation. We

claim that νV/Ci(v + Ci) ≤ k + i ∈ N. For any element of Ci can only have valuation up

to i, so that the definition of a free basis and the additive rule for valuations give us the

inequality.

To see that the Ci cover V , we only need to show that the Ci cover W , and then the

subspace condition on Ci gives V = span(W ) ⊆ ∪∞i=1Ci. If w ∈ W , then w ∈ Uj for some

j ∈ N. If we let c equal max{ν(w), j}, a finite number, then w ∈ Cc.

So the Ci cover V . �

36. Strong RCC

We give a condition which is equivalent to the RCC. We state and prove this as a theorem.

Theorem 18. (Strong RCC) Suppose that whenever V is covered by a sequence of dense

subspaces U1 ⊆ U2 ⊆ . . ., there exists closed subspace Ci ⊆ Ui with ∪∞i=1Ci = V . Then V

satisfies RCC.

Proof. Suppose that the sets U1 ⊆ U2 ⊆ . . . cover V and the weakened RCC holds for V .

Recall that a basic subspace of a space V is a free space which is dense in V , which also

has the same Ulm invariants as V .

Let B1 be a basic subspace of U1 and let B′ be a basic subspace of U2.

We aim to show that B1 is isometric to a subspace of B′, so that we can eventually split

B′ isometrically into B1 ⊕B2.

Let α ∈ T . Define φ : U1(α) → (U2(α)/U2(α
+)) by φ(u) = u + U2(α

+). This induces an

embedding of the αth Ulm space of U1 into the αth Ulm space of U2.
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This means that if we take a basis Eα for the αth Ulm space, Zα, of U2, we can select

a subset E ′α ⊆ Eα with |E ′| equal to the αth Ulm invariant of U1. Then B1(α)/B1(α
+) ≈

span(E ′).

This gives us a decomposition B′(α)/B′(α+) ≈ span(E ′α)⊕ span(Eα−E ′α). These can be

combined over all the α ∈ T to give a T -isometric decomposition B′ ≈ B1 ⊕B2. Since B′ is

basic, and the two share all Ulm invariants, the direct sum is a basic subspace for U2.

Repeating this procedure we get a nested sequence of basic subspaces: B1 ⊆ B1 ⊕ B2 ⊆

B1⊕B2⊕B3 ⊆ . . .. Let B = ⊕∞n=1Bn. Claim: B is dense in V . But this follows immediately

from V = ∪∞n=1Un. If v ∈ V , then v ∈ Uj for some positive integer j, and so we have a

sequence in B1 ⊕ . . .⊕Bj converging to v.

Thus the dense sets Wn := Un + B form a cover for V . The weakened RCC implies that

there exist closed and nested Cn ⊆ Wn covering V . Let C ′n = Un ∩ Cn. The fact that the

sets Un and Cn are nested sequences gives ∪∞n=1(Un ∩ Cn) = (∪∞n=1Un) ∩ (∪∞n=1Cn) = V .

We need to show that the C ′n are closed. Let vk be a sequence in C ′n converging to v ∈ V .

Since this sequence is in Cn, a closed subspace of V , the limit v necessarily belongs to Cn.

But Cn ⊆ Un ⊕Bn+1 ⊕ . . ..

Let v = u +
∑j

i=1 bαi , where bαi ∈ Bαi (for αi > n) are all nonzero. The elements of the

sequence {vk}∞k=1 are all contained in Un. So the distance from any element of the sequence

to v is always at least 2−min(ν(bαi )) and we obtain a contradiction to to vk → v.

So all the sets C ′n are closed and we have the desired covering. �

37. Freeness and Dimension

We now attempt to prove a special case of a statement whose truth is unknown, which is

a converse to theorem 17.

Statement 1. If V satisfies RCC then V is free.

First we must outline a principle of set theory which can neither be proven nor disproven.

Recall that given a set A we denote its cardinal by |A| and we denote the existence of an
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injection f : A → B by |A| ≤ |B|. The existence of a bijection from A to B is denoted by

|A| = |B|.

Statement 2. (The Continuum Hypothesis) Let A be set with ℵ0 = |N| ≤ |A| ≤ |2N|. Then

|A| = |N| or |A| = |2N|. (Equivalently, ℵ1 = 2ℵ0).

For an examination of the continuum hypothesis and some of the other set theory termi-

nology in this section, particularly the aleph (ℵ) notation, see [2]. Now we can state the

partial converse to theorem 17 that we wish to prove.

Theorem 19. Suppose that V is a valuated vector space over Zp (where p is some prime),

and suppose that V has a countable basic subspace. Then if V satisfies RCC and we assume

the continuum hypothesis, V is free.

Proof. If V has a countable basic subspace, then every other subspace has a countable basic

subspace by an argument similar to the previous section (embedding Ulm spaces). However

such a V only has ℵ1 countable subsets. If N is closed in V , then any of one of its basic

subspaces B generate N as the closure B. However, such a countable set has unique closure,

and so there can be only as many closed subspaces of V as there are countable subsets of

V (this is actually a very rough bound in the finite case!). There are ℵ1 countable subsets

of V . Since any finite subset of a basis generates a closed subspace of V , and there are ℵ1

finite subsets of V , we have that there are exactly ℵ1 closed subspaces of V .

Also, there are ℵ1 uncountable closed subspaces. This is because we can remove any of

the ℵ1 basis elements for V and get a basis with the same size, which spans a subspace

isomorphic to V .

We are going to select a sequence of elements from each uncountable closed subspace in

such a way that the sequences are ‘independent’ in two senses: they are linearly independent

subsets of their respective spaces, and any sequence is distinct from the span of the others.

Apply the well-ordering theorem to the uncountable closed subspaces. We label elements

with the minimal uncountable ordinal ω1 as A1, A2, . . .. Let A0 be the smallest element under
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the ordering. Pick a linearly independent countable sequence from C0. Let Y denote the

subset of ω1 containing all those i such that for all k ≤ i, there exists a set of sequences xk

whose union ∪k≤ixk is linearly independent.

We show that Y is inductive. If x ∈ ω1, then the section Sx = {j ∈ ω1 : Aj < Ax} of ω1 by

x is countable because ω1 is countable. If we take the union ∪n∈ωxxn the result is countable.

Thus we can take a linearly independent sequence of elements from Ax which is independent

from the previous union by calculating |(∪nxn)| = ℵ0 < ℵ1. Since the previous elements are

linearly independent, the intersection I = (∪nxn) ∩ Ax is linearly independent. We expand

this to a basis for Ax and take a sequence from the complement of the union. Thus x ∈ Y.

Thus we have a collection C = {xi : i ∈ ω1} of countably infinite sequences whose union is

linearly independent.

Let their union be B′. This is linearly independent so we expand it to a basis B = B′∪B′′

for B′′ disjoint from B′.

Now we define for any positive integer j the set Bj = {xk,i : k ≤ j, i ∈ ω1}. The union of

the Bj is B′, so the sets Uj = span(Bj ∪B′′) form a nested subspace cover for V . However,

any uncountable subspace is necessarily excluded from these sets Uj, because the uncountable

set Ai includes the sequence xi,1, xi,2, . . . and Bj only contains finitely many of these. The

sequences were selected to be linearly independent, so the span of these cannot contain these

missing elements of the ith sequence. Also the span of B′′ cannot contain these elements by

construction of the basis. So no uncountable subspace can be contained in any of these sets

Bj. But every nested chain of closed subspaces, if it is to cover uncountable V , must contain

an uncountable closed subspace. Why? Countable unions of countable sets are countable.

Thus the RCC is violated, contradicting to our hypothesis that V satisfies RCC. �

38. Conclusion

In this paper, we defined most of the basic notions of linear algebra and set theory,

along with some elementary ideas from topology. After obtaining a handful of crucial early

results in these areas, we moved on to investigate the class of valuated vector spaces. After
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developing their elementary theory, we defined the critical notion of free valuated vector

spaces. We classified free valuated vector spaces up to isomorphism using a Kulikov-type

theorem. After that, we investigated more of the topological properties of valuated vector

spaces. Specifically, we defined the refinable chain condition (RCC), and we were able to

prove a weak form of it dependent on the continuum hypothesis. After that, we applied the

theory of valuated vector spaces to the study of the socles of Abelian p-groups, and we were

able to find analogues between free Abelian groups and free valuated vector spaces. Finally,

we proved a realization theorem which allowed us to present a free valuated vector space as

the socle of an Abelian p-group.
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