
NEWTON’S METHOD AND FRACTALS

AARON BURTON

Abstract. In this paper Newton’s method is derived, the general speed of

convergence of the method is shown to be quadratic, the basins of attraction

of Newton’s method are described, and finally the method is generalized to
the complex plane.

1. Solving the equation f(x) = 0

Given a function f , finding the solutions of the equation f(x) = 0 is one of the
oldest mathematical problems. General methods to find the roots of f(x) = 0 when
f(x) is a polynomial of degree one or two have been known since 2000 B.C. [3]. For
example, to solve for the roots of a quadratic function ax2 + bx + c = 0 we may
utilize the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
.

Methods to solve polynomials of degree three and four were discovered in the
16th century by the mathematicians dal Ferro, Tartaglia, Cardano, and Ferrai [3].
Finally, in 1826 it was discovered from work done by Abel, that there is no general
method to solve polynomials of degree five or greater [3].

Since it is not possible to solve all equations of the form f(x) = 0 exactly, an
efficient method of approximating solutions is useful. The algorithm discussed in
this paper was discovered by Sir Issac Newton, who formulated the result in 1669.
Later improved by Joseph Raphson in 1690, the algorithm is presently known as
the Newton-Raphson method, or more commonly Newton’s method [3].

Newton’s method involves choosing an initial guess x0, and then, through an
iterative process, finding a sequence of numbers x0, x1, x2, x3, · · · 1 that converge
to a solution. Some functions may have several roots. Later we see that the root
which Newton’s method converges to depends on the initial guess x0. The behavior
of Newton’s method, or the pattern of which initial guesses lead to which zeros,
can be interesting even for polynomials. When generalized to the complex plane,
Newton’s method leads to beautiful pictures.

In this paper, we derive Newton’s method, analyze the method’s speed of conver-
gence, and explore the basins of attraction2. Finally, we extend Newton’s method
to the complex plane, and through the aid of computer programming view the
complex basins of attraction for several polynomials.

1

2 AARON BURTON

Figure 1. The geometry of Newton’s method

2. Deriving Newton’s method

As stated in Section 1, Newton’s method involves choosing an initial approxi-
mation x0, and then, through an iterative process, finding a sequence of numbers
x0, x1, x2, x3, · · · that converges to a solution. Recall our goal is to approximate
the root of a function f(x), thus once we chose our x0 we hope to find a point x1

(related to x0 in some way) that is a better approximation for the root of the func-
tion f(x). Given a single point x0 there are many ways in which we could proceed
to find the point x1. In this paper we will use the tangent line at x0. The tangent
line provides the best linear approximation to the function f(x) at the point x0,
thus we are implicitly assuming that the tangent line will intersect the x-axis near
the desired root. This assumption seems to be valid based on Figure 1. In Section
2 we will discuss how this assumption breaks down under certain circumstances.

Now, suppose f(x) is a differentiable function on an interval [a, b] for which we
wish to approximate the root. We begin by making a guess or estimate of the
root’s location, that is specifying an initial point (x0, 0). To determine our next
estimate (x1, 0), we draw the tangent line through (x0, f(x0)). The point at which
the tangent line intersects the x axis is (x1, 0). Using our initial guess x0, the value
of the function f(x0) and the slope of the tangent line f ′(x0) we can then find the
equation of the tangent line at (x0, f(x0)) using the point-slope formula:

y − f(x0) = f ′(x0)(x− x0).
To solve for the x intercept we set y = 0 and rearrange terms to get

−f(x0) = f ′(x0)(x− x0)

1Often called the orbit of x0.
2Formally defined in Section 6, a Basin of Attraction is the set of points which converge to a

particular root.

NEWTON’S METHOD AND FRACTALS 3

x− x0 =
−f(x0)
f ′(x0)

and finally

x = x0 −
f(x0)
f ′(x0)

.

The x intercept is our new guess, or estimate, x1. Thus we have, x1 = x0 − f(x0)
f ′(x0)

.
To find x2, we begin the whole process over again. However, this time we begin
with the point (x1, 0) and solve for the point (x2, 0). Repeating this algorithm
generates a sequence of x values x0, x1, x2, · · · by the rule

xn+1 = xn −
f(xn)
f ′(xn)

, f ′(xn) 6= 0

we define as the Newton iteration function N(x). Formally, given a differentiable
function f , the Newton function for f is:

(1) N(x) = x− f(x)
f ′(x)

.

Then
x1 = N(x0)

x2 = N(x1) = N(N(x0)) = N2(x0)

and, in general,
xn = Nn(x0),

where the notation Nn means N applied n times.

3. Where Newton’s method fails

One natural question that arises is whether Newton’s method will always con-
verge to a root.

3.1. Initial guess is a critical point of f(x). Recall from equation (1) that the
definition of the Newton iteration function is

N(x) = x− f(x)
f ′(x)

.

From this definition we see that N(x) will not exist if f ′(x) = 0. If we chose an
initial point where f ′(x) = 0, then Newton’s method will fail to converge to a root.
Similarly if f ′(xn) = 0 for some iteration xn, then Newton’s method will also fail to
converge to a root. The former case is illustrated for f(x) = x3 + 1 in Figure 2. If
we happen to choose our initial guess as x = 0, Newton’s method fails to converge
since the tangent line at x = 0 never intersects the x axis.

3.2. No root to find. Another way in which Newton’s method will fail to converge
to the root of a function is if there is no root. Consider the graph of f(x) = x2 + 1
in Figure 3. The function f(x) = x2 + 1 never crosses the x axis, and thus there is
no possible solution. If we choose an initial guess, it can be proved that Newton’s
method will chaotically move around the x axis.3

4 AARON BURTON

Figure 2. f(x) = x3 + 1. The initial guess coincides with a critical point.

3.3. Periodic cycle. A third way in which Newton’s method will fail to converge
is if the initial guess or an iteration coincides with a cycle. For example, consider
f(x) = x3 − 2x + 2 and the initial guess of x0 = 1 as shown in Figure 4. With
x0 = 1 we see that

x1 = N(x0) = 1− 13 − 2(1) + 2
3(1)2 − 2

= 1− 1 = 0,

and then

x2 = N(x1) = 0− 03 − 2(0) + 2
3(0)2 − 2

= 0− (−1) = 1.

This example is of a cycle with period two, but cycles of other orders may exist as
well.4

Often the problems just described can be avoided by choosing our initial point
wisely and by looking at the derivatives of the function to be approximated. Usually
it is helpful to graph the function f(x) if possible before using Newton’s method.

3For further details, refer to Devaney Chapter 13.2 example four.
4See Devaney Chapter 3.3 for an in depth explanation of cycles.

NEWTON’S METHOD AND FRACTALS 5

Figure 3. f(x) = x2 + 1. Nonexistent root.

Figure 4. f(x) = x3 − 2x+ 2. A cycle of period 2.

6 AARON BURTON

4. Convergence

A natural extension of Section 3 is the question of convergence. When exactly
can we be sure Newton’s method will converge to a root? First a few background
definitions and a lemma.

Definition 4.1. A root r of the equation f(x) = 0 has multiplicity k if f(r) = 0,
f ′(r) = 0,· · · , f [k−1](r) = 0 but f [k](r) 6= 0. Here f [k](r) is the kth derivative of f .

For example, 0 is a root of multiplicity 2 for f(x) = x2 + x3 and of multiplicity
1 for f(x) = x+ x3.

Definition 4.2. A point x0 is a fixed point of a function f(x) if and only if
f(x0) = x0. Moreover, the point x0 is called an attracting fixed point if |f ′(x0)| <
1.

For our purposes it suffices for the reader to note that if a root is an attracting
fixed point of the function N(x), then Newton’s method will converge to that point.
For more information about fixed and attracting fixed points refer Appendix A.

Lemma 4.1. If r is a root of multiplicity k for a function f(x), then f(x) may be
written in the form

f(x) = (x− r)kG(x), where G(r) 6= 0

Proof. Consider the Taylor expansion of a function f(x) centered about the root r.

f(x) = f(r) + f ′(r)(x− r) +
f ′′(r)

2!
(x− r)2 +

f ′′′(r)
3!

(x− r)3 + · · ·

Now suppose that the root r has a multiplicity k. From the definition of multiplicity
we have,

f(x) = 0 + 0(x− r) +
0
2!

(x− r)2 + · · ·+ f{k}(r)
k!

(x− r)k +HOT

=
f{k}(r)
k!

(x− r)k +HOT

where HOT stands for higher order terms. From each higher order term we may
factor out (x− r)k, so we have

f(x) = (x− r)kG(x)

where G(x) = f{k}(r)
k! +HOT and G(x) is a function that has no root at r, that is

G(r) 6= 0. If f is a polynomial, then the multiplicity of any root is always finite. �

4.1. Newton’s Fixed Point Theorem. Now we are ready to prove Newton’s
method does in fact converge to the roots of a given f(x).

Newton’s Fixed Point Theorem 4.2. Suppose f is a function and N is its
associated Newton Iteration function. Then r is a root of f of multiplicity k > 0 if
and only if r is a fixed point of N . Moreover, such a fixed point is always attracting.

Proof. Suppose that f(r) = 0 but f ′(r) 6= 0, that is, the root r has multiplicity 1.5

Then from the definition N(x) = x − f(x)
f ′(x) , we have N(r) = r. Thus, r is a fixed

point of N . Conversely, if N(r) = r we must also have f(r) = 0.

5Commonly known as a simple root.

NEWTON’S METHOD AND FRACTALS 7

To see that r is an attracting fixed point, we use the quotient rule to compute

(2) N ′(x) =
f(x)f ′′(x)
(f ′(x))2

.

Again assuming f(r) = 0 and f ′(r) 6= 0, we see that N ′(r) = 0. Since N ′(r) < 1,
r is an attracting fixed point by definition. This proves the theorem subject to
assumption that f ′(r) 6= 0.

If f ′(r) = 0, then suppose that the root has multiplicity k > 1 so that the
(k − 1)th derivative of f vanishes at r but the kth does not. Thus we may write

f(x) = (x− r)kG(x)

where G is a function that satisfies G(r) 6= 0.6 Then we have

f ′(x) = k(x− r)k−1G(x) + (x− r)kG′(x)

f ′′(x) = k(k − 1)(x− r)k−2G(x) + 2k(x− r)k−1G′(x) + (x− r)kG′′(x).
Therefore, after some cancellation, we have

N(x) = x− (x− r)G(x)
kG(x) + (x− r)G′(x)

.

Hence N(r) = r, which shows that the roots of f correspond to fixed points of N
when r is a root of multiplicity k > 1. Finally we compute

N ′(x) =
k(k − 1)G(x)2 + 2k(x− r)G(x)G′(x) + (x− r)2G(x)G′′(x)

k2G(x)2 + 2k(x− r)G(x)G′(x) + (x− r)2G′(x)2

(note (x− r)2k−2 has been factored out of both the numerator and denominator).
Now G(r) 6= 0, so

N ′(r) =
k − 1
k

< 1.

Thus, r is an attracting fixed point for N . �

To reiterate, Newton’s Fixed Point Theorem tells us that the fixed points of
the function N(x) are the roots of f(x). Furthermore, because the roots of f(x)
are attracting fixed points for N(x), as we iterate N(x) the resulting sequence of
points, x0, x1 = N(x0), x2 = N(x1), · · · , will converge to the root of f(x).

5. An example of Newton’s method

As an example of Newton’s method, we approximate the solution to

f(x) = x3 − x− 1 = 0.

By examining Figure 5 it is clear that there is a exactly one root between 1 and 2.
The Newton function for f(x) is:

N(x) = x− x3 − x− 1
3x2 − 1

=
2x3 + 1
3x2 − 1

.

Starting with the initial guess x0=1, the results of the iteration of the Newton
function are:

6In the case of f ′(r) = 0, r is not in the domain of the corresponding function N(x); at r there

exists a removeable discontinuity. When we rewrite f using Lemma 4.1 we have removed the
discontinuity at r. This subtle difference between the two functions f(x) is of little consequence

but is mentioned here for the sake of completeness.

8 AARON BURTON

Figure 5. Graph of x3 − x− 1

x0 = 1
x1 = 1.5
x2 = 1.34 · · ·
x3 = 1.3252 · · ·
x4 = 1.3247181 · · ·
x5 = 1.324717957244789 · · ·
x6 = 1.32471795724474602596091 · · ·
x7 = 1.32471795724474602596091 · · ·

Since x6 and x7 agree with each other to the 23rd decimal place, we know that we
have found an estimate to 23 decimal places of accuracy7. Interestingly, the level of
accuracy approximately doubled with each iteration: x2 was correct to 1 decimal
place, x3 to 2 places, x4 to 5 places, x5 to 13 places, and x6 to at least 23 places.
This approximate doubling is characteristic of quadratic convergence.

5.1. Quadratic convergence. In general, if a sequence pn converges to p with
pn 6= p, and if there are positive constants λ and α such that

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ

then pn converges to p on the order of α. That is if α equals 2, the sequence
converges quadratically. [4]

Before we prove that Newton’s method generally converges quadratically, we
need the following theorem.

7Accuracy here is defined as the number of zeros to the right of the decimal place of xn+1−xn.

NEWTON’S METHOD AND FRACTALS 9

Taylor’s Theorem with Remainder 5.1. Let x and x0 be real numbers, and let
f be k+ 1 times continuously differentiable on the interval between x and x0. Then
there exists a number c between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)2

2!
+ · · ·

+f (k)(x0)
(x− x0)k

k!
+ f (k+1)(c)

(x− x0)k+1

k!
.

[4]

From Theorem 5.1 and from the definition of convergence we have the following
lemma,

Lemma 5.2. If N ′(r) = 0, then Newton’s method will converge quadratically.

Proof. If N ′(r) = 0 then from Theorem 5.1 we have,

N(x) = N(r) +N ′(r)(x− r) +N ′′(c)
(x− r)2

2!
,

where c is in between x and r. Simplifying and substituting xn for x we have,

N(xn)−N(r) = N ′′(c)
(xn − r)2

2
,

and if we take the limit as n→∞ we see that,8

lim
n→∞

|xn+1 − r|
|xn − r|2

=
|N ′′(c)|

2
.

Comparing this to the definition of convergence, we see that α = 2 and λ = |N ′′(c)|
2 ,

thus we conclude that Newton’s method converges quadratically if N ′(r) = 0.
Recall from Section 4.1 N ′(r) = 0 precisely when r is a root of multiplicity 1. �

Generally Newton’s method converges quadratically, however, when N ′(r) 6= 0
the method will converge only linearly as shown by Lemma 5.3.

Lemma 5.3. If N ′(r) 6= 0, then Newton’s method will converge linearly.

Proof. If the root of f(x) is not a simple root, recall from Section 4.1 N ′(r) 6= 0.
From Theorem 5.1 we have

N(x) = N(r) +N ′(c)(x− r).

If we rearrange terms, substitute, and take the the limit as n→∞ we see that

lim
n→∞

|xn+1 − r|
|xn − r|

= |N ′(c)|.

Here α = 1 and λ = |N ′(c)|, thus Newton’s method converges linearly for non-
simple roots. �

Linear convergence of roots of multiplicity greater than 1 is quite unfortunate;
a linearly converging algorithm is not as useful as a quadratically converging algo-
rithm.

8Recall from Section 1 that xn+1 = N(xn).

10 AARON BURTON

5.2. Modified Newton’s method. If Newton’s method converges linearly for a
particular function f(x), the next theorem provides a simple way to modify the
Newton iteration function of f(x) to make the algorithm converge quadratically.

Modified Newton’s method 5.4. Suppose that there is a function f that has a
root r of multiplicity k > 1, that is Newton’s method converges linearly to the root. If
we multiply the second term of the Newton iteration function by k, Newton’s method
will converge quadratically to the root. The modified Newton Iteration function is
thus,

Nk(x) = x− kf(x)
f ′(x)

.

Proof: Recall from Section 4.1 if r is a root of multiplicity k > 1 then N(x)
may be written as,

N(x) = x− (x− r)G(x)
kG(x) + (x− r)G′(x)

.

Multiplying the second term of N(x) by k we have,

Nk(x) = x− k(x− r)G(x)
kG(x) + (x− r)G′(x)

.

Using the quotient rule we compute N ′k(x) to be,9

N ′k(x) = 1− (kG+ (x− r)G′)(kG+ k(x− r)G′)− (k(x− r)G)(kG′ +G′ + (x− r)G′′)
(kG+ (x− r)G′)2

.

Finally we simplify, substitute x = r, and see,10

N ′k(r) = 1− k2(G(r))2

k2(G(r))2
= 1− 1 = 0.

Thus, we see that N ′(r) = 0 and Newton’s method will converge quadratically as
proved by Lemma 5.2.

Unfortunately, it is often difficult to find the multiplicity of a root, thus the
modified Newton’s method is more of a theoretical tool, rather then a practical
algorithm.

6. Basins of attraction

So far we have mainly concerned ourselves with the question of convergence
for individual starting points. Now we expand our previous work to encompass
functions with multiple roots. Specifically, we are concerned with finding the initial
guesses that will converge to a certain root.

Consider the function f(x) = x3 − 2x. The Newton function of f(x) is N(x) =
x − x3−2x

3x2−2 . If we choose x0 = 1 as our starting guess and iterate the function we
get the following sequence of points:

x0 = 1
x1 = 2
x2 = 1.6
x3 = 1.442253521
x4 = 1.415010637

9Here G, G′, and G′′ denote G(x), G′(x), and G′′(x) respectively.
10G(r) 6= 0 by Lemma 4.1.

NEWTON’S METHOD AND FRACTALS 11

x5 = 1.414214235
x6 = 1.414213562
x7 = 1.414213563

The series is converging. Now take the same function f(x) but start with x0 = .7.
This results in the following sequence of points:

x0 = .7
x1 = −1.294339623
x2 = −1.433222702
x3 = −1.414585178
x4 = −1.414213709
x5 = −1.414213563
x6 = −1.414213563 · · ·
x7 = −1.414213563 · · ·

The series is converging to a different root. Even though we chose initial points
relatively close together, their orbits converged to completely different roots. This
leads us to hypothesize that our initial guess determines the root to which Newton’s
method will converge. To formalize this hypothesize first we need a definition.

Definition 6.1. If r is a root of f(x), the basin of attraction of r, is the set of
all numbers x0 such that Newton’s method starting at x0 converges to r. In symbols,

B(r) = {x0|xn = Nn(x0) converges to r}.
[3]

To illustrate the basins of attraction, let us find the basins of attraction for the
function f(x) = x3 − x. Solving for the roots of f(x) we find that f(x) has roots
at −1, 0, and 1. First, let us confirm that these points are indeed attracting fixed
points. Recall from the definition of a fixed point, that a point r is a fixed point of
N(x) if N(r) = r. Furthermore, from Newton’s Fixed Point theorem, fixed points
of N(x) are always attracting fixed points. Computing the Newton function of f(x)
we see, N(x) = x − x3−x

3x2−1 . Substituting −1, 0, and 1 for x we see that the roots
are indeed attracting fixed points of N(x).

To find the basins of attraction we first look at the graph of f(x) in Figure 6.
From the graph we see that if x0 ≥ 1, xn will converge to 1. That is, [1,∞) ⊂ B(1).
Furthermore, if x0 is between the critical point 1√

3
and 1 the first iteration x1 will

be greater then 1, so xn will also converge to 1. So we have (1√
3
,∞) ⊂ B(1).

Finally if x0 = 1√
3
, Newton’s method fails because 1√

3
is a critical point of f(x).

The interval (1√
3
,∞) is the largest open interval about 1; we call this the local

basin of attraction or the largest basin of attraction for the point x = 1. In
this particular case, the local basin of attraction is symmetric; (−∞, −1√

3
) ⊂ B(−1)

because of symmetry of the function. We see this by a similar argument as just
presented for x0 ≤ −1 and then for x0 between the other critical point −1√

3
and −1.

Finally we consider the last root of f(x) at x = 0. By carefully looking at the
graph in Figure 6 or by iterating points near 0, we notice that the points seem to
oscillate around 0: if x0 > 0, then N(x0) < 0. For example, if x0 = .3 we get the
following sequence:

x0 = .3
x1 = −0.0739726027

12 AARON BURTON

Figure 6. Graph of f = x3 − x

x2 = 0.00082305938
x3 = −.0000000011151.

This oscillation from positive to negative values suggests that we should look for a
cycle of period two in N(x). A cycle of period two is a point x such that N2(x) = x.
Notice that f(x) is an odd function. That is f(−x) = −f(x). Since f(x) is odd so
is N(x). This symmetry greatly simplifies finding periodic points of N(x). Since
N2(x) = N(N(x)) we have:

N(N(x)) = N(−x) = x.

That is we need to solve where N(x) = −x. So we have,

−x =
2x3

3x2 − 1
, 5x3 − x = 0, x = 0,± 1√

5
.

We know 0 is not a periodic point because it is a fixed point. So we conclude that
± 1√

5
are our periodic points of period two. We have thus found that the local basin

of attraction for 0 is (−1√
5
, 1√

5
). To summarize, the local basin of attraction for the

critical point -1 is (−∞, −1√
3
). The local basin of attraction for the critical point

0 is (−1√
5
, 1√

5
). And finally the local basin of attraction for the critical point 1 is

(1√
3
,∞).

Notice that we have not discussed the intervals (−1√
3
, −1√

5
) and (1√

5
, 1√

3
). In these

intervals Newton’s method has radically different behavior. According to our pre-
vious analysis, if x0 = 1√

3
then N(x0) does not exist because the tangent line at x0

has a slope of zero. If x0 is some number slightly less then 1√
3

then the tangent line
intersects the x-axis at some large negative number. That is, N(x0) is a large neg-
ative number and thus x0 is in B(−1). If we continue decreasing x0 by some small

NEWTON’S METHOD AND FRACTALS 13

i bi bi − bi−1 (bi − bi−1)/(bi+1 − bi)
0 .577350
1 .465601 .11749 7.26
2 .4502020 .015399 6.18
3 .4477096 .0024924 6.03
4 .4472962 .0004134 6.01
5 .44722736 .00006884 6.00
6 .44721589 .00001147 6.00
7 .44721398 .00000191 6.00
...

...
...

...
∞ .447213595

Table 1. Lengths of intervals and ratios of lengths of successive intervals.

amount we see that x0 stays in B(−1) until N(x0) = −1√
3
. At this critical point

the slope of the tangent line is zero, and N(N(x0)) does not exist. Thus, we have
found a small interval that is contained in the basin of −1. We can approximate the
interval by solving the equations N(x) = −1√

3
and N(x) = 1√

3
for x. Doing so, we

find the interval is approximately (0.465601, 0.577350). By symmetry, we know the
symmetric interval (−0.577350,−0.465601) is contained in B(1). Now we continue
decreasing x0 an arbitrarily small amount below .465601 such that x1 = N(x0) is
greater than −1√

3
. The tangent line at x1 intersects the x-axis at a large positive

number, that is N(x1)is a large positive number and N(x1) ⊂ B(1). As we continue
to decrease x0 below .465601, x1 becomes even greater than −1√

3
and x2 = N(x1)

decreases towards 1√
3
. When x2 = N(x1) = 1√

3
then the slope of the tangent line is

zero again and N(N(x0)) does not exist. Approximating N(x) = −0.465601 for x
we find x0 ≈ .450202. Thus the interval (.450202, .465601) ⊂ B(1). In general, we
find a sequence of numbers b0 = 1√

3
> b1 ≈ 0.465601 > b2 ≈ 0.450202 > b3 > · · ·

such that
(bi, bi−1) ⊂ B(−1) when i is odd,

and
(bi, bi−1) ⊂ B(1) when i is even.

The numbers bi are determined by successively solving equations N(bi) = bi−1. The
values of the first few bi’s are given in Table 1, along with the lengths of the intervals
(bi, bi−1) and the ratios of lengths of the successive intervals. Each B(−1) and B(1)
consists of infinitely many intervals, whose lengths decrease approximately geomet-
rically. An arbitrarily small movement of x0 to the left of 1√

5
causes convergence

to shift between 1 and −1 infinitely often.

7. Newton’s method in the Complex Plane

7.1. Newton’s method on the complex plane. If needed, please refer to Ap-
pendix B for a quick review of the complex numbers. Newton’s method directly
generalizes to the complex plane. Let N(z) = z − f(z)

f ′(z) , and z0 be a complex num-
ber, then the iterations of Nn(z0) will in general converge quadratically to a zero

14 AARON BURTON

of f(z) [3]. Consider the complex polynomial f(z) = z2 + 1. Recall from Figure 3
in Section 3 that the corresponding real function f(x) = x2 + 1 has no real roots.
Unlike f(x) = x2 + 1 the corresponding complex function does have a solution; in
fact f(z) = z2 + 1 has two solutions at z = i and z = −i. If we choose z0 on the
real axis (that is y = 0) then the iterates of N(z) behave exactly as they do for
f(x) = x2 + 1, that is they behave chaotically. However if we chose z0 off the real
axis, Newton’s method converges.

z0 = 1 + .5i z0 = .5− i
z1 = .1 + .4500i z1 = .0500− .9000i
z2 = −.1853 + 1.2838i z2 = −.0058− 1.0038i
z3 = −.0376− 1.0234i z3 = −i
z4 = −.0009 + .9996i
z5 = i

Now we consider the basins of attraction for complex polynomials.

7.2. Complex Basins of attraction. The basins of attraction for complex New-
ton’s method was first considered by Arthur Cayley. In 1879 he published the
following theorem:

Cayley’s Theorem 7.2.1. Let the complex quadratic polynomial f(z) = az2+bz+c
have zeros α and β in the complex plane. Let L be the perpendicular bisector of
the line segment from α to β. Then, when Newton’s method is applied to f(z), the
half-planes into which L divides the complex plane are exactly B(α) and B(β), the
basins of attraction to α and β [3].

Cayley’s Theorem completely describes the basins of attraction for complex New-
ton’s method applied to quadratic complex polynomials. Starting at a point z0
complex Newton’s method converges to α exactly when |z0 − α| < |z0 − β|. How-
ever, if z0 lies on the perpendicular bisector L, complex Newton’s method will not
converge and behave chaotically.

Once again consider the complex quadratic f(z) = z2 + 1. Recall that the two
roots of the function are z = ±i. Thus, we can see that the perpendicular bisector
of the two roots will be z = 0 or the real axis. Applying Cayley’s Theorem, we
know points above the real axis will converge to the root i and points below the real
axis will converge to the root −i. Since the real axis is the perpendicular bisector,
any initial value chosen on the real axis will not converge. Refer to Figure 7 for a
visual of the basins of attraction for the complex quadratic z2 + 1.

Cayley also considered complex cubics, but was unable to find an obvious division
for the basins of attraction. It was only later in the early 20th century that the
mathematics Fatou and Julia began to understand the nature of complex cubic
polynomials. Further still, beginning in the 1980s mathematicians were able to
finally create pictures of the basins of attraction of complex cubic functions [3].
In the next section we will outline a method for viewing the complex basins of
attraction of complex cubic polynomials.

7.3. Programming the basins. In order to view the basins of attraction for
complex polynomials of degree two or greater we make use of a computer. There
are several algorithms that can be used to display the basins of attraction for
complex Newton’s method. The method that is used in this paper to find the
basins of attraction for a given complex function f(z) is as follows;

NEWTON’S METHOD AND FRACTALS 15

Figure 7. The basins of attraction for z2 + 1.

(1) Compute f ′(z) and N(z).
(2) Compute the roots of f(z) via factoring or numerical approximation on f .
(3) Pick an initial point and calculate the distance between the point and the

roots of f . If the distance is less then some small ε color the point the root
color.

(4) If not, iterate until the distance between the iterate and the roots of f is
less then some small value ε. Color the original point the appropriate root
color.

(5) Repeat for all points within view.
This is a generalized version of the algorithm that is used in this paper. For

specifics, the C++ code is located in Appendix C. If you are interested in learning
to program in C++, Steve Heller’s excellent introductory book is listed in the
reference section of this paper.

8. Program Results

Using the program described in Section 7.3 the following pictures can be ob-
tained. In Figure 8 f(z) = z3 − z is pictured. The roots of f(z) = z3 − z are
z = 0,±1. Figure 9 is a picture of one of the bulbs of the Figure 8. The colors rep-
resent the various roots. In Figures 8 and 9 the points which converge to the root
at z = 0 are colored blue, while the roots at z = −1 and z = 1 are colored red and
green respectively. The different color shades represent the amount of iterations
needed for that particular point to converge.

Figure 10 shows the basins of attraction for f(z) = z3 − 1. The roots of f(z) =
z3 − 1 are z = 1, z = − 1

2 +
√

3
2 , and z = − 1

2 −
√

3
2 . Notice that the color shading is

hardly noticeable in Figure 10. However, if we magnify the middle of the picture
(as in Figure 11) we are able to see that color shading is indeed present. This is
because all the points within view converge very quickly to their respective roots.

Figure 12 shows the basins of attraction for f(z) = z4 − 1. The roots of f(z) =
z4 − 1 are z = 1, z = −1, z = i, and z = −i and are colored green, red, blue, and
teal respectively.

16 AARON BURTON

Figure 8. The basins of attraction for z3 − z.

Figure 9. Magnification of one of the bulbs seen in Figure 8

Figure 10. The basins of attraction for z3 − 1.

9. Conclusion

In this paper we restricted ourselves to only a few complex polynomials that had
roots found via factoring. An interested reader could expand on the C++ program

NEWTON’S METHOD AND FRACTALS 17

Figure 11. Magnification of the middle of f(z) = z3 − 1.

Figure 12. The basins of attraction for f(z) = z4 − 1.

found in Appendix C and view the basins of attraction for any complex function
they wish. Additional pictures of Newton’s method in the complex plane can be
found in Peitgen and Richter [1986, Chapter 6] and Peitgen [1984]. Becker and
Dörfler [1989, Chapter 4] have a number of do-it-yourself computer experiments
involving Newton’s method and other ways of generating fractals. Devaney [1]
contains a discussion relating Newton’s method and chaotic dynamical systems
both in the real and complex plane.

References

[1] Robert L. Devaney. A First Course in Chaotic Dynamical Systems. Westview Press. 1992.

[2] Steve Heller. Introduction to C++. Academic Press. 1997.
[3] Philip D. Straffin JR. UMAP Modules: Tools for Teaching 1991. Newtons Method and Fractal

Patterns. I NEED TO GET PUBLISHER FROM LIBRARY

[4] Timothy Sauer. Numerical Analysis. Pearson. 2006.

18 AARON BURTON

Appendix A. Fixed and Attracting Fixed points

Recall from Definition 4.2 that a point x0 is a fixed point of a function f(x) if
and only if f(x0) = x0. Moreover, the point x0 is called an attracting fixed point if
|f ′(x0)| < 1.

To illustrate more clearly the implications of fixed and attracting fixed points
consider the following. Suppose we wish to find the fixed points of the function
f(x) = x3. To do so, we use the definition of a fixed point and solve for where
x3 = x. Doing so yields x = 0 and x = ±1. These are the fixed points of the
function f(x) = x3. We can verify this by computing the following:

f(0) = 03 = 0, f(−1) = −13 = −1, f(1) = 13 = 1.

These points are called the fixed points for f(x) = x3 because as we preform
function iteration at these points, the orbit or sequence of points generated stays
constant.

By computing the derivative and substituting in the fixed points we see that

f ′(x) = 3x2

f ′(0) = 0
f ′(1) = 3
f ′(−1) = 3.

Now since |f ′(0)| < 1 we know by definition that 0 is an attracting fixed point for
f(x) = x3. This implies that if we pick a point near enough to 0, say 0.5, the
function should converge to 0 if we iterate.

f(.5) = (.5)3 = .125

f(.125) = 0.001953125
f(.001953125) = 0.000000007

Newton’s method is merely a form of fixed point iteration. Newton’s method is
designed so that the Newton iteration function N(x) has attracting fixed points at
the roots of the function f(x). That is, as we iterate N(x), the sequence of points
will converge to the roots of f(x).

For more details on fixed and attracting fixed points refer to Devaney chapters
3-5 listed in the reference section of this paper.

Appendix B. Review of Complex Numbers

A complex number z has the form z = x + iy, where x and y are real numbers
and i is a symbol having the property that i2 = −1. Thus a complex number is
made of two parts; the real part x and the imaginary part iy. We represent the
complex number z = x+iy as the point (x, y) on the complex plane. The horizontal
axis or x axis is the real axis; it corresponds to the same x axis as used in ordinary
geometry. However, the vertical y axis is unlike the ordinary y axis used in ordinary
geometry. We call the vertical axis the imaginary axis.

Addition and subtraction are done component wise, that is if z = x + iy and
w = u+ iv, then

z + w = (x+ u) + i(y + v),
and

z − w = (x− u) + i(y − v).

NEWTON’S METHOD AND FRACTALS 19

The distance between any two complex numbers is the same as the distance
between two points in the real plane. So if we want to find the distance between z
and w we have,

|z − w| =
√

(x− u)2 + (y − v)2.
Multiplication between two complex numbers is done using the distributive laws

and the property that i2 = −1. For example,

zw = (x+ iy)(u+ iv) = xu+ i(xv + yu) + i2(yv) = (xu− yv) + i(xv + yu).

To divide complex numbers, we use the method of rationalizing the denominator:

z

w
=
x+ iy

u+ iv
× u− iv
u− iv

=
(xu+ yv) + i(yu− xv)

u2 + v2
=
xu+ yv

u2 + v2
+ i
(yu− xv
u2 + v2

)
.

Derivatives of functions of a complex variable are computationally equivalent to
derivatives of functions of real variables. For example, if f(z) = z4 + z3 − z, then
f ′(z) = 4z3 + 3z2 − 1.

Appendix C. C++ Code

B.1. Main.cpp
B.2. Complex.h
B.3. Complex.cpp
B.4. CoordPlane.h
B.5. CoordPlane.cpp
B.6. Makefile

C.1. Main.cpp.

// Main.cpp
// Aaron Burton
// Whitman College
// May 2009

#include <iostream>
#include <Magick++.h>
#include <cstdlib>
#include <string>
#include <iomanip>
#include "CoordPlane.h"
#include "Complex.h"
#define NUM_CELLS 5
#define HORIZONTALFIX 8
#define VERTICALFIX 3
#define NOTCOLORED 0
#define COLORED 1
using namespace std;
using namespace Magick;

string itos(int);

20 AARON BURTON

void OverLayGrid(Image&,const CoordPlane&);
void ZoomIn(Image&,CoordPlane&);
void DrawFractal(Image&,CoordPlane&);

int main(){
CoordPlane Plane;
Image image;

image=Image(Geometry(Plane.HorizontalResolution(),
Plane.VerticalResolution()),"white"); // Creates a blank image.

DrawFractal(image,Plane); // Draws the basins.
OverLayGrid(image,Plane); // Overlays zoom-in grid.
Plane.print(); // Prints coordinates
image.display(); // Displays image
ZoomIn(image,Plane); // Zoom-in/save loop

}

// Most important function. Change this to draw the basins
// of attraction for different functions.

void DrawFractal(Image& Img,CoordPlane& CP){

// Also color can be added here.
int i,j,k;
Complex Z,N;

for (i=0;i<CP.HorizontalResolution();i++){
for (j=0;j<CP.VerticalResolution();j++){

Z=Complex(CP.h2x(i),CP.v2y(j)); //

// Check First 25 iterates of N
for (k=1;k<=25;k++){

Z=(2*Z*Z*Z)/((3*Z*Z)-1); // f(x)=z^3-z; N(z) for f(x).

// Check distance between interates of N(z) and the roots.
if ((Z.RealPart()+1)*(Z.RealPart()+1)+(Z.ImagPart()*Z.ImagPart())

<= .0001){
Img.pixelColor(i,j,ColorRGB(1.0,0,0)); // root=-1
break;

}
if (((Z.RealPart()-1)*(Z.RealPart()-1))+(Z.ImagPart()*Z.ImagPart())

<= .0001){
Img.pixelColor(i,j,ColorRGB(0,1.0,0)); // root=1
break;

}

NEWTON’S METHOD AND FRACTALS 21

if ((Z.RealPart()*Z.RealPart())+(Z.ImagPart()*Z.ImagPart()) <= .0001){
Img.pixelColor(i,j,ColorRGB(0,0,1.0)); // root=0
break;

}
// Colors the point black if it does not converge.
if (k==25) Img.pixelColor(i,j,ColorRGB(0,0,0));

}
}

}
}

void OverLayGrid(Image& Img,const CoordPlane& CP){
int i,j;
double xinterval,yinterval;

xinterval=(CP.HorizontalResolution()-1)/NUM_CELLS;
yinterval=(CP.VerticalResolution()-1)/NUM_CELLS;

for (i=1;i<=NUM_CELLS-1;i++){
Img.draw(DrawableLine(xinterval*i,0,xinterval*i,CP.VerticalResolution()));
Img.draw(DrawableLine(0,yinterval*i,CP.HorizontalResolution(),

yinterval*i));
}
for (i=1;i<=NUM_CELLS*2;i=i+2){
for (j=1;j<=NUM_CELLS*2;j=j+2){
Img.draw(DrawableText(xinterval*j/2-HORIZONTALFIX,

yinterval*i/2+VERTICALFIX,
itos((i/2*NUM_CELLS+j/2)+1)));
}

}
}

string itos(int x) {
string result;
char num[100];

sprintf(num,"%3i",x);
result = num;

return result;
}

string ftos(double x) {
string result;
char num[100];

sprintf(num,"%3.9f",x);
result = num;

22 AARON BURTON

return result;
}

void ZoomIn(Image& Img,CoordPlane& CP){
int GetView(Image&,CoordPlane&);
int CellNum,i,j;
double x_min_new,x_max_new,y_min_new,y_max_new;
double xinterval,yinterval;

while(true){

CellNum=GetView(Img,CP);

xinterval=(CP.xUpperBound()-CP.xLowerBound())/NUM_CELLS;
yinterval=(CP.yUpperBound()-CP.yLowerBound())/NUM_CELLS;
i=(CellNum-1)/NUM_CELLS+1;
j=(CellNum-1)%NUM_CELLS+1;

x_min_new=CP.xLowerBound()+(j-1)*xinterval;
x_max_new=CP.xLowerBound()+j*xinterval;
y_min_new=CP.yUpperBound()-(i*yinterval);
y_max_new=CP.yUpperBound()-((i-1)*yinterval);

CP=CoordPlane(CP.HorizontalResolution(),x_min_new,x_max_new,y_min_new,
y_max_new) ;

setprecision(16);
Img=Image(Geometry(CP.HorizontalResolution(),

CP.VerticalResolution()),"white");
DrawFractal(Img,CP);
CP.print();
OverLayGrid(Img,CP);
Img.display();

}
}

int GetView(Image& Img2,CoordPlane& CP2){
int Cell=0;
string c;
while (Cell<1 || Cell>NUM_CELLS*NUM_CELLS){
cout << endl << "Enter ’q’ to quit or ’s’ to save previous fractal"

<< endl;
cout <<"Enter a cell number to zoom-in on: ";
// saves fractal as 1280x853
if (cin.peek()==’s’ || cin.peek()==’S’){
CP2=CoordPlane(1280,CP2.xLowerBound(),CP2.xUpperBound(),

CP2.yLowerBound(),CP2.yUpperBound());

NEWTON’S METHOD AND FRACTALS 23

Img2=Image(Geometry(CP2.HorizontalResolution(),
CP2.VerticalResolution()),"white");
DrawFractal(Img2,CP2);
c="Aaron Burton [" + ftos(CP2.xLowerBound()) + "," +

ftos(CP2.xUpperBound()) + "] X [" + ftos(CP2.yLowerBound()) +
"," + ftos(CP2.yUpperBound()) + "]";

Img2.draw(DrawableText(CP2.HorizontalResolution()-450,
CP2.VerticalResolution()-15,c));
Img2.write("fractal.png"); // File Name.
cout << "Saved fractal.png";
exit(0);

}
// quits on q
if (cin.peek()==’q’ || cin.peek()==’Q’){
exit(0);

}
else {
// get cell # to zoom-in on.
cin >> Cell;
if (cin.peek()==’\n’){

c=cin.get();
}

}
}
return Cell;

}

C.2. Complex.h.

// Complex.h: Header file for the Complex class.
// Aaron Burton
// Whitman College
// May 2009

#ifndef COMPLEX_H
#define COMPLEX_H
#include <iostream>
using namespace std;

// A simple complex number class
class Complex {
// friend functions and overloads
friend double abs(const Complex&);
friend Complex operator+(const Complex&,const Complex&);
friend Complex operator-(const Complex&,const Complex&);
friend Complex operator*(const Complex&,const Complex&);
friend Complex operator/(const Complex&,const Complex&);
friend Complex operator-(const Complex&); //negation

24 AARON BURTON

friend Complex operator!(const Complex&); //conjugation
friend ostream& operator<<(ostream&,const Complex&);
public:
// constructor, first arg sets real part, second arg sets imag part,
// defaults are set to 0
Complex(double=0,double=0);
// returns the real part of the complex number
double RealPart() const;
// sets the real part of the complex number to the double arg
void SetRealPart(double);
// returns the imaginary part of the complex number
double ImagPart() const;
// sets the imaginary part of the complex number to the double arg
void SetImagPart(double);

private:
// variables for holding the real and imaginary parts
double _real, _imag;

};
#endif

C.3. Complex.cpp.

// Complex.cpp: The Complex class needed for Main.cpp.
// Aaron Burton
// Whitman College
// May 2009

#include <iostream>
#include <cassert>
#include "CoordPlane.h"
using namespace std;

CoordPlane::CoordPlane(){

_h_max=800;
_x_min=-1.5;
_x_max=1.5;
_y_min=-1;
_y_max=1;
_SquareAspect(); // sets _v_max

}

CoordPlane::CoordPlane(const int hmax, const double xmin,
const double xmax, const double ymin,
const double ymax){

_h_max=hmax;
_x_min=xmin;

NEWTON’S METHOD AND FRACTALS 25

_x_max=xmax;
_y_min=ymin;
_y_max=ymax;
_SquareAspect(); // sets _v_max
assert(_x_min <= _x_max);
assert(_y_min <= _y_max);
assert(_h_max>100);

}

double CoordPlane::h2x(const int h) const{
double Slope;

Slope=(_x_max-_x_min)/(_h_max-1);
return Slope*h+_x_min;

}

double CoordPlane::v2y(const int v) const{
double Slope;

Slope=(_y_max-_y_min)/(-1*(_v_max-1));
return Slope*v+_y_max;

}

int CoordPlane::x2h(const double x) const{
double Slope;

Slope=(_x_max-_x_min)/(_h_max-1);
return int((x-_x_min)/Slope);

}

int CoordPlane::y2v(const double y) const{
double Slope;
Slope=(_y_min-_y_max)/(-1*(_v_max-1));
return int((y-_y_min)/Slope);

}

int CoordPlane::HorizontalResolution() const{
return _h_max;

}

int CoordPlane::VerticalResolution() const{
return _v_max;

}

double CoordPlane::xLowerBound() const{
return _x_min;

}

26 AARON BURTON

double CoordPlane::yLowerBound() const{
return _y_min;

}

C.4. CoordPlane.h.

// CoordPlane.h: Header file for the Coordplane class.
// Aaron Burton
// Whitman College
// May 2009

#ifndef COORDPLANE_H
#define COORDPLANE_H

class CoordPlane {
public:
// Default constructor, sets reasonable default values.
CoordPlane();
// Sets horizontal pixel resolution and corresponding x,y-coord plane,
// h_max, x_min, x_max, y_min, y_max
// v_max will be set by the private member function _SquareAspect()
CoordPlane(const int, const double, const double, const double,

const double);
// converts horizontal pixel coord, to x value
double h2x(const int) const;
// converts vertical pixel coord, to y value
double v2y(const int) const;
// converts x value, to horizontal pixel coord
int x2h(const double) const;
// converts y value, to vertical pixel coord
int y2v(const double) const;
// Returns the current horizontal resolution.
int HorizontalResolution() const;
// Returns the current vertical resolution.
int VerticalResolution() const;
// Returns the current lower bound of the x range
double xLowerBound() const;
// Returns the current lower bound of the y range
double yLowerBound() const;
// Returns the current upper bound of the x range
double xUpperBound() const;
// Returns the current upper bound of the y range
double yUpperBound() const;

// Prints a synopsis of the current class data to the screen.
void print() const;

private:

NEWTON’S METHOD AND FRACTALS 27

int _h_max, _v_max;
double _x_min, _x_max, _y_min, _y_max;

// Sets vertical resolution to correct aspect ratio
void _SquareAspect();

};

#endif

C.5. CoordPlane.cpp.

// CoordPlane.cpp
// Aaron Burton
// Whitman College
// May 2009

#include <iostream>
#include <cassert>
#include "CoordPlane.h"
using namespace std;

CoordPlane::CoordPlane(){

_h_max=800;
_x_min=-1.5;
_x_max=1.5;
_y_min=-1;
_y_max=1;
_SquareAspect(); // sets _v_max

}

CoordPlane::CoordPlane(const int hmax, const double xmin,
const double xmax, const double ymin,
const double ymax){

_h_max=hmax;
_x_min=xmin;
_x_max=xmax;
_y_min=ymin;
_y_max=ymax;
_SquareAspect(); // sets _v_max
assert(_x_min <= _x_max);
assert(_y_min <= _y_max);
assert(_h_max>100);

}

double CoordPlane::h2x(const int h) const{
double Slope;

Slope=(_x_max-_x_min)/(_h_max-1);

28 AARON BURTON

return Slope*h+_x_min;
}

double CoordPlane::v2y(const int v) const{
double Slope;

Slope=(_y_max-_y_min)/(-1*(_v_max-1));
return Slope*v+_y_max;

}

int CoordPlane::x2h(const double x) const{
double Slope;

Slope=(_x_max-_x_min)/(_h_max-1);
return int((x-_x_min)/Slope);

}

int CoordPlane::y2v(const double y) const{
double Slope;
Slope=(_y_min-_y_max)/(-1*(_v_max-1));
return int((y-_y_min)/Slope);

}

int CoordPlane::HorizontalResolution() const{
return _h_max;

}

int CoordPlane::VerticalResolution() const{
return _v_max;

}

double CoordPlane::xLowerBound() const{
return _x_min;

}

double CoordPlane::yLowerBound() const{
return _y_min;

}

double CoordPlane::xUpperBound() const{
return _x_max;

}

double CoordPlane::yUpperBound() const{
return _y_max;

}

void CoordPlane::print() const{

NEWTON’S METHOD AND FRACTALS 29

cout << "Horizontal Resolution= " << _h_max << endl
<< "Vertical Resolution= " << _v_max << endl
<< "X Min = " << _x_min << endl
<< "X Max= " << _x_max << endl
<< "Y Min= " << _y_min << endl
<< "Y Max= " << _y_max << endl;

}

void CoordPlane::_SquareAspect(){
_v_max=int((_h_max/(_x_max-_x_min))*(_y_max-_y_min));

}

C.6. The Makefile.

\\ Makefile used to compile main.cpp
\\ Aaron Burton
\\ Whitman College
\\ May 2009

Fractal: CoordPlane.o Complex.o main.cpp
g++ CoordPlane.o Complex.o main.cpp \
‘Magick++-config --cppflags --cxxflags --ldflags --libs‘

CoordPlane.o: CoordPlane.cpp CoordPlane.h
g++ -c CoordPlane.cpp

Complex.o: Complex.cpp Complex.h
g++ -c Complex.cpp

clean:
rm -f *.o a.out

