
CELLULAR AUTOMATA AND APPLICATIONS

GAVIN ANDREWS

1. Introduction

This paper is a study of cellular automata as computational programs

and their remarkable ability to create complex behavior from simple

rules. We examine a number of these simple programs in order to

draw conclusions about the nature of complexity seen in the world

and discuss the potential of using such programs for the purposes of

modeling. The information presented within is in large part the work

of mathematician Stephen Wolfram, as presented in his book A New

Kind of Science[1].

Section 2 begins by introducing one-dimensional cellular automata

and the four classifications of behavior that they exhibit. In sections

3 and 4 the concept of computational universality discovered by Alan

Turing in the original Turing machine is introduced and shown to be

present in various cellular automata that demonstrate Class IV behav-

ior. The idea of computational complexity as it pertains to universality

and its implications for modern science are then examined. In section
1



2 GAVIN ANDREWS

5 we discuss the challenges and advantages of modeling with cellular

automata, and give several examples of current models.

2. Cellular Automata and Classifications of Complexity

The one-dimensional cellular automaton exists on an infinite hori-

zontal array of cells. For the purposes of this section we will look at

the one-dimensional cellular automata (c.a.) with square cells that are

limited to only two possible states per cell: white and black. The c.a.’s

rules determine how the infinite arrangement of black and white cells

will be updated from time step to time step. Again, for the purposes

of this section, we will look at c.a.’s whose rules are updated based on

a nearest neighbor scheme. This means that to determine the state of

a cell in position p at time step t + 1, we will look at the states of cells

in position p − 1, p, and p + 1 all in time step t. For each of the eight

possible patterns of white and black cells, the state of cell p at time

step t + 1 is chosen as either black or white. See Figure 1 for the eight

possible input patterns, as well as one possible output. In all there are

256 different possible outputs.



CELLULAR AUTOMATA AND APPLICATIONS 3

Figure 1. Along the top are the eight possible patterns
of three, two-state cells. They are displayed in the con-
ventional left to right order in this figure. The bottom is
one possible set of outputs. In all, there are 256 different
possible outputs. This image is scanned from Wolfram
[1], page 53.

To analyze the behavior of these programs Wolfram developed a

naming convention, a standard initial condition and method of view-

ing the results of multiple iterations at once. To name the basic one-

dimensional c.a.’s described above, a hierarchy was given to eight pos-

sible patterns with black-black-black on the far left and white-white-

white one the far right. Each combination was made to represent a

place in the binary numbering system. Black-black-black for example

was represents the 27th place. Assigning the value of zero to white

and one to black gives each of the possible arrangements of updating

scenarios a binary number that ranges from 0 to 255 in base ten. See

Figure 2 for several examples of this naming scheme.

The initial conditions for all the rules, 0-255 consist of one black cell

with rays of white cells extending to infinity on both sides. To view

multiple iterations at once, each time step is placed below the previous

one with the positions of each cell unchanging, for example see Figure

3. This creates a two-dimensional image of multiple iterations of a c.a.



4 GAVIN ANDREWS

Figure 2. These are the first three rules and the last
one. The sequence of zeros and ones are binary numbers
with their base ten equivalent labeled to the right of each
sequence. Wolfram, page 53.

allowing for analysis of behavior. It should be noted that the maximum

rate of travel of the black square in the middle is one lateral square per

iteration.

Wolfram classifies the behavior observed in these c.a.’s in four dis-

tinct classes. The first is Class I, which contains simple repeating

behavior. This can range from a single vertical or diagonal line (the

initial conditions remain) as in rules 100 and rule 106, or a series of

alternating all white and all black iterations as in rules 119 and 21.

See Figure 3, images (a) and (b) of rule 106 and 119 respectively for

examples of Class I behavior. The behavior is easily recognizable as



CELLULAR AUTOMATA AND APPLICATIONS 5

(a) (b) (c)

Figure 3. Above are 16 iterations of rules 106, 119, and
126. Rule 106 and 119 are examples of Class I behavior,
and 126 is one of Class II behavior. Wolfram, page 54.

containing repetitive elements of equal size that encompass the whole

program. Approximately 86% of the 256 basic c.a.’s are of this class.

The second class of behavior, Class II, is characterized by c.a’s that

have nested patterns. A nested pattern is a configuration that repeats

itself on an ever increasing scale. That is, smaller scale representations

of a selected region occur within the region itself. Approximately 9%

of the basic c.a.’s are of this class. See Figure 3, (c) for an image of a

Class II nested pattern in rule 126.

Class III behavior is completely random. The c.a.’s in this class

have shapes that repeat themselves, but their location and frequency

is random. This class contains about 4% of the basic c.a.’s.

The final class, Class IV behavior, is a combination of Class I behav-

ior and Class III behavior. These c.a.’s exhibit a complex combination

of repeating patterns and random behavior. See Figure 4 for an exam-

ple. There are only 4 out of the 256 basic c.a.’s that exhibit this behav-

ior, and all four are essentially the same when we consider black-white



6 GAVIN ANDREWS

Figure 4. Above is an image of 150 iterations of rule
110 and its updating rules. Wolfram, page 32.

symmetry and left-right symmetry. Two of them are mirror images of

each other, flipped over the vertical axis placed at the location of the

black cell in the initial conditions. The other two are the same as the

first two where the state of every cell is reversed, (after the first time

step).

The four classifications of behavior are important for the discussion of

computational complexity in section 4. Although the classifications are

distinguished only by visually recognized patterns and characteristics,

it is precisely this that Wolfram believes is main factor in determining

levels complexity.



CELLULAR AUTOMATA AND APPLICATIONS 7

3. Computational Universality

3.1. The Turing Machine. Computational universality is the abil-

ity of a machine or program to compute the iterations of any other

machine or program. It is the concept that gave birth to the com-

puter revolution. Using terminology from modern computation, the

universally computational machine is analogous to “hardware”, while

the possible tasks it can perform (those of other machines) are analo-

gous to “software”. Hardware and software differ only in that the first

is computationally universal and the second is not.

The concept of computational universality was first discovered by

Alan Turing while working with his Turing machines in the 1950’s.

The Turing machine is meant to perform algorithmic computation by

following the steps that a human would employ. The basic steps that

one takes are broken down to the essential elements of reading and

replacing symbols, moving from symbol to symbol, and the mental

states active at each of the previous elements. To replicate the process,

a Turing machine uses a set number of symbols, a set number of states,

and an infinite tape of cells (the same as one-dimensional c.a.’s) and a

“machine head”. At each time step, the machine head is over a single

cell of the tape. It reads the symbol off the tape, replaces it with

another symbol, moves one cell in either direction and changes state.



8 GAVIN ANDREWS

All cells not focused on by the machine head keep the same symbol

from step to step. A machine chart exists for each Turing machine that

has symbols on one axis and states on the other. When the machine

head reads the symbol s while in state g, it will follow the instructions

held in square s, g of the machine table. The instructions include the

replacement symbol (which may be the existing symbol), the direction

to move in and the state to enter. Turing machine tables can also be

expressed with images, see Figure 6, (b).

At the beginning of a Turing machine’s program, an input of symbols

is placed on the tape. By convention, the machine head always begins

on the left most input. The head moves back and forth, reading and

replacing symbols, following the instructions in the table. The head

will either continue indefinitely, or stop when it receives instructions to

go into the “final” state. The final state includes no instruction causing

the head to freeze.

Figure 5 is a Turing machine that symbolically determines whether a

number is odd or even. The instructions are given in the form: replace-

ment symbol, direction (r/l), and new state. Starting on the left most

input cell, (the highest place value of the number to be evaluated), the

head moves to the right, replacing every symbol with a blank square.

Whenever it reads a symbol representative of an odd digit, it goes into



CELLULAR AUTOMATA AND APPLICATIONS 9

(a) (b)

Figure 5. Figure (a) is the machine table for a Tur-
ing machine that determines whether an input is odd or
even. The instructions for the machine head are in the
following order: replacement symbol/direction of head
movement/new state. Notice that the machine head will
replace every symbol with a blank square except in two
cases. These cases are when the head encounters a blank
square and is in odd or even state. In Figure (b) are four
iterations of Turing machine (a) on a three symbol input.

the odd state, and vice a versa for even numbers. When the head comes

to a blank square it prints the symbol 1 if it is the odd state, or the

symbol 0 if it is in the even state. In both cases it goes into the final

state after printing a symbol. The output of the program is a symbolic

representation of the numbers status. Machine tables can be created

to perform an infinite number of algorithmic computations, some of

which coincide with known mathematical algorithms.

It was discovered by Turing that the information in a machine table

could be represented in one long strand of symbols. Let this linear

representation of the machine table be called t1, and let the input that

this table would act upon be called i1. Turing then discovered that a

if t1 was placed next to i1 on an input tape, then a new machine table,



10 GAVIN ANDREWS

t2, could be written that would perform the instructions of t1 on i1.

This means that the machine head instructed by t2 would travel back

and forth between i1 and t1, create the proper output for the input i1

and then erase t1 from the tape. The machine defined by the table t2 is

known as the universal Turing machine because it is able to perform the

algorithms of any other Turing machine by reading the machine table

and input as inputs. The universal Turing machine is even able to

perform the algorithms of machines more complicated (more symbols

and or more states) than itself. It is a consequence that any algorithm

that can be performed by a Turing machine can thus be performed by

the universal Turing machine. It is also a consequence that no program

can be more computationally complex than a computationally universal

machine.

3.2. Emulation and the Universal Cellular Automata. Many

other programs or machines such as cellular automata, register ma-

chines, substitution systems, or tag machines can also be shown to be

computationally universal. Because the only existing proof of com-

putational universality pertains to the original Turing machine, all

other programs are shown to be computationally universal through

emulation. Emulation means that a series of iterations in one program



CELLULAR AUTOMATA AND APPLICATIONS 11

produces an equivalent representation of every step of the emulated

program’s computation.

To emulate a Turing machine with a cellular automaton, the itera-

tions of the Turing machine must be displayed vertically as in the c.a.’s

discussed above. At each iteration the Turing machine shows the sym-

bols present and the position of the head. In the c.a. that emulates the

Turing machine, a color is designated for every possible combination

of state and symbol, as well as one color for each symbol when it is

not focused on by the head, and thus not connected to a state. Fig-

ure 6, (a) shows a Turing machine with two symbols (colors) and three

states and the c.a. equivalent. The c.a. that emulates it has eight colors

(2symbols ∗ 3state + 2symbols). For organizational purposes, the cells

of the Turing machine where the head is not focused, are represented by

the two lightest colors in the cellular automaton. The six darker colors

represent movement and state of the head. A set of nearest neighbor

rules for the computation of the c.a. are then derived from the machine

table of the Turing machine. See Figure 6, (b) and (c) for the Turing

machine table and the c.a. rules respectively.

This example of emulation is expandable to Turing machines with

greater numbers of symbols and states. The number of colors used in

the c.a. increase rapidly, as does the number of cases for which rules



12 GAVIN ANDREWS

(a) (b)

(c)

Figure 6. Figure (a) is the emulation of a Turing ma-
chine by a cellular automaton. Each of the 6 symbol-
state combination, as well as both symbol-no-state com-
binations, are given a color in the c.a. Figure (b) is the
machine table for the Turing machine. The pointer and
the colors represent the states and the symbols, respec-
tively. Figure (c) shows the c.a. rules derived from the
Turing machine table. The white cells with a horizontal
line in Figure (c) mean that any color can be in that cell.
Wolfram, page 658.

need to be derived. The derivation of c.a. rules remains fairly simple

however because only one cell is updated per iteration.

Following this method of emulating Turing machines with cellular

automata will lead to extremely complicated c.a.’s for even the simplest

of universal Turing machines. Given the capabilities of universally

computational machines, as seen in the modern digital computer, this

fact does not strike one as particularly odd. The major discovery of



CELLULAR AUTOMATA AND APPLICATIONS 13

Wolfram’s research is that there exist extremely simple programs and

machines capable of universal computation. This is demonstrated in

the two color, nearest neighbor cellular automaton rule 110 (see Figure

4).

Rule 110 produces Class IV behavior: a combination of randomness

and regular repeating structures. Wolfram uses the regular repeating

structures to emulate the computation of a class of cyclical tag ma-

chines. Some of the cyclical tag machines in this class can emulate

universal Turing machines. Rule 110, a member of the most simple

cellular automata possible can thus be shown to be universally compu-

tational.

A cyclical tag machine is a slightly more complicated version of the

standard tag machine. The standard version starts with a single square,

either black or white. There are two updating rules, one for when the

left most square of the sequence is black, and one for when it is white.

At each iteration, the left most square is removed from the sequence

and a combination of white and black cells (typically 0-3) is added to

the right end of the sequence. A cyclical tag machine is similar, but

has two sets of rules that take effect on alternating iterations.

The computation of tag machines are displayed in the same way as in

one dimensional c.a.’s and Turing machines, except that the sequence



14 GAVIN ANDREWS

(a) (b)

Figure 7. This is an example of a cyclical tag machine
that rule 110 can emulate. In each iteration the symbol
in the farthest left column is removed and a sequence is
added to the right end of the row. Wolfram, page 679.

is shifted one cell to the left at each iteration so the left most edge lines

up.

To show that rule 110 can emulate a cyclical tag machine, Wolfram

expands the visual representation to a larger format. The first change

is that iterations are shown without shifting at each step. This allows

the position of each cell to be maintained by column. The iterations

are then separated by a section of blank space.

Wolfram then employs a series of diagonal lines at each iteration to

visually represent all the critical information about the machine. This



CELLULAR AUTOMATA AND APPLICATIONS 15

Figure 8. The separated iterations where each horizon-
tal line divides iterations. The half colored circle to the
left signifies which set of rules is followed at that division.
Wolfram, page 679.

information includes which cycle the machine is on, the combination

of cells to be added and the method in which the color of the left most

cell is determined. The way the lines interact is chosen specifically so

that this information is represented visually.

Wolfram then selects a number of regular repeating features from

the behavior of rule 110 that interact in similar ways to the informa-

tion lines of the cyclical tag machine. The process of finding regular

repeating objects that perform this objective is done by trial and er-

ror and can take a tremendous amount of time. Once it is completed

however, one only needs to specify the initial conditions of rule 110 so

that these regular repeating shapes are isolated on an otherwise calm

plane. The interaction is in general hard to interpret unless seen from

a very zoomed out perspective. For the emulation of each horizontal



16 GAVIN ANDREWS

Figure 9. The solid lines that come from the left side
of the figure represent what the rule will add to the end
of the row. In both rule cases, if the solid line(s) hit
an extension of a gray first square they stop: nothing is
added to the row. When the first square is black, the
solid line(s) continue through the extension of the it and
add to the end of the row. The lines that come from the
upper right portion of the figure interact with the solid
lines causing them to stop and create a column. The
dotted lines tell the columns when they are the farthest
left cell in the row. Wolfram, page 679.

cell in the cyclical tag machine is represented by 3,000 horizontal cells

in rule 110. At this range the objects that Wolfram selects can be seen

to interact in the same way that the information lines do. Rule 110

is thus able to represent every iteration of the cyclical tag machines

computation, effectively an emulation.

This process can be generalized for proving the computational uni-

versality of any machine or program. First, one must find a scheme

for setting up initial conditions and decoding output so that it can

be seen to emulate some other machine known to be universal. The



CELLULAR AUTOMATA AND APPLICATIONS 17

scheme can be as complicated as necessary without being universal it-

self (or its use in proving universality is insufficient). Since there are

a seemingly infinite number of possible schemes, finding one that can

prove computational universality is quite challenging. Proving that a

machine or program is not universal, however, is even more challenging

because every possible scheme must be checked.

4. The Threshold of Universality

The concept of computational universality implies that once a certain

level of complexity is reached, there are no gains in computational abil-

ity. This is specifically implied by the ability of the universal Turing

machine to emulate behavior of Turing machines with more compli-

cated machine tables than its own. The level of complication at which

universality is reached is called the threshold of universality. Tradi-

tional intuitions, developed during the computer revolution place this

threshold to be quite high. We assume that a machine capable of such

complex computation is either made of complicated parts or simple

parts put together in a very complex way. The results of section 3

show in fact that one of the 256 simplest cellular automata is univer-

sal. The threshold is in fact surprisingly low. Although the cellular

automaton rule 110 is the only example in this paper, there are many



18 GAVIN ANDREWS

other types of machines and programs in A New Kind of Science that

display universal computation and are just as simple. Almost all of

these examples fall into Class IV behavior, while a small handful are

of Class III.

The threshold of universality and a number of important similari-

ties between simple programs and systems in nature are the fuel for

Wolfram’s Principle of Computational Equivalence. The theoretical

principle is based around one key idea: “that all processes, whether

they are produced by human effort or occur spontaneously in nature,

can be viewed as computations.” Cellular automata and other such

programs are not only capable of the levels of complexity seen in spon-

taneous natural processes, but also show striking visual similarities.

Both natural systems and programs exhibit similarities in behavior

while differing significantly in biological base and underlying structure.

Wolfram frames these similarities of behavior seen among natural pro-

cesses, as well as those between programs and natural processes in

terms of computation.

The second part of the principle asserts that all systems that do not

appear obviously simple, are of equivalent computational sophistica-

tion. Essentially, Wolfram theorizes all systems in the universe that

exhibit Class III or Class IV behavior are computationally universal



CELLULAR AUTOMATA AND APPLICATIONS 19

and thus fundamentally equivalent. If all a system does is compute its

own behavior, and the system is computationally universal, then it can

reproduce any other systems behavior, and all systems are equivalent.

Key to this argument is of course that the threshold of universality is

reached by all systems producing Class III and Class IV behavior.

Challenges to the principle can come from two angles. The first is

that there exist processes more complicated than what is seen in univer-

sal programs, such as continuous processes or human thought. Wolfram

responds the first example by asserting that it is just as challenging to

emulate continuous systems with discrete models as it is to emulate

discrete systems with continuous models. This implies that the levels

of complexities are similar, if not the same. Wolfram responds to the

human thought issue by expressing his belief that advances in neuro

science will lead to an understanding of the brain in terms of simple

computational programs.

The other challenge is that there exist a number of Class III processes

and programs such as rule 30, that are not universal. This is a good ar-

gument, but the discussion in 3.2 shows that the process of disproving

the presence of universality is harder than proving it. Wolfram specu-

lates that many such Class III rules will be shown to computationally

universal in the future.



20 GAVIN ANDREWS

The implications of the Principle of Computational Equivalence are

astounding. Essentially, every process we see around us is a system

carrying out a computation, that for the most part (with the exception

of the obviously simple systems) is of the same level of computational

complexity. The only difference between the computation of cellular

automata and natural processes is that we do not know the rules that

the natural processes follow. The principle of computational equiv-

alence is so broad in scope, it carries implications for almost every

field from evolution, to physics and mathematics, to psychology and

philosophy.

5. Modeling With Cellular Automata

5.1. The Process of Creating a Model. The Principle of Compu-

tational Equivalence has very profound implications for almost every

field of scientific and social inquiry. If it is true, one would predict that

using c.a.’s or other such programs to model natural processes would be

very successful. There is one important concept that makes this issue

more complicated, the concept of “computational irreducibility.” This

means that the behavior of a not-obviously-simple program can not be

reduced to a simpler computation (such as a mathematical equation).

Essentially, there “exists” no equation that can predict the behavior of



CELLULAR AUTOMATA AND APPLICATIONS 21

a system at each time step without being as computationally intensive

as letting the system compute its own behavior. There are no sim-

pler or lower dimensional representations of these systems. All systems

that are complicated enough to break the threshold of universality are

computationally irreducible.

Models, however, are simplified representations of natural processes.

They condense the information of a process for the purposes of pre-

diction or of understanding behavioral mechanisms. If the principle

of computational equivalence is correct then no non-simple process can

truly be modeled because of computational irreducibility. No reduction

of information is possible.

On the other hand, if all natural processes are computations, we

should be able to emulate behavior exactly with another universal sys-

tem. All one has to do is determine all the information produced by

a system at each time step and find an appropriate emulation scheme.

Wolfram argues that similarities in the behavior of systems following

different governing mechanisms negates the importance of basic ele-

ments: whether they are black and white cells, molecules or particle,

there is no computational difference.

There exists a middle ground, however, between not being able to

make a model and emulating behavior exactly. Although emulation



22 GAVIN ANDREWS

(through the process mentioned in section 3.2) of natural processes is

practically impossible, and reduction of computational information is

impossible, there is still modeling potential at the visual level. Af-

ter viewing the behavior of a large number of simple programs and

machines, visual similarities to natural processes such as leaf growth,

pigmentation, crystal growth, shell growth are easily identified. The

connecting model is created by selecting a specific feature(s) of a pro-

cess, and adjusting the parameters of c.a. or other program until its

behavior matches.

This is the only way to model using c.a.’s because computational

irreducibility does not allow for many other forms of analysis. Anal-

ysis from traditional mathematics all require some form or reduction

of information. Analysis specifically developed to deal with c.a.’s and

other such programs is still in the early stages. Even with these draw-

backs, the c.a. models in the following section do show some remarkable

results.

5.2. Models. One such c.a. model developed by Wolfram is that of

snowflake growth. The features selected for modeling include the gen-

eral hexagonal shape and the mechanism of growth that creates the

intricate patterns within the hexagon. The mechanism is hypothesized

to occur because water particles give off a small bit of heat when they



CELLULAR AUTOMATA AND APPLICATIONS 23

change from liquid to solid form. When particles add to the crystal

during growth, heat is released prohibiting future growth in the area

for a time. This process results in the gaps in between parts of the

snowflake.

The c.a. model of this process is set on an infinite two dimensional

hexagonal plane to ensure the hexagonal feature of the overall shape.

The cells are either black or white and only adjacent cells are con-

sidered to be in a cells neighborhood. The updating rules (in order

to incorporate the process of heat release mentioned above), allow a

white cell to turn black if only one cell in its neighborhood is black.

If there are more than one black cells in the neighborhood, the white

cell remains white. Figure 10 shows both an actual snowflake and iter-

ation 24 of the c.a. model. Although the images are not identical, the

selected visual features have been successfully captured.

Another model developed in A New Kind of Science is that of fluid as

it interacts with a barrier at various speeds. The features of fluid flow

being modeled are the various patterns of eddy formation as otherwise

undisturbed fluid encounters a solid object. At low speeds the fluid

slides around the obstruction with little alteration. As speed increases,

the fluid directly behind the obstruction moves slower than the rest

creating a pair of eddies behind object. As the speed of the fluid



24 GAVIN ANDREWS

(a) (b)

Figure 10. A picture of a snow flake and the 24th iter-
ation of a two color hexagonal c.a. The updating rules of
the c.a. allow a white cell to turn black if only one cell
in its neighborhood is black. If there are more than one
black cells in the neighborhood, the white cell remains
white. Wolfram, pages 370-371.

Figure 11. This is a picture of a vortex street disturbed
by an obstacle. Wolfram, page 377.

continues to increase, the eddies begin to travel with the fluid. New

eddies occur in the original locations and a trail of connecting eddies

appears behind the object, see Figure 11.

The c.a. model of this process is also set on an infinite plane of hexag-

onal cells. Each hexagon is broken into six equilateral triangles. The



CELLULAR AUTOMATA AND APPLICATIONS 25

Figure 12. This is a picture of the liquid dynamic
model at the most basic level. The fluid flow is from left
to right. Also shown are the updating rules. Wolfram,
page 378.

lattice of cells in this c.a. serve as a frame work for thousands of small

vectors that represent water molecules. See Figure 12 for the updating

rules and an iteration including the top end of the obstruction. The

rules determine how vectors will leave a vertex based on their incom-

ing direction and quantity. In the model, new vectors are continually

added to the plane from the left. The frequency at which they are

added represents the speed of the fluid being modeled.

The density of the vectors is 1/6th of the maximum which Wolfram

equates to a Reynolds number of 100. The results are strikingly similar

to fluid flow of this density.



26 GAVIN ANDREWS

Figure 13. The three images above are all the same
c.a., but at iterations 1,000, 4,000, and 7,000, from top
to bottom. Each line vector is an average velocity vector
of a 20X20 cell black. The vectors enter from the left
in a regular way with a frequency that represents 0.4 of
maximum speed. Wolfram, page 380.

Both of these models are pretty successful in capturing the selected

features of the natural processes. Many pressing questions remain how-

ever. Such as: How do I compare the accuracy of this model to another

of the same process? Does this model have any predictive capabilities?



CELLULAR AUTOMATA AND APPLICATIONS 27

and, What does this model actually tell us about the natural process?

These questions have no answers because of the limited forms of anal-

ysis available for programs of this type.

6. Conclusion

Stephen Wolfram’s research on the behavior of simple programs and

the concept of computational universality have great significance for the

field of computer science. Traditional assumptions about the structural

complexity required of a computationally universal system have been

proved false, warranting continued study of the phenomenon. Besides

adding to the annals of computer science, the results of Wolfram’s

research also shows potential for computer based technology.

The Principle of Computational Equivalence is where the conclu-

sions about the nature of computation and complexity are applied to

systems other than those existing inside of a computer. All that is

learned about computational processes and the threshold of universal-

ity is hypothesized to be present in every natural system in the universe.

The principle is both incredibly broad and profound, specifically when

one carries out the logical implications held in the principle for philos-

ophy, physics, evolutionary biology and psychology. The impetus for



28 GAVIN ANDREWS

the principle comes from the striking similarities between various nat-

ural processes and behavior seen in computational systems. There is

no question that the modeling of natural processes with computational

systems supports the principle. The evidence is not sufficient for proof

however. The insufficiency of the evidence is a product of the shortage

of analytical tools available for studying computationally irreducible

programs. There is currently no way to concretely relate these types

of programs to traditional mathematics.

In the future, we will find the Principle of Computational Equiva-

lence to be either correct, incorrect, or logically beyond proof. The

result will depend on the issue of analysis discussed above. If no form

of analysis arises that can create a more concrete connection between

natural systems, computational systems and traditional mathematics,

the principle will remain unprovable and understood only in its own

terminology.

Regardless of the outcome,A New Kind of Science is a landmark

study of the nature of complexity and randomness.



CELLULAR AUTOMATA AND APPLICATIONS 29

References

[1] Wolfram, Stephen. A New Kind of Science. Champaign, IL: Wolfram Media

Inc., 2002.

[2] Davis, Martin. The Universal Computer: The Road from Leibniz to Turing.

New York: Norton, 2000.


