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Abstract. Computed Tomography (CT) and other radial imaging techniques

are vital to the practice of modern medicine, allowing non-invasive examination
of the inner workings of the human body. However, raw CT data must be

transformed in order to become diagnostically relevant. This project examines

raw CT data, modeled by the Radon transform, and methods of inversion via
unfiltered backprojection, Fourier transforms, and filtered backprojection (the

inverse Radon transform). We demonstrate this process through examples of

“raw data” and inversion, with a focus on the influence of discrete data sets
of different sizes on inversion quality.

1. Introduction

The study of medical imaging has led to techniques vital to the practice of
medicine, such as x-ray imaging, computed tomography (CT) scans, magnetic res-
onance imaging, and a variety of other radiological imaging techniques. Such tech-
niques allow the examination of the internal condition of the body without the
use of invasive surgical procedures. Tomography, or slice imaging, represents a
subset of these techniques, notably x-ray imaging and CT scans, used to translate
two-dimensional external measurements into a reconstruction of three-dimensional
internal structure. This investigation will focus on CT scans, although the mathe-
matics of CT scans are very similar to those used in other types of medical imaging.
CT scans are of particular practical interest because they are useful in diagnosing
skeletal damage, cancers, and vascular diseases. They can also be used to guide
surgery, biopsy, and radiation therapy in real time.

Many of the discussions found in this paper are adapted from Charles Ep-
stein’s Introduction to the Mathematics of Medical Imaging [1], Peter O’Neil’s Ad-
vanced Engineering Mathematics [2], and Yves Nievergelt’s Elementary Inversion of
Radon’s Transform [3]. These publications, particularly [1], also represent valuable
sources for those desiring further information on these topics.

1.1. X-Ray Imaging. X-ray imaging relies on the principle that an object will
absorb or scatter x-rays of a particular energy in a manner dependent on its com-
position, quantified by the attenuation coefficient µ. The attenuation coefficient µ
of a substance is a function in R3 dependent on a variety of factors, but primarily
reflective of the electron density of that substance. Therefore, denser substances
and substances containing elements with many electrons will have higher attenua-
tion coefficients. This helps explain why bone, which contains high percentages of
calcium (20 electrons), potassium (19 electrons), phosphorous (15 electrons), and
magnesium (12 electrons), has a much higher attenuation coefficient than soft tis-
sue, which is made up primarily of carbon (6 electrons), nitrogen (7 electrons), and
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Figure 1. A 2D diagram of a CT scanner. The CT scanner is
made up of a point-source emitter and film that rotate around
an object of interest, imaging the object in 2D slices and then
compiling these slices into a 3D rendering of the object. Image
from [1].

oxygen (8 electrons) [1]. Air is considered to have an attenuation coefficient of zero
for simplicity of calculation, so the attenuation coefficient disappears outside the
body.

In practice, Hounsfield units–attenuation coefficients normalized to the attenu-
ation coefficient of water–are used in favor of attenuation coefficients. This is due
to the fact that these units are suited to the examination of organisms primarily
composed of water, e.g., humans. The Hounsfield unit of a tissue is defined by

Htissue =
µtissue − µwater

µwater
× 1000. (from [1])

Although this examination will focus on the mathematics of the attenuation
coefficient itself, it is important to consider the practical ramifications represented
by the Hounsfield unit representation of particular tissues. The typical clinical
range of a CT scan, between air and bone, is approximately 2000 H [1]. Soft tissue,
the primary target of clinical investigation, represents a very small fraction of this
range, meaning that CT scans must be extremely sensitive in order to be clinically
useful.

1.2. CT Scanning. Computed tomography scanning is essentially an extrapola-
tion of the concept of an x-ray. Instead of taking a single x-ray from a single
perspective, a CT scan rotates a point source of x-rays around a body to be im-
aged. This exposes film on the opposite side of the object. By making calculations
from the level of exposure (density) of the film, one can determine line integrals of
the attenuation coefficient µ through the object. Taking the calculations from a
full rotation, it is possible to reconstruct the 2D slice of the object. Compilation of
multiple slices allows for 3D reconstruction of the object.



MATHEMATICS OF MEDICAL IMAGING 3

Essentially, the mathematics of CT scanning involves two problems. In the
forward problem, we model the data obtained from real-world CT scans using the
Radon transform. The Radon Transform allows us to create “film images” of objects
that are very similar to those actually occurring in x-rays or CT scans. The inverse
problem allows us to convert Radon transforms back into attenuation coefficients
using the inverse Radon transform–to reconstruct the body from a CT scan.

1.3. Thesis Objectives. This thesis addresses both the forward and inverse prob-
lems of medical imaging and the Radon transform. Section 2 examines the parametriza-
tion and definition of the Radon transform, showing how we obtain the “mock CT”
transform data by applying the Radon transform to known functions. A simple in-
version technique called unfiltered backprojection–and its drawbacks–are examined
in Section 3. Section 4 begins a discussion of another common data transform called
the Fourier transform, which is linked to the Radon transform by the Central Slice
Theorem discussed in Section 5. Sections 6 and 7 address methods of applying the
Fourier transform to discrete, real-world data–the discrete Fourier transform and
the sampled Fourier transform, respectively. An inversion formula for the Radon
transform is presented and proved with calculus in Section 8. Section 9 presents
a simple “body” as an example of moving through the process of Radon trans-
form/CT data reconstruction and shows the effect of different levels of discrete
data on reconstructions. The paper concludes and presents possibilities for further
exploration in Section 10.

2. The Radon Transform

In order to work in the circular geometry of CT scans, it is helpful to parametrize
lines ax+by = c in R2 to a set of oriented lines with radial parameters `t,θ in R×S1

(see figure 2). In medical imaging, these lines are representative of the trajectories
of x-ray beams entering a body. Consider the general line in R2

(1) ax+ by = c,

where a, b, and c are constants. We then have

a√
a2 + b2

x+
b√

a2 + b2
y =

c√
a2 + b2

.

The first two coefficients,
(

a√
a2+b2

, b√
a2+b2

)
, define a point on the unit circle. Let

θ be the angle corresponding to that point on the unit circle, so

θ = cos−1
(

a√
a2 + b2

)
.

Then cos θ = a√
a2+b2

and sin θ = b√
a2+b2

. This parametrization has an intrinsic

repetitive quality; the angle θ can only take on values of [0, π) before repeating
previously described lines. Let t be the distance from the origin to the line ax+by =
c along the angle θ. Then the line can also be described as the set of solutions (x, y)
to the inner product

t = 〈(x, y), (cos θ, sin θ)〉 = 〈(x, y), ω〉.

Therefore, t is equal to the right side of equation (1). Notice that our definitions
of t and θ also give us a point on the line, (t cos θ, t sin θ), where a line at angle θ
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Figure 2. The parametrization of lines ax+ by = c to lines `t,θ in R2.

intersects ax+ by = c. This intersection is a right angle, because while the slope of
the line ax+ by = c is −ab , the tangent of θ is

tan θ =
sin θ

cos θ
=
b

a
.

Let the vector ω = 〈cos θ, sin θ〉, perpendicular to the line ax+ by = c, and let the
vector ω̂ = 〈− sin θ, cos θ〉 be parallel to this line. We can therefore create a vector
equation in terms of t and θ for the line,

`t,θ = tω + sω̂

= 〈t cos θ, t sin θ〉+ s〈− sin θ, cos θ〉,

where s ∈ R. This line is the same as the line ax+ by = c, but the parametrization
is in terms of an affine parameter t and the angular parameter θ, making it easier
to determine a set of lines emanating from or passing through a single point.
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Figure 3. The piecewise-defined function g.

Definition 2.1. Let f be some function in R2, parametrized over the lines `t,θ.
The Radon transform Rf(t, θ) is defined as

Rf(t, θ) =

∫
`t,θ

fds =

∫ ∞
−∞

f(tω+sω̂)ds =

∫ ∞
−∞

f(t cos θ−s sin θ, t sin θ+s cos θ)ds.

This definition describes the Radon transform for an angle θ. These discrete-θ
Radon transforms can be combined, taking the integral of a function f over all lines
`t,θ in R×S1. For our purposes, it accurately models the data acquired from taking
cross-sectional scans of an object from a large set of angles, as in CT scanning, and
its inverse can be used to reconstruct an object from CT data.

To illustrate this process, consider the following simple example function

g(x, y) =

 1 (x− 1)2 + y2 ≤ 1
1 (x+ 2)2 + y2 ≤ 1

4
0 everywhere else,

shown in figure 3.
Taking the Radon transform R for discrete values of θ, we acquire a set of “line

profiles” of the intensity of g at an angle perpendicular to the angle θ (see figure 4).
These profiles are perpendicular due our initial parametrization, in which the line
of interest `t,θ is perpendicular to the vector 〈cos θ, sin θ〉.

The Radon transform R of the function g, plotted over all values of t and θ, can
be seen in figure 5. This image represents a collection of all of the possible discrete
Radon transforms (such as those shown in figure 4), where the axes represent the t
and θ values and the color brightness represents the intensity/density of the function
(the vertical scale of figure 4) at a particular point.

3. Unfiltered Backprojection

The Radon transform is helpful to tomography applications such as CT because
it can model the data originally obtained from such scans. However, such data is
not immediately applicable to diagnostic applications because it does not directly
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Figure 4. Radon transform R(g) of the piecewise-defined func-
tion g at the angles θ = 0 (upper left), θ = π

3 (upper right), θ = π
2

(lower left), and θ = π (lower right). Note that in this parametriza-
tion, the angle θ is perpendicular to the angle of the line passing
through the object. Image created using Maple.

resemble the object being imaged. A method of recreating the original image (in
the case of the Radon transform itself, the original function) with a high degree of
specificity and veracity is therefore required in order to apply tomographic tech-
nologies in the real world. Perfect reconstruction via abstract inversion is possible
for continuous data (i.e., functions) but the finite (discrete) data available in the
real world allows for only estimated reconstructions. Thus most work for CT and
other real-world applications focuses on improving these estimates.

An initially appealing method is unfiltered backprojection, which takes the av-
erage values of the function along each line and “smears” or projects them back
over the line in order to create an image.
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Figure 5. The Radon transform of the function g over all values
of t and θ. The brightness of the image represents the “density”
of the function g at a particular point. Image created using MAT-
LAB.

Definition 3.1 (from [1]). Let f be some function in R2, parametrized over the
lines `t,θ. The unfiltered backprojection B [f(t, θ)] is defined as

B [f(t, θ)] =
1

2π

∫ 2π

0

Rf(t, θ)dθ.

Unfiltered backprojection is a simple and logical computation, but not a faithful
representation of f , as can be observed in the graphs of the two-circle example func-
tion g and its unfiltered backprojection in figure 6. The unfiltered backprojection
retains the basic characteristics of g, but it loses contrast and introduces imag-
ing artifacts (i.e., radial blur). This is not particularly problematic for a simple,
high contrast image like the example function g. However, in medical applications
where the areas of interest are likely soft tissues with highly similar attenuation co-
efficients, loss of contrast and introduction of imaging artifacts would likely render
an image completely useless. Therefore unfiltered backprojection is not a viable
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Figure 6. The example function g (left) and its unfiltered back-
projection (right). Backprojection created using MATLAB.

solution to the problem of inverting the Radon transform for medical imaging ap-
plications.

As unfiltered backprojection’s lack of specificity renders it unusable for medical
imaging applications, we must examine other methods for inverting the Radon
transform. The Radon transform is closely related to the Fourier transform, an
extensively studied method whose inverse is well-described, by the Central Slice
Theorem. We will introduce the Fourier transform before exploring this relationship
further. Derivations and notation for this section will closely follow [2].

4. Fourier Transform Derivation

Suppose a function f is absolutely integrable, that is, that
∫∞
−∞ |f(x)|dx con-

verges and f is piecewise smooth on every interval [−L,L]. Then the Fourier series
for f on this arbitrary interval is

FS[f(υ)] =
1

2L

∫ L

−L
f(υ)dυ +

∞∑
n=1

(
1

L

∫ L

−L
f(υ) cos

(nπυ
L

)
dυ

)
cos
(nπx
L

)
+

+

∞∑
n=1

(
1

L

∫ L

−L
f(υ) sin

(nπυ
L

)
dυ

)
sin
(nπx
L

)
.

To simplify these equations, let ωn = nπ
L and ωn − ωn−1 = π

L = ∆ω, so that
ω becomes angular frequency and conveniently absorbs the angular terms of the
Fourier series. Then the Fourier series of f becomes

FS[f(υ)] =
1

2π

(∫ L

−L
f(υ)dυ

)
∆ω +

1

π

∞∑
n=1

(∫ L

−L
f(υ) cos(ωnυ)dυ

)
cos(ωnx)∆ω +

+
1

π

∞∑
n=1

(∫ L

−L
f(υ) sin(ωnυ)dυ

)
sin(ωnx)∆ω.(2)

In order to get an approximation for the whole real line, let us examine the Fourier
series of f as L approaches infinity. Letting L approach infinity causes ∆ω to



MATHEMATICS OF MEDICAL IMAGING 9

approach zero. The first component of equation (2) will therefore also approach
zero, that is,

as ∆ω → 0,
1

2π

(∫ L

−L
f(υ)dυ

)
∆ω → 0,

because we assumed that f was absolutely convergent. Therefore, equation (2)
approaches

1

π

∫ ∞
0

[(∫ ∞
−∞

f(υ) cos(ωυ)dυ

)
cos(ωx) +

(∫ ∞
−∞

f(υ) sin(ωυ)dυ

)
sin(ωx)

]
dω,

as L approaches infinity. This is the Fourier integral of f on the real line. If f is
continuous at x, this integral converges to f(x). If there is a jump discontinuity in
f , the integral will return the average of the values of the function lim

x→a−
f(x) and

lim
x→a+

f(x) on either side of the jump. Using trigonometric identities, the Fourier

integral can also be expressed as

FI[f(υ)] =
1

π

∫ ∞
0

∫ ∞
−∞

f(υ) cos(ω(υ − x))dυdω.

The complex form of the cosine function in this case is

cos(ω(υ − x)) =
1

2

(
eiω(υ−x) + e−iω(υ−x)

)
.

If we insert this complex form into the Fourier integral, we eventually find that

FI[f(υ)] =
1

2π

∫ ∞
−∞

Ceiωxdω,

where C =
∫∞
−∞ f(t)e−iωtdt. This is the complex Fourier integral of f , and its

coefficient C is the Fourier transform of f , also written as f̂(ω).

Definition 4.1. Let f(x) be an absolutely integrable function with frequency ω.

Then the Fourier transform f̂(ω) (also written as F [f(x)](ω)) is defined as

f̂(ω) =

∫ ∞
−∞

f(x)e−iωxdx.

Definition 4.2. Let F (ω) be an absolutely integrable function. Then the inverse
Fourier transform f̌(x) (also written as F−1[F (ω)](x)) is defined as

f̌(x) = F−1[F (ω)](x) =
1

2π

∫ ∞
−∞

f̂(ω)eiωxdω.

Consider the case where F (ω) is an absolutely integrable Fourier transform of
a function that is also absolutely integrable. If both functions satisfy estimates of
the form

|F (ω)| ≤ Q

(1 + ||ω||)1+δ
for a δ > 0,

|f(x)| ≤ P

(1 + ||x||)1+ε
for an ε > 0,

where P and Q are upper limits on both the functions and their derivatives, then
the inverse Fourier transform of the Fourier transform F (ω) of f(x) will equal the
original function f(x),

ˇ̂
f(x) = F−1 [F [f(x)](ω)] (x) = f(x).
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In order to work in two-dimensional CT geometry, it is helpful to include an
extension of the Fourier transform into two dimensions. Its derivation is similar, but
considers two angular frequencies r and ω, operating in the two different directions
of the plane.

Definition 4.3. Let f(x, y) be an absolutely integrable function. Then the two-

dimensional Fourier transform f̂(r, ω) is defined as

f̂(r, ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−irω·〈x,y〉dxdy.

5. Central Slice Theorem

Having defined both the Radon transform and the Fourier transform, we can
now explore the Central Slice Theorem, which connects the two transforms. This
discussion closely parallels that found in [1].

Theorem 5.1. Let the natural domain of R be defined as those functions which
are piecewise continuous and satisfy an estimate of the form

|f(ξ)| ≤ Q

(1 + ||ξ||)1+ε
for an ε > 0,

where ξ = tω + sω̂ and Q is an upper limit on both the Radon transform and its
derivative. Let f be an absolutely integrable function in this domain. For any real
number r and unit vector ω = 〈cos θ, sin θ〉, we have the identity∫ ∞

−∞
Rf(t, θ)e−itrdt = f̂(r, ω).

Proof. Begin by substituting the definition of R into the first statement of the
identity to obtain∫ ∞

−∞
Rf(t, θ)e−itrdt =

∫ ∞
−∞

∫ ∞
−∞

f(tω + sω̂)e−itrdsdt,

where ω̂ = 〈− sin θ, cos θ〉, the vector perpendicular to ω. Performing the change of
variables ξ = tω + sω̂ we find∫ ∞

−∞

∫ ∞
−∞

f(tω + sω̂)e−itrdsdt =

∫
R2

f(ξ)e−itrdξ

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−irω·〈x,y〉dxdy

= f̂(r, ω). �

Therefore, the two-dimensional Fourier transform f̂(r, ω) is the one-dimensional
Fourier transform of Rf(t, θ).

In order to better understand how the two-dimensional Fourier transform f̂(r, ω)
is equivalent to the one-dimensional Fourier transform of Rf(t, θ), let us consider
an example. Let θ = 0 so that ω = (cos θ, sin θ) becomes the unit vector (1,0) and



MATHEMATICS OF MEDICAL IMAGING 11

ω̂ is the unit vector (0,1), perpendicular to ω. The Radon transform Rf(t, θ) is
then

Rf(t, θ) =

∫ ∞
−∞

f (tω + sω̂) ds

=

∫ ∞
−∞

f (t · (1, 0) + s · (0, 1)) ds

=

∫ ∞
−∞

f (t, s) ds.

Then the Fourier transform of Rf(t, θ) is∫ ∞
−∞

Rf(t, θ)e−irtdt =

∫ ∞
−∞

∫ ∞
−∞

f(t, s)e−irtdsdt,

where r is a constant. Since the inner product 〈rω, (t, s)〉 = rt, the last statement

is the definition of the two-dimensional Fourier transform f̂(r, ω).

6. Discrete Fourier Transform

In medical imaging, we are not working with continuous inputs (e.g., functions or
infinite data sets) but with discrete ones (e.g., real-world, finite data). Therefore we
cannot directly apply the Central Slice Theorem and Fourier transform, because it
applies to continuous data. We need a method for modeling the Fourier transform
of discrete data: the discrete Fourier transform.

Definition 6.1 (from [2]). (from [1]) Let u = {uj}N−1j=0 be a sequence of N complex

numbers. Then the N-point discrete Fourier transform D[u] is given by

D[u](k) = Uk =

N−1∑
j=0

uje
−2πijk/N ,

where k = 0,±1,±2, ...

Theorem 6.1. Let D[u](k) be an N -Point discrete Fourier transform. Then the
inverse discrete Fourier transform can be used to recover the sequence u =
{uj}N−1j=0 of N complex numbers upon which D[u](k) is based. Each uj in the se-
quence is given by

uj =
1

N

N−1∑
k=0

Uke
2πijk/N ,

for j = 0, 1, ..., N − 1.

In order to prove this assertion, let us first set a variable W = e2πi/N . Observe
that W has the properties that

WN = 1 and W−1 = e−2πi/N .

This makes W a very convenient substitution to use in the Inverse discrete Fourier
transform, as

1

N

N−1∑
k=0

Uke
−2πijk/N =

1

N

N−1∑
k=0

UkW
−jk.
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We can make a substitution for Uk using our initial definition of theN -Point discrete
Fourier transform in definition 6.1, giving us

1

N

N−1∑
k=0

UkW
−jk =

1

N

N−1∑
k=0

(
N−1∑
m=0

ume
−2πimk/N

)
W−jk.

The variable W once again comes in useful as a substitution here, allowing us to
convert the equation to

1

N

N−1∑
k=0

(
N−1∑
m=0

ume
−2πimk/N

)
W−jk =

1

N

N−1∑
k=0

N−1∑
m=0

umW
mkW−jk.

We can then change the order of summation to isolate our W terms, as in

(3)
1

N

N−1∑
k=0

N−1∑
m=0

umW
mkW−jk =

1

N

N−1∑
m=0

um

N−1∑
k=0

WmkW−jk.

This equation can be simplified by examining the properties of the W terms of the
last sum. First observe that

WmkW−jk = e−2πimk/Ne2πijk/N = e−2πi(m−j)k/N = W (m−j)k.

The value of this final term depends on the values of m and j. If, for a given j,
m 6= j, then

N−1∑
k=0

WmkW−jk =

N−1∑
k=0

W (m−j)k =

N−1∑
k=0

(
Wm−j)k .

This is recognizable as the finite sum of a geometric series, and we can therefore
apply the equation for the finite sum of a geometric series,

n∑
i=0

αi =
1− αn+1

1− α
,

to find that
N−1∑
k=0

(
Wm−j)k =

1−
(
Wm−j)N

1−Wm−j .

Observe that from our definition of W ,
(
Wm−j)N = e−2πi(m−j) = 1 (because m−j

must be some integer value) and Wm−j = e−2πi(m−j)/N 6= 1. Therefore, when
m 6= j

N−1∑
k=0

WmkW−jk =
1−

(
Wm−j)N

1−Wm−j = 0.

If m = j, however, then

N−1∑
k=0

WmkW−jk =

N−1∑
k=0

W jkW−jk =

N−1∑
k=0

1 = N.

Therefore we only need to keep the term when r = j in the summation with respect
to r in equation (3), giving us

1

N

N−1∑
m=0

um

N−1∑
k=0

WmkW−jk =
1

N
uj

N−1∑
k=0

W jkW−jk =
1

N
ujN = uj

and thereby proving the formula for the inverse N -Point discrete Fourier transform.
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7. Sampled Fourier Transform

The discrete Fourier transform allows us to approximate the Fourier coefficients
of a periodic function f . We can apply this knowledge, and specifically the knowl-
edge of the inverse N -point Fourier transform, to approximate the sampled partial
sums of the Fourier series of a periodic function like the Radon transform, thereby
modeling the Fourier series of the function with a discrete set of samples.

To derive the sampled Fourier transform, let us first consider the partial sum
over the interval [0, p]

(4) SM (t) =

M∑
k=−M

dke
2πikt/p.

where dk are the discrete f̂ coefficients and M are the summation endpoints. Sub-
divide the interval [0, p] into N subintervals and choose the sample points tj = jp

N .

Form an N -point sequence of sampled points u =
{
f( jpN )

}N−1
j=0

. Drawing on what

we now know from the N -point Fourier transform and its inverse, we can estimate

dk ≈
1

N
Uk where Uk =

N−1∑
j=0

f

(
jp

N

)
e−2πijk/N .

In order to keep the sampled Fourier transform approximation within tolerable
error ranges, we must constrain k, the number of Fourier coefficients estimated.
This is necessary because while Uk is periodic of period N , the values of the discrete

f̂ coefficients dk are not. For some k, it is possible that Uk can be exactly equal to
dk, but due to the different periodicity properties this cannot hold true for all k,
and the divergence from the nonperiodic dk values will become larger as k increases.
Therefore, we constrain |k| to be less than or equal to N

8 , an empirically derived
constraint that approximates dk to within an acceptable tolerance for most science
and engineering applications [2].

Due to the constraint that |k| ≤ N
8 , we set the bounds M on k in equation (4)

such that M ≤ N
8 , so

SM (t) ≈
M∑

k=−M

1

N
Uke

2πikt/p.

If we sample this sum at our partition points tj = jp
N , then

SM

(
jp

N

)
≈ 1

N

M∑
k=−M

Uke
2πijk/N .

This sum is the N -point inverse discrete Fourier transform for some N -point se-
quence.

We can use the periodicity of theN -point discrete Fourier transform (Uk+N = Uk)
to find that

SM

(
jp

N

)
≈ 1

N

−1∑
k=−M

Uke
2πijk/N +

1

N

M∑
k=0

Uke
2πijk/N .
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Modifying the indices of summation, this becomes

(5) SM

(
jp

N

)
≈ 1

N

N−1∑
k=N−M

Uke
2πijk/N +

1

N

M∑
k=0

Uke
2πijk/N

The summations in equation (5) use the 2M+1 numbers UN−M , ...UN−1, U0, ...UM .

This method can be used to more generally approximate a Fourier series f̂(ω)

over a finite interval [0, 2πL]. Suppose that f̂(ω) can be approximated within an
acceptable tolerance, the definition of “acceptable” depending on application, by
an integral over the interval [0, 2πL], that is, that

(6) f̂(ω) =

∫ ∞
−∞

f(x)e−iωxdx ≈
∫ 2π

0

f(x)e−iωxdx.

If we subdivide [0, 2πL] into N subintervals of length 2πL
N and choose partition

points xj = 2πjL
N , where j = 0, 1, ..., N, then the last integral in equation (6) can

be estimated by

f̂(ω) ≈
N−1∑
j=0

(
2πjL

N

)
f

(
2πjL

N

)
e−2πijLω/N .

If we let ω = k
L , where k is any integer, then we find that

f̂

(
k

L

)
≈
N−1∑
j=0

(
2πjL

N

)
f

(
2πjL

N

)
e−2πijk/N .

This sampled Fourier transform is periodic of period N , but the actual values of

f̂
(
k
L

)
are not, and so we again set the restriction that |k| ≤ N

8 .

For example, consider the function

h(t) =

{
e−t for t ≥ 0,
0 for t < 0.

To approximate ĥ
(
k
L

)
with a sampled Fourier transform, we (arbitrarily) choose

L = 1, N = 27 = 128. The sampled Fourier transform of h is therefore given by
the equation

ĥ

(
k

L

)
≈ π

64

127∑
j=0

e−πj/64e−πijk/64.

Choosing a value of k such that k
L = 3, we can calculate this approximation to find

that

ĥ (3) ≈ π

64

127∑
j=0

e−πj/64e−πijk/64

≈ 0.12451− 0.29884i.(7)
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The Fourier transform of h(t) is

ĥ(ω) =

∫ ∞
−∞

h(ξ)e−iωξdξ

=

∫ ∞
0

e−ξe−iωξdξ

=
1− iω

1 + ω2

The Fourier transform for k = 3 is therefore

ĥ(3) =
1− 3i

10
= 0.1− 0.3i.

Comparing this to the result of the sampled Fourier series in equation (7), we can see
that these results are remarkably similar. We could achieve an even more precise

modeling of ĥ
(
k
L

)
by choosing a larger value for N , but the calculations would

require more time and computing power. Balancing between the precision of these
calculations and the time taken to achieve them is vital to their uses in science and
engineering, because too many calculations can quickly become prohibitive.

If we calculate the sampled Fourier series for a several values of k, it is possible

for us to make a graphical model of ĥ
(
k
L

)
. Figure 7 shows the Fourier transform

and the sampled Fourier series of h(t) for k = 0, ..., 15. The sampled Fourier series
are not in perfect agreement with the actual Fourier transform, but they do capture

the “general trend” of ĥ
(
k
L

)
.

8. The Radon Inversion Formula

The inverse Radon transform is a technique used to reconstruct a function on the
plane from its integrals over all lines in the plane. This provides a solution to the
problem of reconstructing an image of the body from CT scan data. Several meth-
ods for inverting the Radon transform exist, some of which use Fourier transforms,
the Central Slice Theorem, and functional analysis. However, in “Elementary In-
version of Radon’s Transform” ([3]) Yves Nievergelt demonstrates proofs of this
formula using only calculus and basic linear algebra, though the other mathematics
exist as deeper, tacit portions of the formula and proof.

In essence, this formula takes unfiltered backprojection a step further. Instead
of simply averaging the Radon transform over a line and “smearing” it to obtain
a result, the inverse Radon transform R−1 (also called “filtered backprojection”)
essentially applies an auxiliary filtering function, Γz, dependent upon t.

Definition 8.1 (from [3]). Given any integrable function F of t and θ, the trans-
form R* defines a function in x and y

R*F (x, y) :=
1

π

∫ π

0

F (x cos θ + y sin θ, θ) dθ.

The adjoint R*F (x, y) is equal to the average of F (t, θ) over the lines `t,θ passing
through the point (x, y).

The relationship between the Radon transform R and its adjoint R* is very
similar to that between the scalar product of vectors and a matrix and its transpose.
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Figure 7. The sampled Fourier series (black) and Fourier trans-
form (red) of the function h. Image created using Maple.

If we consider a continuous function f equal to zero outside some disc and an
integrable function F of t and θ, then

〈Rf, F 〉 = 〈f,R*F 〉.

Proof. First consider the inner product of the Radon transform R and a function
F , both of which are in the space of (t, θ), such that

〈Rf, F 〉 =
1

π

∫ π

0

∫ ∞
−∞

Rf(t, θ)F (t, θ)dtdθ.

Substituting in the definition of the Radon transform, find that

〈Rf, F 〉 =

∫ π

0

1

π

∫ ∞
−∞

F (t, θ)

∫ ∞
−∞

f(t cos θ − s sin θ, t sin θ + s cos θ)dsdtdθ.

Switch the order of integration to give

〈Rf, F 〉 =

∫ ∞
−∞

∫ ∞
−∞

1

π

∫ π

0

f(t cos θ − s sin θ, t sin θ + s cos θ)F (t, θ)dθdsdt.

Changing coordinates from (t, θ) back to (x, y) via the substitutions x = t cos θ −
s sin θ and y = t sin θ + s cos θ, the integral becomes

〈Rf, F 〉 =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)
1

π

∫ π

0

F (x cos θ + y sin θ, θ)dθdxdy.
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Substitute in the definition of the adjoint R* to find

〈Rf, F 〉 =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)R*F (x, y)dxdy = 〈f,R*F 〉,

thus exhibiting the equality between the inner product in the Radon transform
line integral coordinate system (t, θ) and an inner product in the traditional planar
coordinate system (x, y). �

In order to introduce the inversion formula for the Radon transform, first consider
a simple notational convention. For every fixed vector K = (κ, λ) in the plane, let
fK be the translation of f by −K. Therefore fK(x, y) = f(x+κ, y+λ). This latter
relationship also leads to the fact that

R(fK)(ξ) = Rf(ξ +K).

Proving this assertion requires the use of the Radon transform definition and our
new notation, as

R(fK)(ξ) =

∫ ∞
−∞

fK(t cos θ − s sin θ, t sin θ + s cos θ)dt

=

∫ ∞
−∞

f(κ+ t cos θ − s sin θ, λ+ t sin θ + s cos θ)dt = Rf(ξ +K).

In order to derive the inversion formula, we will first approximate the function
f(x, y) by its average over a small disk D(X, z) of radius z centered at X = (x, y).
By the continuity of f assumed in the Radon transform,

f(x, y) = lim
z→0

1

πz2

∫ ∫
D(X,z)

f(κ, λ)dκdλ.

Let γz be the function equal to 1
πz2 in the disk of radius z centered at the origin

D(0, z) and equal to zero outside this disk. Then

f(x, y) = fX(0, 0) = lim
z→0

1

πz2

∫ ∫
D(X,z)

fX(κ, λ)dκdλ = lim
z→0
〈fX , γz〉.

Suppose the existence of some function Γz of t and θ such that γz = R*Γz. Then

f(x, y) = lim
z→0
〈fX , γz〉 = lim

z→0
〈fX ,R*Γz〉 = lim

z→0
〈RfX ,Γz〉.

When expanded, the rightmost term provides us with a simple and useful formula
for the inverse Radon transform R−1 and proves that f is unique.

Definition 8.2 (from [3]). The inverse Radon transform R−1 recovers a func-
tion f from the Radon transform Rf of that function. This inversion is given by
the formula

f(x, y) = lim
z→0

1

π

∫ π

0

∫ ∞
−∞

Rf(t− x cos θ − y sin θ, θ)Γz(t)dtdθ.

We must now find a function Γz that satisfies γz = R*Γz. The function

Γz(t) =

 1/(πz2) for −z ≤ t ≤ z,
1
πz2

(
1− 1√

1−z2/t2

)
for |t| > z.

satisfies this condition. In order to to prove this, move into polar coordinates (ρ, φ),
performing the substitutions x = ρ cosφ and y = ρ sinφ. Here, we can distinguish
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between two cases: when ρ ≤ z and when ρ > z. Consider the former case first.
For a line `t,θ through a point X = (x, y),

[R*Γz](x, y) =
1

π

∫ π

0

Γz(x cos θ + y sin θ)dθ =
1

π

∫ π

0

dθ

πz2
=

1

πz2
= γz(x, y).

The next case, ρ > z, is slightly more complicated. Notice from its equation
that Γz is dependent only on t, and in fact on t2–it is independent of the angle θ.
Using this in conjunction with the fact that cos2 has a period of π, we can make
the substitution σ = θ − φ to find

[R*Γz](x, y) =
1

π

∫ π

0

Γz(ρ cosφ cos θ + ρ sinφ sin θ)dθ =
1

π

∫ π

0

Γz(ρ cosσ)dσ.

We can once again distinguish two cases: where |ρ cosσ| ≤ z and where |ρ cosσ| > z.

To simplify our integrals slightly, let β = cos−1
(
z
ρ

)
. Our first case is now where

β ≤ σ ≤ π − β, so

1

π

∫ π−β

β

Γz(ρ cosσ)dσ =
1

π

∫ π−β

β

1

πz2
dσ =

π − 2β

π2z2
.

In our second case, where 0 ≤ β or π − β < σ < π, we can make the substitution
sinσ =

√
1− z2/ρ2 sin ζ, so that∫ β

0

dσ√
1− z2/(ρ2 cos2 σ)

=

∫ π/2

0

dζ =
π

2

(
cos−1

(
sinσ√

1− z2/ρ2

)∣∣∣∣∣
β

0

 .

Using this substitution, we find that

1

π

∫ β

0

1

πz2

(
1− 1√

1− z2/ρ2 cos2 σ

)
dσ =

β − π/2
π2z2

=
1

π

∫ π

π−β

1

πz2

1− 1√
1−z2

ρ2 cos2 σ

 dσ.

If we add the three components of the second case (0 ≤ σ < β, β ≤ σ ≤ π − β,
and π − β < σ < π), we find that [R*Γz](x, y) = 0 = γz(x, y). Therefore, our
proposition is true and R*Γz = γz.

9. Example: A Simple “Body”

To show the process of a CT scan and reconstruction–the forward and inverse
problems associated with the Radon transform–let us consider a simple annulus
defined by

E(x, y) =

{
1 1 ≤ x2 + y2 ≤ 4
0 everywhere else.

This function is an annulus of height one centered at the origin. If we show E
with a binary coloring scheme, where white is equivalent to a value of E(x, y) = 1
and black is equivalent to a value of E(x, y) = 0, we obtain the image in figure 8.
The function E is representative of the “body” imaged in CT scanning. In true CT
imaging, the “body” function is an unknown. The known, experimental data in CT
scanning is the scan of the body–the Radon transform of the function. Therefore,
our example does not exactly represent the process of CT scanning and image
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Figure 8. The piecewise-defined function E.

reconstruction, because the initial body is a known entity from which we determine
the Radon Transform instead of the reverse.

The Radon transform of the function E is given by moving into our previously
described parametrization by setting x = t cos θ − s sin θ and y = t sin θ + s cos θ
and putting these new parameters into the Radon transform

RE(t, θ) =

∫ ∞
−∞

E(t cos θ − s sin θ, t sin θ + s cos θ)ds.

Performing this integration, we find that

RE(t, θ) =

 2
(√

4− t2 −
√

1− t2
)

for |t| ≤ 1

2
√

4− t2 for 1 < |t| ≤ 2
0 for 2 < |t|.

Graphing this over all values of t and θ yields the “film image” of the function E,
the raw data obtained from a CT scan of the “body” E, as seen in figure 9.

These graphs of the Radon transform model “raw” CT data obtained from a
body scan and illustrate the need for mathematical reconstruction. The Radon
transform for this simple function does not give a clear impression of what the
function E actually looks like, and makes it impossible to discern any features
significant to diagnostic use.

Therefore, in order to use the CT scan diagnostically, we must reconstruct the
“body” (the original function E) from the Radon transform in figure 9. If we
attempt to do this via unfiltered backprojection, we create the image in figure 10.
This reconstruction gives a general shape to the data, but it does not maintain any
sharp edges and would lose much of the data of a lower-contrast image. If we recall
from the introduction that most of the soft tissue imaged with CT differs by only a
small fraction (approximately 1%) of the range between air and bone (the “black”
and “white” of actual CT imaging) [1], we can see that this reconstruction is simply
not specific enough for real-world use.
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Figure 9. The Radon transform of the function E, representa-
tive of “film” data that would result from a CT scan of E. The
color scale represents the degree of attenuation of the beam (the
“density” of the function E). Image created using MATLAB.

In order to do this, we utilize the inverse Radon transform

E(x, y) = lim
z→0

1

π

∫ π

0

∫ ∞
−∞

RE(t− x cos θ − y sin θ, θ)Γz(t)dtdθ,

where Γz is given by

Γz(t) =

 1/(πz2) for −z ≤ t ≤ z,
1
πz2

(
1− 1√

1−z2/t2

)
for |t| > z.

Theoretically, this inversion formula could retrieve the exact function E and perform
a completely faithful reconstruction. However, this relies on having data from an
infinite number of angles θ, which is impossible in practice. Therefore, the quality
of our image reconstructions are highly dependent upon the amount of data we
obtain initially. Figure 11 shows how the reconstruction of our function E improves
significantly as more and more angles of data are taken. As we go up to 360 and
720 angles (taking measurements every half and quarter degree for a 180◦ arc,
respectively), the reconstruction is indistinguishable from our initial function E.
For a more complex function, it is possible that more angles would be necessary,
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Figure 10. The reconstruction of the function E using unfiltered
backprojection. Image created using MATLAB.

but this example illustrates the profound improvement in reconstruction as more
data is used.

10. Conclusions

The Radon inversion is crucial to modern medical imaging technology because it
provides the ability to make diagnostically useful reconstructions out of CT scans
and other radial imaging. In order to perform this inversion, it is important to
understand the mathematics of the forward Radon transform and its connection via
the Central Slice Theorem to the well-studied Fourier transform and its inversion.

Inversion of the Radon transform should be performed with the inverse Radon
transform (filtered backprojection) to avoid the blurring artifacts and lack of clarity
in unfiltered backprojection. Clarity is vital to an effective Radon reconstruction
because the main targets of CT investigation–soft tissues–are only subtly different.
The application of the inverse Radon transform must also take this issue into ac-
count, as the amount of discrete data collected by an initial CT scan has a profound
effect on the clarity of the resulting reconstruction.

An interesting problem for the present and future is how to balance a need for
spatial clarity for diagnostic usefulness while constraining patient radiation expo-
sure. This is not only a pragmatic question, but an ethical and mathematical one.
How much future risk should a patient be exposed to in order to treat a current ail-
ment? Mathematically, what methods can be used to reduce the level of radiation
exposure required to achieve the same levels of diagnostic accuracy? Current stud-
ies apply neural network techniques to create computer-assisted diagnostic tools [4].
Studies on a related technique, diffuse optical tomography, apply model reduction
and approximation error techniques to lower the number of discrete measurements
required for accurate reconstructions [5, 6]. Other investigations use algebraic re-
construction techniques to lower the computation required in CT reconstruction
[7]. These novel techniques all present interesting new perspectives on this problem
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Figure 11. Inverse Radon transform R−1(E) reconstructions of
the piecewise-defined function E using 18, (upper left), 36 (upper
right), 90 (middle left), 180 (middle right), 360 (lower left), and
720 (lower right) discrete angles θ along a 180◦ arc around the
“body”. Images created using MATLAB.

that would be both possible and valuable to investigate further, so that the appli-
cation of CT scanning can be better optimized to provide effective and safe viewing
of the body.
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