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1 Abstract

This paper will study the solutions to the equation xℓ+1 ≡ x (mod n).
The topic will be approached in three ways. First, we will fix ℓ = 1 and
study the characteristics of idempotents. Secondly, we will let ℓ vary within
the positive integers and find characteristics of the roots to the equation.
Lastly, we will use the previous results to study subsets of Zn that are cyclic
groups under multiplication having powers of odd primes as orders and show
exactly how many such subsets qualify as groups.

2 Introduction

The paper will be divided into three main parts: The study of Idem-
potents which are solutions to the equation when ℓ = 1, the study of E(n)
which are solutions to the equation for any ℓ ∈ Z+, and the analysis of
C(n, q), the number of subsets which are cyclic groups under multiplication
of order q. The first section will start by fixing ℓ = 1 and studying the idem-
potents in Zn. A method will be generated in which every single idempotent
for any given positive integer can be found and operations that preserve
idempotents will be studied. Furthermore, idempotents will be generalized
from context of Zn to Boolean rings to arrive at the result that every finite
Boolean ring is isomorphic to a chain of Z2s, i.e. Z2 ×Z2 ×Z2 × · · · . Then,
letting ℓ vary among postive integers, a relationship between the number of
solutions to the equation and the Euler φ function will be explored. This
will be further studied to give two major characterics for solutions to the
equation. The last section will be devoted to analyzing the subsets of Zn

that are groups of a given order. The analysis will end with a final theorem
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showing exactly how many subsets of Zn are groups of order qf for an odd
prime q and a positive integer f .

3 Preliminaries, fundamentals and notation

The reader is assumed to have moderate knowledge and understanding
in number theory and abstract algebra. To aid the reader, here are a list
of definitions and theorems that will be vital in understanding this paper.
These will be applied and referred to frequently.

Theorem 1. (Fundamental Theorem of Arithmetic) Any positive integer
can be uniquely represented as a product of primes, i.e. n = pe11 pe22 · · · pekk
where pi is a prime and ei is a positive integer for 1 ≤ i ≤ k. 1

As will be discussed later in this section, Theorem 1 will be of enormous
importance when it is used with the Chinese Remainder Theorem.

Theorem 2. (Chinese Remainder Theorem) Let k = mn where m,n, k ∈
Z+ and (m,n) = 1. Then there exists a ring isomorphism from Zk to the
cartesian product of Zm and Zn, namely f(x) = (|x|m, |x|n).

Proof. To prove the Chinese Remainder Theorem it is sufficient to show for
all a and b, there exist an x that satisfies a = |x|n and b = |x|m and that this
x is unique. To prove the existence, let us start by noting that since m and
n are relatively prime, there exist integers ℓ and k that satisfy mℓ+nk = 1.
Observe that mℓ = 1 (mod n) and nk = 1 (mod m). From this it follows
that amℓ+bnk is a (mod n) and b (modm). Thus we can conclude that such
an x exists. To prove the uniqueness, let us assume c and d both satisfy as
x. Since both c and d are a(mod n) and a(mod m). We know that n | c− d

and m | c− d. Since n and m are relatively prime we know that mn | c− d.
Thus c− d ≡ 0 (mod k) and c ≡ d (modk).

Definition 1. (Group) A group is defined as a set with a binary operation
that satisfies three axioms:
1) The operation is associative;
2) These exist an identity element;
3) Every element has an inverse.

1Refer to page 51 of ”An Introduction to Higher Mathematics” by Patrick Keef, David
Guichard and Russ Gordon for a proof of this theorem[2]
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A group is called abelian if any two elements commute, ie, for any
a, b ∈ G, ab = ba.

Notice that Z,Zn are groups under addition and Un,Z
∗
n are groups under

multiplication. All of these groups are abelian. All of the groups that will
be considered in the paper will be abelian groups.

Definition 2. (Ring) A ring is defined as a set with two operations called
addition and multiplication which follow the following three axioms:
1) It is an abelian group under addition;
2) Multiplication is associative;
3) Multiplication is distributive over addition.

Definition 3. (Subring) A non-empty subset A of R is called a subring if
it satisfies the following conditions:
1) A is closed under addition;
2) A is closed under multiplication;
3) A is closed under negatives.

Conditions 1) and 3) can be combined to say that A is closed under
subtraction. Thus A is a subring if it is closed under subtraction and mul-
tiplication.

In particular, we call a ring containing a multiplicative identity a ring
with unity. In addition, if every element commutes under multiplication
we call it a communitive ring. This paper will only be concerned with
communitive ring with unity. Notice that Z,Zn are commutative rings with
unity.

Definition 4. (Isomorphism) An isomorphism is a bijective function from
one group or a ring to another that preserves the operations of the group or
the ring. Notation for an isomorphism is ∼=. For example, if a ring H is
isomorphic to a ring G, it is written as H ∼= G

The Fundamental Theorem of Arithemetic and the Chinese Remainder
Theorem play a big role in this paper. From Theorem 1 we know that
any positive integer n can be uniquely prime decomposed into pe11 pe22 · · · pekk
where pi is a prime and ei is a positive integer for 1 ≤ i ≤ k. Then from
Theorem 2 we know there exist a ring isomorphism between Zn and the
cartesian products of Zp

e1
1

× Zp
e2
2

× · · · × Z
p
ek
k
. This tells us that any x will

satisfy xℓ+1 ≡ x (mod n) if and only if it satisfies xℓ+1 ≡ x(mod p
ei
i ) for
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each i = 1, 2 · · · k. Thus, prime decomposing n, we can look at the roots one
prime at a time and then use the Chinese Remainder Theorem to combine
all the roots mod n.

4 Introduction to E and σ notation and their basic

properties

We will now consider some notation that will be important for our in-
vestigations.

Definition 5. For a positive integer n, let E(n, ℓ), E(n), σ(n, ℓ) and σ(n)
be defined as follows:
For a given ℓ ∈ Z+ we let, E(n, ℓ) = {x ∈ Zn : xℓ+1 ≡ x (mod n)}
Similarly, let E(n) = {x ∈ Zn : xℓ+1 ≡ x (mod n) for some ℓ ∈ Z+}
To represent the size of these sets, we use the following notation
σ(n, ℓ) = |E(n, ℓ)| and σ(n) = |E(n)|.

Theorem 3. If k = mn and m and n are relatively prime, that is (m,n) = 1,
then E(k, ℓ) is in one-to-one correspondence with E(n, ℓ)× E(m, ℓ)

Proof. This directly follows from the Chinese Remainder Theorem. The
theorem states that there exist an isomorphism between Zk and Zn × Zm,
namely the function that takes an element of Zk and reduces it mod n and
mod m. It follows that any x that satisfies xℓ+1 ≡ x (mod k) will satisfy
the same equation mod n and m. And if x satisfies xℓ+1 ≡ x (mod m) and
(mod n), x will satisfy xℓ+1 ≡ x (mod k)

Corollary 4. If k = mn and m and n are relatively prime positive integers
then

σ(k, ℓ) = σ(m, ℓ)σ(n, ℓ)

Proof. This follows trivially from Theorem 3. From Theorem 3, there ex-
ist a function that maps every element in E(k, ℓ) to an unique element in
E(m, ℓ) × E(n, ℓ) and vice versa. It follows that the sizes of these two sets
are the same. It can be concluded that σ(k, ℓ) = σ(n, ℓ)σ(m, ℓ).

Similarly, if the conditions in Theorem 3 are met, σ(k) = σ(n)σ(m).
Generalizing Theorem 3 and Corollary 4 when n = pe11 pe22 · · · pekk shows that
E(n) is in one-to-one correspondence with E(pe11 ) × E(pe22 ) × · · · × E(pekk )
and σ(n) = σ(pe11 )σ(pe22 ) · · · σ(pekk ). From here on, ≃ will be used to indicate
that two sets are in one-to-one correspondence.
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5 Study of Idempotents

This section will be dedicated to examining properties of solutions to the
equation when ℓ is fixed at 1. Analyzing solutions to x2 ≡ x (mod n) will
show that roots to this particular equation has many interesting properties.
Let us begin with a definition.

Definition 6. (Idempotent) An element of Zn is an itempotent if it is a root
to the equation xℓ+1 ≡ x (mod n) when ℓ = 1. The collection of idempotents
can be written as E(n, 1)

For examples if n = 12, then there are 4 idempotents.
In Z12;

02 = 0 12 = 1 22 = 4 32 = 9
42 = 4 52 = 1 62 = 0 72 = 1
82 = 4 92 = 9 102 = 4 112 = 1

So there are 4 idempotents: 0,1,4,9.

Lemma 5. Let n = pe for a prime p and a positive integer e. Then there
are two idempotents in Zn, namely 0 and 1.

Proof. To find solutions to x2 ≡ x (mod n), we first use algebra to show that
the congruence is equivalent to x(x − 1) ≡ 0 (mod n). Notice that x and
x − 1 is relatively prime. Thus it cannot be the case that p|x and p|x − 1.
It follows that either pe|x or pe|x − 1. Thus the only possible solutions to
the equation are 0 and 1.

Thus this lemma shows that E(pe, 1) = {0, 1} and σ(pe, 1) = 2. Now,
recall that from Theorem 4 we have concluded that σ(n) = σ(pe11 ) · · · σ(pekk ).
With the knowledge that σ(peii , 1) = 2 we can find out exactly how many
idempotents n would have.

Theorem 6. If n = pe11 pe22 · · · pekk , then Zn has 2k idempotents.

Proof. We know that σ(n, 1) = σ(pe11 )σ(pe22 ) . . . σ(pekk ), since primes to dif-
ferent powers are relatively prime to each other. Also from Lemma 5, we
know that E(pe, 1) = {0, 1} thus σ(pe, 1) = 2. Thus σ(n, 1) = 2k.

Let us take n = 12, for example. Prime decomposition gives us 12 = 22 ∗
3. Thus σ(12, 1) = σ(22, 1)σ(3, 1) = 2∗2 = 4. We also know that E(12, 1) =
E(22, 1)×E(3, 1). From the Lemma 5 we know that both 22 and 3 have two
idempotents, 1 and 2. Thus E(12, 1) = E(22, 1) × E(3, 1) = {0, 1} × {0, 1}.
Thus the four idempotents are (0,0), (0,1), (1,0) and (1,1) (mod 4, mod 3).
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(0,0) corresponds to 0, (1,0) corresponds to 9, (0,1) corresponds to 4, and
(1,1) corresponds to 1. This is in accordance with 0,1,4 and 9 that we have
found to be idempotents of 12 in the beginning of the section. The same
method can be generalized for when n = pe11 pe22 · · · pekk .
E(n, 1) = E(pe11 )× E(pe22 )× · · · × E(pekk )

= {0, 1} × {0, 1} × · · · × {0, 1}
≃ {(0, 0 · · · 0), (0, 0 · · · 1), · · · , (1, 0 · · · 1), (1, 1 · · · 1)}

Recall that the Chinese Remainder Theorem describes the isomorphism
between the cartesian products of Zp

e1
1

× Zp
e2
2

× · · · × Z
p
ek
k

and Zn. Let us

do another example and let n = 30. We know 30=2*3*5
E(30, 1) = E(2, 1) × E(3, 1) × E(5, 1)

= {0, 1} × {0, 1} × {0, 1}
≃ {(0, 0, 0), (1, 0, 0), (0, 1, 0)(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}

From the Chinese Remainder Theorem (0,0,0)↔1, (1,0,0)↔15, (0,1,0)↔10,
(0,0,1)↔6, (1,1,0)↔25, (1,0,1)↔21, (0,1,1)↔16. Thus it can be concluded
that E(30, 1) = {0, 1, 6, 10, 15, 16, 21, 25}. Likewise, idempotents for any n

can be found through this process.

Definition 7. Let, x, y, z ∈ Zn, then define three operations, x ∧ y, x ∨ y

and xc to be the following.
x ∧ y = x ∗ y x ∨ y = x+ y − xy xc = 1− x

With some algebra it can be proven that these operations preserve idem-
potents.

Theorem 7. If x and y are idempotents x∧ y, x∨ y and xc are also idem-
potents.

Proof. If x, y ∈ E(n, 1) then we know that x2 = x and y2 = y in Zn. From
this we know that xy = x2y2 = (xy)2. Thus we know that x∧y is an element
of E(n, 1). Also, 1 − x = 1 − 2x + x2 is true since x = x2. Thus xc is an
element of E(n, 1). Proving x∨ y ∈ E(n, 1) will use the facts that x∧ y and
xc preserves idempotents. Since x and y are elements in E(n, 1) the above
statements tell us that 1− x and 1− y are elements in E(n, 1). Also if this
is true, from above we know (1− x)(1− y) is in E(n, 1). If this is true from
above we know 1− (1−x)(1−y) is in E(n, 1). 1− (1−x)(1−y) = x+y−xy

thus x ∨ y is in E(n, 1).

To use the example of E(30, 1) = {0, 1, 6, 10, 15, 16, 21, 25}. It can be
observed that in Z30
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1− 6 = −5 = 25 1− 10 = −9 = 21
1− 15 = −14 = 16 6 ∗ 10 = 60 = 0
15 ∗ 21 = 315 = 15 15 + 25− 15 ∗ 25 = −335 = 25

6 + 10− 6 ∗ 10 = −44 = 16 16 ∗ 21 = 336 = 6

Likewise, going through all the possible combinations could also show
that these operations preserve idempotents.

Note that these operations are very reminiscent of set operations: union,
intersection, complements among sets. It is because these operations are
very similar to set operations with sets that have two elements, 0’s and 1’s.
To proceed by example, let n = 30. As shown above,
E(30, 1) = {0, 1, 6, 10, 15, 16, 21, 25} which translates to the cartesian prod-
uct of Z2 × Z3 × Z5 in the respective order as

{(0, 0, 0), (1, 1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
We know that the complement of a set consists of everything that is not in
the set. In this case, we only have two elements, 0s and 1s. Notice, that
1=(1,1,1) when written in Z2 × Z3 × Z5. When subtracting anything from
(1,1,1), subtracting 1 will give us 0 and subtracting 0 will leave us with 1. It
follows that this operation 1−x is essentially the same as taking the comple-
ment of a set. All the 1’s in the cartesian product of x will turn to 0s and 0s
will turn to 1s. Similarly, when multiplying, notice that 1*1=1, 0*1=1*0=0
and 0*0=0. It follows that this is very similar to taking the intersection of
sets. Unless both x and y have 1’s in the Zp

ei
i
the result of multiplication will

be 0. Lastly, union of two sets consists of the elements that are contained in
either set. 1+1-1*1=1, 1+0-1*0=0+1-0*1=1 and 0+0-0*0=0. This shows
that unless both x and y have 0’s in the same Zp

ei
i
, the result will be 1. Now

that we have shown that 1 − x, xy and x + y − xy are similar in structure
to taking the complement, intersection and union of sets, we can show that
these operations follow some rules we have seen before.

It should also be noted that these operations follow the rules that govern
set operations. We know that if x, y and z are sets, the following are true:
(xc)c = x x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)
x∪ (y ∩ z) = (x ∪ y) ∩ (x∪ z) (x∪ y)c = xc ∩ yc (x ∩ y)c = xc ∪ yc.
It is also the case that these operations as we have defined them, follow the
exact same rules.

Theorem 8. The operations defined in definition 7 satisfy the set operation
rules
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Proof. Let x, y, z be idempotents.
Notice (xc)c = (1− x)c = 1− (1− x) = x. Thus (xc)c = x.
With some algebra we can see that x ∧ (y ∨ z) = x ∧ (y + z − yz) = xy +
xz − xyz = xy + xz − x2yz = xy ∨ xz = (x∧ y)∨ (x∧ z). Thus intersection
is distributive over union.
Because (x∨y)∧(x∨z) = (x+y−xy)∧(x+z−xz) = x2+xz−x2z+xy+yz−
xyz−x2y−xyz+x2yz = x2+yz−xyz = x+yz−xyz = x∨yz = x∨(y∧z),
the union is distributive over intersection.
Notice (x∨y)c = 1− (x+y−xy) = 1−x−y+xy = (1−x)(1−y) = xc∧yc.
Thus (x ∨ y)c = xc ∧ yc

Finally, notice (x ∧ y)c = 1− xy = 1− x+ 1− y − (1− x)(1− y) = xc ∨ yc.
Thus (x ∧ y)c = xc ∨ yc.

Now let us consider idempotents in a general ring. In this section, we
will focus on special kind of rings.

Definition 8. (Boolean ring) A Boolean ring is a ring in which all the
elements are idemptents, i.e. R is a Boolean ring if for all x in R, x2 = x.

Also, we say a commutative, unitary ring R is decomposable if there is
a ring isomorphism R ∼= S × T , where S and T are non-zero, commutative
unitary rings. If R cannot be decomposed we say it is indecomposable.

Lemma 9. If R is decomposable then R has an idempotent e other than 0
and 1.

Proof. This almost directly follows from the definition of an isomorphism.
If R is decomposable, R is isomorphic to the cartesian product of two non-
zero communitive unitary rings. Then we know that the ordered pairs
(0, 0), (0, 1), (1, 0), (1, 1) are all idempotents.

Next, we will verify that if e is an idempotent of a ring R, then Re =
{xe : x ∈ R} is a subring of R. A subring has to be closed under subtraction
and multiplication. It is easy to see that Re is non-empty since the additi-
vive identity, 0, will always be in the subring since 0e = 0. For any x, y ∈ Re

we know x = x′e and y = y′e for some x′, y′ ∈ R. Since xy = x′y′e2 = x′y′e

we conclude that xy ∈ Re. We also know x − y = x′e − y′e = (x′ − y′)e;
since x′ − y′ ∈ R we conclude that x− y ∈ Re thus Re is a subring of R.

Let, R be a commutative unitary ring and e an idempotent of R that
is neither 0 nor 1. From Theorem 7 we know that if e is an idempotent,
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ec = 1− e is an idempotent. Let’s call this idempotent f . Since e is neither
0 nor 1, f will not be 0 or 1. Then from what we have proved directly above,
we know Re and Rf are both subrings and thus rings. With little algebra,
we can show that R is isomorphic to Re×Rf .

Lemma 10. If e ∈ R is an idempotent, e 6= 0, 1 let f = 1− e, S = Re, T =
Rf . Then, φ : R → S × T given by φ(x) = (xe, xf) is a ring isomorphism.

Proof. To prove that it is a ring isomorphism we need to prove that it is
a bijective homomorphism. To show that it is bijective, we can show that
it has an inverse function. Let σ(x, y) = x + y for x ∈ S and y ∈ T then
σ(φ(x)) = σ(xe, xf) = xe+ xf = x(e+ f) = x, since f = 1− e. Composing
the other way we have, φ(σ(x, y)) = φ(x + y) = ((x + y)e, (x + y)f) =
(xe + ye, xf + yf). Notice that any x ∈ S can be written as es for some
s ∈ R and any y ∈ T as tf for some t ∈ R. It follows that xe = ees = es = x

and ye = tfe = t(1 − e)e = t(e − e2) = t(e − e) = 0 and that xe+ ye = x.
Similarly xf + yf = f , thus it can be concluded that φ(σ(x, y)) = (x, y).
For it to be a ring homomorphism it needs to preserve both multiplication
and addition, i.e. φ(xy) = φ(x)φ(y) and φ(x + y) = φ(x) + φ(y). Observe
that φ(xy) = (xye, xyf) = (xye2, xyf2) = (xe, xf)(ye, yf) = φ(x)φ(y) show
that it preserves multiplication. φ(x + y) = ((x + y)e, (x + y)f) = (xe +
ye, xf + yf) = (xe, xf) + (ye, yf) = φ(x) + φ(y). Thus it is shown that φ is
a ring isomorphism.

From these two Lemmas, we conclude that R is decomposable if and
only if it has an idempotent e other than 0 and 1.

Theorem 11. R is decomposable if and only if it has an idempotent e other
than 0 and 1.

Proof. Lemma 9 proves that if R is decomposable, then R has an idempotent
e other than 0 or 1. Lemma 10 proves that if R has an idempotent other than
0 and 1, there exist an isomorphism, namely φ that makes R ∼= S×T for two
rings S and T . From these two lemmas, it follows that R is decomposable
if and only if it has an idempotent e other than 0 and 1.

From this directly follows the fact that any indecomposable Boolean ring
is isomorphic to Z2. Indecomposable ring has only two idempotents, 0 and
1. Thus an indecomposable Boolean ring has two elements, 0 and 1. Any
ring with 2 elements is isomorphic to Z2. It follows that any indecomposable
Boolean ring is isomorphic to Z2.
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Theorem 12. R has a finite number of idempotents if and only if it is
isomorphic to a product S1 ×S2 × · · · ×Sj where each Si is indecomposable.

Proof. Note that R is a communitive ring with unity thus always has 0
and 1 as its elements. Also, observe that if R is isomorphic to a product
S1 × S2 × · · · × Sj where each Si is indecomposable, R will have 2j idem-
potents as each Si has two idempotents. It follows that R will have a finite
number of idempotents. Now to show that if R has a finite number of idem-
potents then it is isomorphic to a product S1 × S2 × · · · × Sj where each Si

is indecomposable, we consider two cases
Case 1) R has two idempotents: If R only has two idempotents, namely

0 and 1, we know from Lemma 9 that it is indecomposable.
Case 2) R has more than two idempotents: This means that R has

idempotent other than 0 and 1. Thus it is decomposable into two rings,
S1 and S2 through the ring isomorphism given in section 3. Observe that
every idempotent of R is in one-to-one correspondence to (e, f) where e is an
idempotent in S1 and f is an idempotent in S2. Then we again consider two
cases for each rings S1 and S2. By induction, the process can be continued
until R is isomorphic to a cartesian product of indecomposable rings.

Thus, R has a finite number of idempotents if and only if it is isomorphic
to S1 × S2 × · · · × Sj where each Si is indecomposable.

Lemma 13. If R is isomorphic to S × T , then R is Boolean if and only if
S and T are Boolean.

Proof. R is Boolean iff every element a ∈ R is an idempotent
iff every elements (s, t) ∈ S × T is an idempotent
iff every s ∈ S and t ∈ T is an idempotent
iff S and T are Boolean.

With the results from these four lemmas, we can reach a theorem

Theorem 14. A ring is a finite Boolean ring if and only if it is isomorphic
to a product Z2 × Z2 × · · · × Z2

Proof. Trivially, any finite Boolean ring will have finite idempotents. Thus,
applying Theorem 12, we have that any finite Boolean ring, R, is isomorphic
to S1 ×S2× · · · ×Sj where each Si is indecomposable. From Lemma 13, we
know that if R is isomorphic to any cartesian product of a set of rings, these
rings all have to be Boolean, thus we conclude that Si is a indecomposable
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Boolean ring. From Lemmas 9 and 10 we have derived that any indecom-
posable Boolean ring is isomorphic to Z2. Thus Si is isomorphic to Z2. This
proves that any finite Boolean ring is isomorphic to Z2 × Z2 × · · · × Z2.

This concludes our investigation of idempotents. We have provided a
method in which every idempotent can be generated for any given positive
integer. We also examined operations resembling set operations of unions,
intersections and complements that preserved idempotents. Lastly, we stud-
ied characteristics of Boolean rings and concluded that every Boolean ring
is isomorphic to Z2 × Z2 × · · · × Z2.

6 Study of E(n)

In the previous section, we looked at the roots to xℓ+1 ≡ x (mod n)
by letting ℓ = 1. In this section, we will broaden our range of ℓ and let it
vary within the positive integers. This will let us examine the properties of
E(n) and σ(n) and find characteristics that elements of E(n) will possess.
In order to do so, it is imperative that the reader have an understanding of
Euler’s phi function, notated as φ.

Definition 9. (Euler phi function) φ(n) counts the number of elements in
Zn that are relatively prime to n.

Note that Un is the collection of units in the ring Rn. Thus, letting
Rn = Zn it is the case that Un is the set of all the elements in Zn that are
relatively prime to n. Thus it follows that φ(n) = |Un|.

Lemma 15. φ(pe) = pe−pe−1 when p is a prime and e is a postive integer.

Proof. The numbers that are not relatively prime to pe are the multiples
of p. The number of multiples of p under pe were pe−1 thus the number of
numbers relatively prime to pe are pe − pe−1.

For example, let p3 = 33. Notice that the numbers that are not relatively
prime to 33 = 27 are the multiples of 3, namely 3,6,9,12,15,18,21,24 and
27. Observe that there are nine of them or 33−1 of them. It follows that
φ(33) = 33 − 32 = 18.

Lemma 16. If m,n ∈ N and are relatively prime then φ(mn) = φ(m)φ(n).
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Proof. It is sufficient to prove that Um × Un
∼= Umn. Now let us assume

a ∈ Um and b ∈ Un. From the Chinese Remainder Theorem we know that
the direct product of Zn and Zm are isomorphic to Zmn. Since a and b are
elements of Zn and Zm that have inverses we know that the ordered pair
(a, b) transforms to in Zmn will have an inverse too which shows that it is
in Umn. Also for any element in Umn, we know that since the element is
relatively prime to mn, it has to be relatively prime to m and n. Thus any
element in Umn will correspond to (a, b) where a and b are elements of Um

and Un respectivley. Thus the phi function is multiplicative if m and n are
relatively prime.

Combining Lemmas 15 and 16, we can generalized to an arbitrary posi-
tive integer n. Note that from the Fundamental Theorem of Arithematic, n
can be uniquely prime factored into n = pe11 pe22 · · · penn .

Theorem 17. If n = pe11 pe22 · · · pekk then

φ(n) = (pe11 − pe1−1
1 )(pe22 − pe2−1

2 ) · · · (pekk − p
ek−1
k )

Proof. This follows directly from Lemma 15 and Lemma 16. Since we know
the phi function is multiplicative for relatively prime numbers and peii and
p
ej
j are relatively prime for all i and j between 1 and k we know φ(n) =

φ(pe11 )φ(pe22 ) · · · φ(pekk ). Then using the Lemma 15, we can compute each

φ(peii ) to get φ(n) = (pe11 − pe1−1
1 )(pe22 − pe2−1

2 ) · · · (pekk − p
ek−1
k ).

Note that we can play around with the equation to get
φ(n) = (pe11 − pe1−1

1 )(pe22 − pe2−1
2 ) · · · (pekk − p

ek−1
k )

= pe1−1
1 pe2−1

2 · · · pek−1
k (p1 − 1)(p2 − 1) · · · (pk − 1).

Theorem 18. If n is a natural number, n =
∑

d|n

φ(d)

Proof. Let us define a function f such that f : Zn → {d; d|n} given by
f(x) = n

(n,x) where 0 ≤ x ≤ n − 1 and x is an integer. From this we know
that for f to map multiple elements to the a single d, the elements need
to satisfy n

(n,x) = d. Since n is a constant, we need to find the number of

x’s that satisfies (x, n) = k where k satisfies n
k
= d. We know (n, x) = k

shows (n
k
, x
k
) = 1 and we can easily see that the easiest x that satisfies this

is x = k. All the other x’s must be some multiple of k, so there exist an
integer y that satisfies ky = x and consequently y = x

k
. Since from above

we know (n
k
, x
k
) = 1, y has to be relatively prime to n

k
which is d. Since the

number of relatively prime numbers to d that are less than d is given by φ(d)

12



so the function f maps all the numbers in Zn to {d; d|n} and the number of

numbers that gets map to each d is exactly φ(d), thus
∑

d|n

φ(d) = n.

With the basics of the φ function covered, we can move to generate a
relationship between the φ function and σ(n). A vital theorem that will
help us bridge the gap between φ function and σ(n) is the Euler’s theorem.

Theorem 19. (Euler’s Theorem) If n is a positive integer and gcd(u, n) = 1,
then uφ(n) ≡ 1 (mod n). 2

Now with the Euler’s theorem, we have the tools for the following theo-
rem.

Theorem 20. If p is a prime and e a positive integer, then E(pe) = {0}∪Upe

and thus it follows that σ(pe) = 1 + φ(pe)

Proof. We know that everything that is relatively prime to pe is in E(pe)
from Euler’s theorem. We also know that any positive power of 0 is 0 thus
0, although it is not relatively prime to pe is in E(pe). We now must show
that these are the only elements of E(pe) thus verifying the equation above.
To prove this, we need to prove that all the multiples of ps do not satisfy
the equation. Let us say x = ypj where j < e and (y, p) = 1. Let us assume
that there exists an ℓ that satisfies xℓ+1 ≡ x (mod pe). This is same as
saying (ypj)ℓ+1 ≡ ypj (mod pe). We know that kj(ℓ+1)pj(ℓ+1) is divisible by
pj(ℓ+1) and since j(ℓ + 1) > j and j < e, (ypj)ℓ+1 cannot be equivalent to
ypj mod pe. Thus it follows that σ(pe) = 1 + φ(pe)

Moving to generalize this result to n = pe11 pe22 .....p
ek
k . Let us start by

introducing a new definition: the unitary divisor.

Definition 10. (Unitary divisor) We write d||n and call d an unitary divisor
of n if d|n and (d, n

d
) = 1.

Theorem 21. If n = pe11 pe22 .....p
ek
k , σ(n) can be represented as below

σ(n) =
∑

d||n

φ(d)

2Refer to page 87 of ”An Introduction to Higher Mathematics” by Patrick Keef, David
Guichard and Russ Gordon for a proof of this theorem[2].
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Before moving on to the proof of the theorem, observe the similarity
betwen Theorem 21 and 18. n is the sum of φ(d) for all divisors d of n

whereas σ(n) is the sum of φ(d′) for all unitary divisors d′ of n. Let n = 12,
we have n = 12 = φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) and σ(12) =
φ(1) + φ(4) + φ(3) + φ(12) = 9. Now, let us prove Theorem 21.

Proof. Let us start with the Theorem 20 which states that σ(pe) = 1+φ(pe).
From this it is clear that σ(pe11 pe22 .....p

ek
k ) = (1 + φ(pe11 ))(1 + φ(pe22 ))....(1 +

φ(pekk )) since σ is multiplicative. If we write this out we know that there
will be 2k terms since there are k terms multiplied together with each term
consisted of two terms added together. Every term in the sum can be rep-
resented as φ(pe1f11 p

e2f2
2 .....p

ekfk
k ) where f1, f2......fk are either 0 or 1. Notice

that whether fi for any 1 ≤ i ≤ n is 0 or 1, pe1f11 p
e2f2
2 .....p

ekfk
k is always an

unitary divisor of n and all the possible combinations of fis cover all the

unitary divisors of n thus it follows that σ(n) =
∑

d||n

φ(d)

To give an example of Theorem 21, let n = 22 × 3 × 5 = 60. Note that
the unitary divisors of 60 are 1,3,4,5,12,15,20 and 60. It follows that
σ(60) = φ(1) + φ(3) + φ(4) + φ(5) + φ(12) + φ(15) + φ(20) + φ(60)

= 1 + 2 + 2 + 4 + 4 + 8 + 8 + 16
= 45

Let n = pe11 pe22 .....p
ek
k and m ∈ Zn where the ps are primes and es are

positive integers. From Theorem 21, it follows that m ∈ E(n) if and only if
each p

ei
i when i = {1, 2, · · · k} either divides m or is relatively prime to it.

Note that every unitary divisor on n is a divisor of n. It follows that Theo-
rem 21 is equivalent to the statement m ∈ E(n) if and only if the greatest
common divisor of m and n is an unitary divisor of n, i.e. m ∈ E(n) if and
only if gcd(m,n)||n.

So far in this section, we have analyzed E(n) and σ(n) by using the φ

function. The φ function is very useful in discribing σ(n), the size of E(n).
Moreover, using unitary divisors, we have explored a property of elements
in E(n). For the remainder of the section, we will look at an alternate way
to think of the elements of E(n) involving groups and investigate another
characteristic of elements in E(n).

Definition 11. (Finite Cyclic Group) A finite Group G is called cyclic if
there exist an element, g, such that G = {g, g2, g3 · · · , gn−1, gn} for some
positive integer n. Such elements are called generators.

14



There are infinite cyclic groups in which every gn for n ∈ Z+ is dif-
ferent, however, in this paper, we will only be concerned with finite cyclic
groups. Thus, cyclic groups in this paper will mean finite cyclic groups. In
addition we write < g > to represent the set generated by g, i.e. < g >=
{g, g2, g3, g4 · · · }. With this notation, we say a group, G, is cyclic if and
only if there exist some element g ∈ G such that < g >= G.

Theorem 22. x ∈ E(n) if and only if < x > (mod n) forms a group under
multiplication.

Proof. This is a biconditional proof, let us start with the proof that if
x ∈ E(n), then < x > is a group under Zn. Recall from Definition 1
that for < x > to be group it needs to have three properties: associativity,
existence of an identity element and existence of inverses for every element in
the group. Associativity holds generally for multiplication in Zn thus there
is no need for a proof. To prove that < x > has the identity we need to use
the fact that x ∈ E(n) thus there exist an ℓ that satisfies xℓ+1 ≡ x (mod n).
We will show that xℓ is an identity element. For i = 1 multiplying xℓ gives
xℓ+1 = x thus we know that for any element in < x >, multiplying xℓ bring
the element back to itself thus xℓ is the identity element. With this, let us
assume xi for some positive integer i, if i is greater than 1 multiplying xℓ

we have xℓ+i ≡ xi−1xℓ+1 ≡ xi−1x ≡ xi. Lastly, for xi where i ∈ Z+, we can
find a positive integer j that satisfies i+ j = kℓ for some positive integer k.
Then xi+j = xixj = xkℓ = xℓ. Thus xj is the inverse of xi and thus < x >

is closed under inverses. It follows that < x > is a group if x ∈ E(n).

Going the other way, proving that if < x > is group under multiplication
then x ∈ E(n), we start by noting that every group has an identity element.
It follows that the identity element of < x > is xℓ for some ℓ ∈ Z+. The
identity element maps every element to itself thus x× xℓ = xℓ+1 = x (mod
n). We can conclude that x ∈ E(n) thus x ∈ E(n) if and only if < x >

(mod n) make a group under multiplication.

Theorems 21 and 22 can be used to generalize the characteristics of
solutions to the equation xℓ+1 ≡ x (mod n) when ℓ varies. Before we
move on to do so, it is important to recognize that we are not assuming
these groups to be subgroups of Un. In fact, most of these groups are not
subgroups of Un. With that in mind, let us generalize our results. Theorem
21 tells us that m ∈ E(n) is equivalent to saying that the greatest common
divisor of m and n is an unitary divisor of n. Theorem 22 tells us that it is
also equivalent to saying that < m > is a cyclic group under multiplication.
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It can be concluded that all three statements are equal as is summarized by
the following theorem.

Theorem 23. Let n ∈ N and m ∈ Zn then the following are equivalent:
1) m ∈ E(n).
2) If (m,n) = g, then g||n.
3) < m > is a cyclic group under multiplication.

7 Analysis of C(n, q)

In previous sections, we studied characteristics of elements of E(n, ℓ).
We first fixed ℓ = 1 and examined idempotents. Then, by letting ℓ to be
any positive integer, we analyzed E(n) and σ(n). Now, we will move on to
analyze cyclic groups of a given order in Zn.

Definition 12. Let C(n, q) be the number of subsets S of Zn that are groups
of order q under the operation of multiplication.

The remainder of this paper will be mainly concerned with cases in which
q is either an odd prime or an odd prime to some power. Before we move
on to analyze C(n, q) in detail, let us go through theorems that will serve
as fundamentals.

Theorem 24. (Lagrange’s Theorem) The order of any subgroup divides the
order of the group. 2

From Lagrange’s Theorem follows one important corollary.

Corollary 25. Any group of order q when q is an odd prime is a cyclic
group.3

Theorem 26. (Primitive Root Theorem) Un is cyclic if and only if n is
1,2,4,pk, or 2pk, where p is an odd prime and k ≥ 1

Proof. The proof of this will be done through cases. The trivial cases, 1,2
and 4 can be easily shown and will thus be omitted in the proof.

First, we prove that U2k when k > 2 is not cyclic. From the Funda-
mental theorem of cyclic groups, for U2k to be cyclic, it must have only one
subgroup of order 2. This means that there is only one element other than
the identity element in U2k that is its own inverse. However, both 2k − 1

2Refer to page 129 of ”A Book of Abstract Algebra” by Charles C.Pinter for a proof[1]
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and 2k−1 − 1 are their own inverses: (2k − 1)2 ≡ 22k − 2k+1+1 ≡ 1(mod 2k)
and (2k−1 − 1)2 ≡ 22k−2 − 2k + 1 ≡ 1(mod 2k), observe that there are two
distinct elements greater than 1 since k > 2 that are its own inverses. Thus
U2k cannot be cyclic.

Secondly, we prove that Upk is cyclic where p is an odd prime. Induction
will be used to prove this. When k = 1, let us proceed by proof by contra-
diction, assume Up is not cyclic and that an element of the maximum order
is m and has order n < p− 1. The order of every element divides the order
of m and mn ≡ 1 (mod p)4. Let us assume a polynominal f(x) = xn − 1
over the field Zn we know this polynominal has maximum of n roots. We
know that since order of every element divides n , every element of Un is a
root of the polynominal and thus there are p− 1 roots. This contradicts the
statement that n < p− 1 thus Up is cyclic.

In the case k = 2, we know Up is cyclic, thus there exists an element
a that satisfies < a >= Up. Now, look at a and a + p. Let ℓ and ℓ1 be
the order for < a > and < a + p > in Up2 respectively. It follows that
aℓ ≡ (a + p)ℓ1 ≡ 1 (mod p2) and is also 1 (mod p). Then writing out
(a + p)ℓ1 = aℓ1 +

(

ℓ1
1

)

aℓ1−1p +
(

ℓ1
2

)

aℓ1−2p2 + ... + pℓ1 shows us that aℓ1 ≡ 1

(mod p) since
(

ℓ1
1

)

aℓ1−1p+
(

ℓ1
2

)

aℓ1−2p2+ ...+pℓ1 is a multiple of p. The order
of a in Up is p−1 thus p−1 divides ℓ and ℓ1. Also from Lagrange’s theorem,
order of each element divides the order of the group thus ℓ and ℓ1 divide
φ(p2) = p2− p. Now by proving that it is impossible for both ℓ and ℓ1 to be
p−1, it can be shown that at least one has to be p2−p. Let us assume both
are p−1, then (a+p)p−1 = ap−1+

(

p−1
1

)

ap−2p+
(

p−2
2

)

ap−3p2+ ...+pp−1 ≡ 1

(mod p2). We know that
(

p−2
2

)

ap−3p2+
(

p−3
3

)

ap−4p3+ ...+pp−1 is a multiple

of p2 thus (a + p)p−1 ≡ 1 +
(

p−1
1

)

ap−2p ≡ 1 + (p − 1)pap−2 ≡ 1 − pap−2.
Since(a + p)p−1 ≡ 1, pap−2 ≡ 0 (mod p2) but since ap−2 ∈ Up2, (a

p−2, p)=1
showing that it is contradictory and thus at least one of ℓ and ℓ1 has to be
p2 − p = φ(p2)

Now, using induction, assume that Upk is cyclic up to k = m. It follows
from the inductive step that proving Upk is cyclic for k = m + 1 will lead

us to prove that Un is cyclic for n = pk every k ∈ Z+. Let us say Upm is
generated by some element g. Let the order of g in Upm+1 be h. It follows
that h|φ(pm+1) = pm+1−pm. Since g generates Upm, φ(p

m) = pm−pm−1|h.
We can conclude that either h = pm+1 − pm = pm(p − 1) or pm − pm−1 =

4Refer to page 129 of ”A Book of Abstract Algebra” by Charles C.Pinter for a proof[1]
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pm−1(p − 1). Let us assume h = pm−1(p − 1). Observe that g also gener-
ates Upm−1 , and the order of g in this case would be pm−2(p − 1). Since
pm−2(p− 1) < pm−1(p− 1) and the generator raised to any power less than
the order or the cyclic group cannot be the identity element, we have that
gp

m−2(p−1) 6= 1 (mod pm) and gp
m−2(p−1) = 1 + upm−1 for some u. Observe

that u has to be relatively prime to p as if u is not relatively prime to p then
u|p and thus gp

m−2(p−1) ≡ 1 (mod pk). Now, let us raise both sides of the
equation by p.
(gp

m−2(p−1))p = (1 + upm−1)p (mod pm)
= 1 +

(

p
1

)

upm−1 +
(

p
2

)

(upm−1)2 + · · · +
(

p
p

)

(upm−1)p

dividing both sides of the equation by pm+1 will let us look at both equations
(mod pm+1). Note that every term other than the first and the second term
is a multiple of pm+1 since j(m− 1)+ 1 ≥ m+1 for j = {2, 3, 4, · · · }. Thus,
we are left with the following equation.
(gp

m−2(p−1))p ≡ 1 + pupm−1 (mod pm+1)
≡ 1 + upm (mod pm+1).

This is a contradiction as it would give us gp
m−2(p−1) ≡ 1 (mod pm). It

can be concluded that h = pm(p − 1). It follows that g is a generator for
Upm+1 making it cyclic. Thus, Uk

p is cylic for an odd prime p and all positive
integers k.

Now, to complete the proof, it needs to be shown that U2pk for an odd
prime p and any positive integer k is cyclic and that Upq for two distinct
odd primes p and q is not cyclic. However, these facts will not be used in
this paper thus will not be proved.5

For example, U81 is a cyclic group as 81 = 34. Let us first look at
U3 = {1, 2}. This is a cyclic group as < 2 >= {2, 22 = 1}. Now let us
look at 2 and 2+3=5 in U32 = U9 = {1, 2, 4, 5, 7, 8}. We know at least one
of 2 or 5 has to generate U9. Observe that < 5 >= {5, 7, 8, 4, 2, 1} and
< 2 >= {2, 4, 8, 7, 5, 1} thus both of them generate U9. In fact both 2 and
5 are both primitive roots of 33 = 27 thus < 2 >=< 5 >= U27. Notice that
in the inductive step we have proved that if x is a primitive root of pk than
it is also a primitive root of pk+1. This example follows directly from the
proof. Now, with this in mind, let us move on to how many generators there
are for each subgroup of a cyclic group with order n.

Lemma 27. If n has a primitive root, for each divisor d of φ(n) there are

5Reader who are interested in the complete proof, refer to ”Multiplicative Groups in
Zm by Brian Sloan [3]
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exactly φ(d) generators of a group of order d.

Proof. Let us consider a Un which is a group under multiplication. There
are φ(n) elements in Un and we know that the order of every subgroup
divides the group thus for any subgroup S, |S| divides φ(n). We also know
that for every divisor, d, of φ(n) there is exactly one subgroup of that order
and that subgroup of order d is isomorphic to Zd under addition. In Zd

there are φ(d) elements that can be generators of the group. Observe that
there exists an isomorphism between Zd and unique subgroup of Un of order
d. Thus, we can conclude that a subgroup of Un of order d will have φ(d)
generators for the group.

With these Theorems and Lemmas, we can show exactly how many
subsets of Zn are cyclic groups of order q for any odd prime q.

Theorem 28. Let C(n, q) for an odd prime q and positive integer n be the
number of subsets S in Zn that are groups of order q under the operation of
multiplication. Then, let us suppose n = pe11 pe22 ..p

ej
j p

ej+1

j+1 ....p
ek
k where ps are

the primes and the es are positive integers and q is an odd prime. suppose
for i = 1, 2, ..., j, q|φ(peii ) and for i = j+1, j+2, ..., k, q ∤ φ(peii ). Let ℓ = k−j.

C(n, q) =
2ℓ((q + 1)j − 2j)

q − 1

Proof. First from the Chinese Remainder Theorem we know Zn is isomor-
phic to the cartesian products of Zp

ei
i
for all 1 ≤ i ≤ k. With this knowledge,

let us look at Zpe . From Corollary 25, a group of order q has to be cyclic
thus it must have a generator. Let us name the non-zero generator a. Recall
from the previous section that if a is a multiple of p, it cannot be in E(pe)
and that < a > cannot form a group. Thus, it follows that a cannot be a
multiple of p and we can conclude that (a, pe) = 1. Now we have narrowed
our search to look at a in Upe .

Notice that Upe is a group under multiplication so we can look for sub-
groups of order q. Theorem 24 tells us that the order of < a > has to divide
the order of Upe , i.e. q|φ(p

e), for a subgroup of order q to exist. From this,
it follows that q has to be odd. Further, observe the following two facts:
1) < a > is a subgroup of order q iff aq+1 ≡ a (mod pe).
2) from Lemma 27 there are exactly φ(q) elements that have order q.
When q is a prime, then φ(q) = q − 1. Thus, it follows as a consequence of
2) that for every Zp

ei
i

where i = 1, 2, ...., j, there are q − 1 generators for a
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group of order q. We can finally conclude that

C(n, q) = (number of as such that aq+1 ≡ a) - (number of as such that a2 ≡ a)
q−1 .

In counting the number of as such that aq+1 ≡ a, first, observe that< 0 >

and < 1 > create groups of order 1 and that lcm(1,q)=q. Consequently, the
generator being 0 or 1 (mod p

ei
i ) will not affect the order of the group and

the order will be q. This gives q + 1 possibilities for every p
ei
i , giving us

(q + 1)j options for a. However, if the generator is 0 or 1 for every p
ei
i then

the group will be of order 1. Thus, we have to rule this possibility out by
subtracting 2j from (q + 1)j , arriving at (q + 1)j − 2j . Notice that since
the same logic is valid for peii where q ∤ φ(peii ), we can get the exact number
of as by multiplying 2ℓ, giving us 2ℓ((q + 1)j − 2j) possible as. Finally, as
mentioned in the above paragraph, there are q − 1 elements that generate
the same group. Thus, we conclude that the number of cyclic groups of

order q is 2ℓ((q+1)j−2j)
q−1 .

This is a very powerful result as it lets us to calculate how many sub-
groups of order q there are for any given n. For example, let n = 7 ∗ 113 ∗
292 ∗ 315 ∗ 435 and q = 7. Note that this n is a very large number, slightly
bigger than 3 × 1023. To apply this number to Theorem 28, we know that
k = 5 as there are 5 distinct primes in the prime decomposition of n. Also,
7 | φ(292), φ(435) and 7 ∤ φ(7), φ(113), φ(315). It follows that j = 2 and

ℓ = 3. Thus C(n, 7) = 23(82−22)
6 = 80. There are exactly 80 subsets of Zn

that are groups of order 7.
Note that the proof specifically mentions that q has to be an odd prime.

Further research can be done in case when q = 2 but it will not be covered
in this paper. Now, let us generalize this theorem into C(n, qf ) for an odd
prime q and a positive integer f . First, let us start with a lemma.

Lemma 29. For any odd prime p

|
{

x : x ∈ Upe , x
k = 1

}

| = (φ(pe), k)

Proof. Let us start by assuming that (φ(pe), k) = g. We know there exists
an isomorphism between Zφ(pe) and Upe. From the isomorphism, it follows

that |
{

x : x ∈ Upe , x
k = 1

}

| = |
{

x : x ∈ Zφ(pe), xk = 0
}

|. Also observe that

(φ(pe), k) = g iff (φ(p
e)

g
, k
g
) = 1. Then it follows that kx = 0 ⇔ φ(pe)|kx ⇔

φ(pe)
g

|kx
g

⇔ φ(pe)
g

|x. this shows that x has to be a multiple of φ(pe)
g

to satisfy

|
{

x : x ∈ Zφ(p
e), xk = 0

}

|. Since there are g multiples of φ(pe)
g

in Zφ(p
e) it

follows that g = |
{

x : x ∈ Zφ(p
e), xk = 0

}

| = |
{

x : x ∈ Upe , x
k = 1

}

|.
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Theorem 30. If q is an odd prime, p a prime and e, f ∈ N then

σ(pe, qf ) = gcd(pe − pe−1, qf ) + 1

Proof. Let us suppose x ∈ E(pe, qj), then we consider two cases. First, if p|x
then x = 0 since in Theorem 20 we have proved that no non-zero multiple
of p can be in E(pe). Secondly, if p ∤ x then (pe, x) = 1 thus x ∈ Upe . If
x ∈ Upe then we know that xqf + 1 ≡ x ⇔ xpf = 1 since every element in
Upe has an inverse. Then again, we consider two cases

Case 1. when p=2. |Upe | = 2e−1. Observe that q is an odd prime
and thus 2e−1 ∤ qf thus the only possible x is x = 1. Thus σ(pe, qf ) =
(2e−1, qf ) + 1 = 2

Case 2. when p is an odd prime |Upe | = φ(pe) = pe−pe−1. We know that
Upe is cyclic. From the lemma, we know that σ(pe, qf ) = (pe − pe−1, qf ) + 1
suffices.

Theorem 31. Let n = pe11 ....p
ek
j then

C(n, qf ) =

∏k
i=1[(p

ei
i − p

ei−1
i , qf ) + 1]−

∏k
i=1[(p

ei
i − p

ei−1
i , qf−1) + 1]

qf − qf−1

Proof. The set of all elements that generate a cyclic group of order qf is
E(n, qf )−E(n, qf−1) the elements that generate a group of order qℓ for any
integer 1 ≤ ℓ ≤ f given by E(n, qf ) minus the elements that generate a
group of order qi for any integer 1 ≤ i ≤ f − 1. It follows that the number
of the generators is given by σ(n, qf )−σ(n, qf−1). The number of groups of
order qf will be given by dividing σ(n, qf )−σ(n, qf−1) by φ(qf ) as for every
group of order qf there are φ(qf ) generator for each group. From this we
come to the final equation by using the multiplicativity of σ and the above
equation.

Observe that Theorem 28 is a specific case of Theorem 31 in which
f = 1. Let f = 1, we have C(n, qf ) = C(n, q) = σ(n,q)−σ(n,1)

q−1 . σ(n, 1) is
the number of idempotents in n and from Theorem 6, we know that to be
2k. Furthermore, with regards to σ(n, q) =

∏k
i=1[(p

ei
i − p

ei−1
i , q) + 1] note

that (peii −p
ei−1
i , q) is 1 if q ∤ φ(peii ) and q if q | φ(peii ), arriving at Theorem 28.
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8 Conclusion

This concludes our investigation of the solutions to the equation xℓ+1 ≡ x

(mod n). Before summerizing the results of this paper, the importance of
the Chinese Remainder theorem in our investigation should be noted. The
Chinese Remainder Theorem lets us examine roots modular one prime at a
time and then generalize our results mod n. Our investigation showed that
all the idempotents can be found for any given n and that every Boolean
ring is isomorphic to chain of Z2s. We have also studied the characteristics
of solutions to xℓ+1 ≡ x (mod n) for any positive integer ℓ and concluded
that three statements, m ∈ E(n), (m,n)||n and < m > is a cyclic group
under multiplication, are equivalent. Moreover, analyzing subsets of Zn that
are groups, we concluded that the exact number of subsets that are groups
under multiplication and have order qf for an odd prime q and a positive
integer f can be found for any given n ∈ Z+.
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