
THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF

THE FIBONACCI SEQUENCE

IAN COOPER

Abstract. This paper will explore the relationship between the Fibonacci num-

bers and the Euclidean Algorithm in addition to generating a generalization of

the Fibonacci Numbers. It will also look at the ratio of adjacent Fibonacci num-

bers and adjacent generalized Fibonacci numbers. Finally it will explore some fun

applications and properties of the Fibonacci numbers.

1. Introduction

This paper will explore the relationship between Fibonacci numbers and the

Euclidean algorithm. If one applies the Euclidean algorithm to an adjacent pair

of Fibonacci numbers, the algorithm will march through each preceding Fibonacci

number before reaching its end. Once we have explored the implications of this rela-

tionship, we will expand it to a Fibonacci-triple sequences by the application of the

Euclidean Algorithm to sets of three integers. The parallel between Fibonacci and

Fibonacci-triple sequences extends to properties such the ratios between successive

terms, and to applications, such as tiling. We will formally define a Fibonacci-triple

sequence at a later time.

First, we make sure everyone is on the same page when it comes to Fibonacci

numbers. The Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8,... etc. In other

words, they are generated by the following recursion formula:

fn = fn−1 + fn−2 where f0 = 0, f1 = 1

Recall that the division algorithm asserts that given any integers a, b with a > 0,

there is a unique pair of integers r and q such that 0 ≤ r < a and b = a(q) + r. We

call q the quotient and r the remainder of b upon division by a.

Date: 1/30/2010.

1

2 IAN COOPER

Next, if a and b are integers, not both of which are 0, then we denote their

greatest common divisor by GCD(a, b). Note that if a is positive and b = q(a) + r,

then d is a common divisor of a and b iff it is a common divisor of a and r. In other

words, GCD(a, b) = GCD(r, a). If we iterate this process, we have the Euclidean

algorithm. In other words,

GCD(a, b) = GCD(r1, a) where b = q1(a) + r1

GCD(r1, a) = GCD(r2, r1) where a = q2(r1) + r2

And so on...

One continues the process until the r term equals 0. The last non-zero remainder

is our GCD. Here is a quick example which computes GCD(12, 8):

12 = 1(8) + 4

8 = 2(4) + 0

So GCD(12, 8) = 4.

Having defined the Euclidean algorithm and Fibonacci numbers, we develop

some tools to explore the relationship between the two.

2. Conventions

In this paper, we will have several conventions that will pop up repeatedly. This

section is here to tell what these conventions mean.

When we are talking about pairs, P will be the set of all pairs. Any pair named

“X” or “Y” will be some arbitrary pair. Pairs of adjacent Fibonacci numbers will

be called Fn where the smaller of the two is the nth Fibonacci number. Finally,

individual Fibonacci numbers will be referred to as fn.

For triples, T will be the set of all triples. Again, any triple named “X” or “Y”

will be some arbitrary triple. Triples of adjacent Fibonacci-like numbers will be

called Gn, and nth Fibonacci-like number will be called gn.

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE3

3. Pairs

This section will focus on how long the Euclidean algorithm takes to come to

a conclusion; i.e., the number of iterations required to complete the Euclidean

algorithm. This will lead us to trying to generate the slowest pairs of certain

magnitudes and will eventually lead us to considering the Fibonacci numbers. What

it means to be the “slowest pairs of a certain magnitude” will become clear shortly.

To begin, let N = 0, 1, 2, 3... be the natural numbers.

Definition 3.1. We define P to be the collection of all ordered pairs X = (a, b),

where a ≤ b, b 6= 0. If X = (a1, b1) and Y = (a2, b2) are in P, then X ≤ Y means

a1 ≤ a2 and b1 ≤ b2.

Proposition 3.2. The binary relation ≤ is a partial ordering of P, but not a total

ordering.

Proof. We must show that for all X,Y and Z in P:

(1) X ≤ X.

(2) If X ≤ Y and Y ≤ Z, then X ≤ Z.

(3) If X ≤ Y and Y ≤ X, then X = Y .

Let X = (a1, b1), Y = (a2, b2), and Z = (a3, b3). Note that the first condition is

clear. As for the second,

X ≤ Y ⇒ a1 ≤ a2 and b1 ≤ b2

Y ≤ Z ⇒ a2 ≤ a3 and b2 ≤ b3

So, a1 ≤ a2 ≤ a3 and b1 ≤ b2 ≤ b3. This can be written as a1 ≤ a3 and b1 ≤ b3

which, by definition, means X ≤ Z.

The third condition is proved in a similar manner.

X ≤ Y ⇒ a1 ≤ a2 and b1 ≤ b2

Y ≤ X ⇒ a2 ≤ a1 and b2 ≤ b1

4 IAN COOPER

So, a1 ≤ a2 ≤ a1 and b1 ≤ b2 ≤ b1. This obviously implies a1 = a2 and b1 = b2.

Thus, X = Y .

Finally, we show that ≤ is not a total ordering of P. To do this, we must show

that there are X,Y ∈ P such that neither X ≤ Y nor Y ≤ X is true.

So, if X = (2, 4) and Y = (1, 5), then X � Y because 2 > 1, and Y � X because

5 > 4.

Now that we have defined P and ≤, it is time for us to take a look at the “order”

of pairs. To begin, we define a couple of functions. Let

P∗ = {(a, b) ∈ P : a 6= 0}.

Definition 3.3. If S = (a, b) ∈ P∗, let E(S) = (r, a) ∈ P, where b = q(a) + r in

the division algorithm. And if S = (a, b) ∈ P, let D(S) = (b, a+ b) ∈ P∗.

Proposition 3.4. If S = (a, b) ∈ P and a < b, then E(D(S)) = S.

Proof. Since D(S) = (b, a+ b), b+ a = 1(b) + a and a < b, it follows that E((b, a+

b)) = (a, b), giving the result.

On the other hand, note that E(D((1, 1))) = E((1, 2)) = (0, 1) 6= (1, 1). We do

have the following properties that are closely related to the above:

Proposition 3.5. The function D : P→ P∗ is injective and order preserving.

Proof. Suppose S = (a, b) and S′ = (a′, b′). If D(S) = D(S′), then b = b′ and

a+b = a′+b′, which implies that a = a′, and hence S = S′. Therefore, D is injective.

If S ≤ S′, then a ≤ a′ and b ≤ b′, so that D(S) = (b, a+ b) ≤ (b′, a′ + b′) = D(S′).

The following is central to our investigation:

Definition 3.6. If S = (a, b) ∈ P, we say S has order 0 if a = 0, and we write

O(S) = 0. Assume next that S = (a, b), where a > 0, and that we have defined

the order for all elements of (a′, b′) ∈ S for which a′ < a. In this case, we then let

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE5

O(S) = O((E(S))) + 1.

In other words, O(S) = 0 iff S 6∈ P∗, and in general, O(S) = k iff k is the smallest

integer such that Ek(S) 6∈ P∗. We mention in passing the following:

Proposition 3.7. If S = (a, b) ∈ P, then O(S) ≤ a.

Proof. Suppose Ek(S) = (ak, bk), so that a0 = a, b0 = b. Since ak is the remainder

upon dividing ak−1 into bk−1, we have a = a0 > a1 > a2 > · · · . This process

terminates at the first integer k = O(S) such that ak = 0, showing that a ≥ k, as

required.

Proposition 3.8. For any S = (a, b) ∈ P, O(S) = 1 iff a|b.

Proof. Note S has strictly positive order iff a 6= 0. In this case, let b = q(a) + r be

as in the division algorithm. Therefore, O(S) = 1 iff E(S) = (r, b) has order 0 iff

r = 0 iff a|b.

The next definition is also central to our discussion.

Definition 3.9. Let Fn = (fn, fn+1) ∈ S where fn is the nth Fibonacci Number.

Our overall aim is to show that these Fn’s are the smallest pairs of their order.

We first take a look at the orders of the first few Fibonacci pairs or the first five

Fn’s.

(1) O(F0) = 0 by definition because F0 = (0, 1).

(2) O(F1) = O(F2) = 1

Since F1 = (1, 1), F2 = (1, 2) and 1 divides any integer, this follows from

Proposition 3.8.

(3) O(F3) = 2

F3 = (2, 3) and 3 = 1(2) + 1 so E(F3) = (1, 2) = F2 which is of order 1. We

know O(F3) = O(E(F3)) + 1 so O(F3) = 2.

6 IAN COOPER

In fact, using Definition 3.9, we claim that if S has order 0, then F0 ≤ S: We

know F0 = (f0, f1) = (0, 1) and that for S to have order 0, its first entry, a, must

be zero. Since b > a, we have b ≥ 1. So S ≥ F0.

We next show that if S = (a, b) has order 1, then F1 ≤ S: We know F1 = (1, 1).

Since S does not have order 0, we must have a ≥ 1. And since b ≥ a, we must have

b ≥ 1. Therefore, S ≥ (1, 1) = F1.

Before continuing these computations, we make the following observation:

Proposition 3.10. If n ≥ 0, the following hold:

(1) D(Fn) = Fn+1;

(2) If n 6= 1, then E(Fn+1) = Fn.

Proof. As to (1), we have D(Fn) = D((fn, fn+1)) = (fn+1, fn + fn+1) = Fn+1.

Next (2) follows from (1) and Proposition 3.4, since fn = fn+1 iff n = 1.

Now it is time to prove the following, which is half of the primary aim of this

section.

Theorem 3.11. If n ≥ 2, then O(Fn+1) = n.

Proof. By the above computations, this works for n = 2. Next, we assume n ≥ 3

and the result holds for Fn. Now, let us determine the order of Fn+1. We have

E(Fn+1) = Fn. We just assumed O(Fn) = n − 1, so O(Fn+1) = O(E(Fn)) + 1 =

O(Fn) + 1 = (n− 1) + 1 = n− 1. Thus O(Fn+1) = n.

Finally, we can prove the theorem that was our chief aim in all of this.

Theorem 3.12. For n ≥ 2, if S has order n, then Fn+1 ≤ S.

Proof. Suppose S = (a, b) is of order 2. If a = 0, then O(S) = 0, and if a = 1,

then by Proposition 3.4, O(S) = 1. Therefore, we can conclude a ≥ 2. If a = b,

then again by Proposition 3.4, O(S) = 1, so that 2 ≤ a < b. However, this gives

(a, b) ≥ (2, 3) = F3, as required.

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE7

Now, we assume this works up to n− 1 and S = (a, b) has order n. If a = b, we

could again conclude that O(S) = 1, which does not hold. Note that O(E(S)) =

n − 1, so that by induction we have E(S) ≥ Fn. Using Propositions 3.4 and 3.5,

we have that S = D(E(S)) ≥ D(Fn) = Fn+1. Thus, any S of order n satisfies

S ≥ Fn+1.

We note in passing that the converse of Theorem 3.12 does not hold. For example,

F4 = (3, 5) has order 3 and (3, 5) ≤ (3, 6), but since 3 divides 6, we know that (3, 6)

has order 1.

In summary, we have just shown that if S has order n, then S ≥ Fn+1. In other

words, adjacent pairs of Fibonacci numbers are the slowest pairs to which one can

apply the Euclidean Algorithm. Again, this is because the Euclidean Algorithm

simply marches back down through the Fibonacci numbers on its quest for their

GCD.

4. Estimating the order of Fn

In this section, we prove the following result:

Theorem 4.1. If X = (a, b) ∈ P, then O(X) ≤ 5 ∗ log10(a) + 1.

Proof. Recall that Fn denotes the pair of Fibonacci numbers fn, fn+1 and that the

order of any pair of numbers is the number of times one can apply the Euclidean

Algorithm to it before it terminates. Also recall that if n ≥ 2, then O(Fn+1) = n,

and in fact, Fn+1 is the smallest element of P of order n.

First, notice that for any pair X = (a, b) of order n, X ≥ Fn+1 implies a ≥ fn+1.

We would now like to show that fn+1 > Φn−1 for n ≥ 2, where Φ = (1 +
√

5)/2 or

the Golden Ratio. We will do this by induction. For our base case, look at n = 2

and n = 3.

Φ < 2 = f3 X

Φ2 = (3 +
√

5)/2 < 3 = f4 X

8 IAN COOPER

Now let us assert that Φk−1 < fk+1 for all integers k such that 3 ≤ k < n. We

know that Φ is the solution to x2−x−1 = 0 so we can say Φ2 = Φ+1. This allows

us to do the following,

Φn−1 = Φ2 ∗ Φn−3 = (Φ + 1) ∗ Φn−3 = Φn−2 + Φn−3

From our previous induction assumption, we know Φn−2 < fn and Φn−3 < fn−1.

If we add these two inequalities, we get,

Φn−1 = Φn−2 + Φn−3 < fn + fn−1 = fn+1.

So, our assumption also holds for k = n. Thus, fn+1 > Φn−1 for n ≥ 2.

Now, if we look back, we notice that this means that a ≥ fn+1 > Φn−1 for n ≥ 2.

We also know that log10Φ > 1/5. So,

log10a > (n− 1)log10Φ > (n− 1)/5.

Therefore,

n− 1 < 5 ∗ log10a.

as required.

Corollary 4.2. Suppose X = (a, b) ∈ P and there are k digits in the decimal

representation of a. Then O(X) is no greather than 5k.

Proof. We have a < 10k, so that log10a < k. We then have

O(X) < 5k + 1

Since O(X) is an integer, we can conclude that O(X) ≤ 5k, as required.

We have just shown that the order of any pair is no more than 5 times the

number of digits in the smaller of the two numbers in a pair.

An interesting question that arises from this is what the the ratio of the estimate

to the actual order of a pair approaches as the order approaches infinity. We will

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE9

simplify this question to simply looking at the estimate of the order of a pair Fn

against its actual order, n− 1. It turns out that

lim
n→∞

5 ∗ log10(Fn)

n− 1
= 5 ∗ log10(Φ).

To show this, we know that Fn = Φn−(−1/Φ)n√
5

which can be rewritten Φn(1−(−1/Φ)2n)√
5

.

If we plug this into the above and expand we get something like this...

5 ∗ [log(Φn) + log(1− (1/Φ)2n)− log(
√

5)]

n− 1

Taking the limit of the above as n→∞ causes log(1− (1/Φ)2n to go to zero. This

leaves us with:

limn→∞
5n ∗ log(Φ)

n− 1
− log10

√
5

n− 1

By l’Hospital’s rule, the first term goes to 5 ∗ log10(Φ) and the second term goes to

zero as n goes to infinity. This leaves us with the desired result of 5log(Φ).

5. Triplets

This section will be very similar to the previous except we will focus on the

Euclidean Algorithm applied to triples. The aim here is to identify the slowest

triples, develop some way to generate them, and observe similarities between the

resulting sequence and the Fibonacci numbers.

First, we clarify what it means to apply the Euclidean algorithm to a triple. Say

we have three integers, (a, b, c), where a ≤ b ≤ c. We run two separate instances

of the division algorithm using the smallest of the three integers as our divisor. In

other words,

c = qc(a) + rc

b = qb(a) + rb

Now, a is the largest of the triple (min(rb, rc),max(rb, rc), a). One then repeats

the process. Here is a numerical example:

Given (8, 10, 12),

10 = 1(8) + 2

10 IAN COOPER

12 = 1(8) + 4

The new triple is (2, 4, 8). One more iteration.

8 = 4(2) + 0

4 = 2(2) + 0

So GCD(8, 10, 12) = 2.

We formally begin our investigation of triples with a few Definitions. Again let

N = {0, 1, 2, 3, . . . } be the natural numbers.

Definition 5.1. Let T be the collection of all ordered triples S = (a, b, c), where

a, b, c ∈ N, a ≤ b ≤ c and c 6= 0. If X = (a1, b1, c1) and Y = (a2, b2, c2) are in T,

we again let X ≤ Y mean a1 ≤ a2, b1 ≤ b2 and c1 ≤ c2.

Almost identically to pairs, T is partially ordered, but not totally ordered, by ≤.

Define T∗ = {(a, b, c) ∈ T : a = 0}. Next, if S = (a, b, c) ∈ T∗, let

E(S) = (min(rb, rc),max(rb, rc), a)

and if S = (a, b, c) ∈ T, let

D(S) = (c, a+ c, b+ c) ∈ T∗.

We note that the analogues of Propositions 3.4, 3.5 and 3.7 carry over in the

obvious manner.

Definition 5.2. If S = (a, b, c) ∈ T, we say S has order 0 if a = 0, and we

write O(S) = 0. Assume next that S = (a, b, c), where a > 0, and that we have

defined the order for all elements of (a′, b′, c′) ∈ T for which a′ < a. We then let

O(S) = O((E(S)) + 1.

In other words, the order of a triple is how many iterations of this form of the

Euclidean Algorithm it takes to reduce from the case of triples of numbers to the

case of pairs of numbers (one term terminates with a zero). Again, as in the case

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE11

of ordered pairs, it is clear that if S = (a, b, c), then O(S) ≤ a, and that O(S) = 1

iff a|b or a|c.

The first part of our investigation will be much like what we did for pairs. We

begin by finding the smallest triples of order 0, 1, 2 and 3.

(1) Let us begin with G0 = (0, 0, 1). We would like to show that this is the

smallest element of T of order 0.

To do this, first we must show that it is of order zero. Obviously, it is

because its a slot is a zero. Next, we have to show the other two positions

are as small as possible. This is the case because the b slot is a zero and the

c slot is not allowed to be zero. Thus U0 = (0, 0, 1) is the smallest element

of T of order 0.

(2) Next, we show that G1 = (1, 1, 1) is the smallest element of T of order 1.

Let S = (a, b, c) have order 1. First, we know that to have a non-

zero order, a > 0; so 1 is the next smallest integer to fill this slot. Since

a ≤ b ≤ c, the smallest b and c can possibly is 1. Now we just have to show

that G1 is of order 1. Since E(G1) = (0, 0, 1), which is of order zero and

O(S) = O((E(S)) + 1, we have O(G1) = 1.

(3) We now want to show G2 = (2, 3, 3) is the smallest element of T of order 2.

Again, suppose S = (a, b, c) has order 2. First, let us examine the a slot.

We have 2 = O(S) ≤ a. Next, we know a ≤ b ≤ c, so the smallest b and c

can be is 2, as well. But if a divided either b or c, then S would again be

of order 1. Therefore, the smallest possible value for b and c is 3. Now, we

make sure (2, 3, 3) is of order 2. But this follows from E((2, 3, 3)) = (1, 1, 2)

and E((1, 1, 2)) = (0, 0, 1). Thus, G2 is of order 2 because the process took

two steps.

(4) Now, we would like to show that G3 = (5, 7, 8) is the smallest element of T

of order 3. This is a somewhat scary argument.

First, let S = (a, b, c) have order 3. Let b = qb(a)+ra and c = qc(a)+rc.

The following must therefore hold:

12 IAN COOPER

(1) rb 6= 0, 1 and rc 6= 0, 1: If either of these terms were 0, then

O(E(S)) = 0 so that O(E) = 1; and if either were equal to 1 then

O(E(S))< 1 so that O(E(S))< 2.

(2) rb 6= rc: If this were the case, then O(E(S)) ≤ 1, so that O(S) ≤ 2.

Now, if a = 2, then we must have rb, rc< 1, which violates (1). Therefore,

a ≥ 3.

Next, if a = 3, then by (1), we would have rb = rc = 2, which would

violate (2). Therefore, a ≥ 4.

If a = 4, then by (1), neither rb nor rc can be 0 or 1. And by (2), we

cannot have rb = rc. It follows that E(S) = (2, 3, 4). However, this would

imply that E2(S) = (0, 1, 2), so that O(S) = 2 < 3.

It follows that a ≥ 5. Since we must have rb, rc ≥ 2, and b < c, we can

conclude that b = qb(a) + rb ≥ 5 + 2 = 7 and c ≥ b + 1 ≥ 8. This shows

that S ≥ G3.

Finally, we verify that O(G3) = 3:

E(G3) = (2, 3, 5)

E((2, 3, 5)) = (1, 2, 2)

E((1, 2, 2)) = (0, 0, 1).

So, (5, 7, 8) is of order 3, and in fact, it is the smallest element of T of order

3.

Now that we have built the first few elements of T that are the smallest of their

order, it is time for another definition.

Definition 5.3. If k ≥ 4 and we have defined Gk−1 = (ak−1, bk−1, ck−1), let

Gk = D(Gk−1) = (ak, bk, ck) where

ak = ck−1

bk = ck−1 + ak−1

ck = ck−1 + bk−1

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE13

that is, Gk is the kth row of the following table:

0 0 1

1 1 2

2 3 5

G3 5 7 8

G4 8 13 15

G5 15 23 28

Theorem 5.4. For all n ≥ 0, Gn is the least element of T of order n.

Proof. All of the above work has gone to verify this for n = 0, 1, 2, 3, so assume

n ≥ 4 and the result has been verified for n− 1; we prove that it also holds for n.

Since E(Gn) = E(D(Gn−1)) = Gn−1 has order n − 1, we can conclude that

O(Gn) = (n− 1) + 1 = n.

Suppose next that S = (a, b, c) is any other element of T of order n. We need

to show S ≥ Gn. Let E(S) = (r, s, a) (so that r ≤ s < a) and Y = D(E(S)) =

(a, a+ r, a+ s).

We claim that Y ≤ S: To verify this we must show a+r ≤ b and a+s ≤ c (since

both triples have a in their first coordinate). From Y = E(S), we know that either

(1) b = q1a+ r and c = q2a+ s; or (2) b = q1a+ s and c = q2a+ r,

where q1, q2 ≥ 1.

First let us look at case 1. Observe that b ≥ q1a+r ≥ a+r and a ≥ q2a+s ≥ a+s,

as required.

Now we look at case 2. Since s ≥ r, we have b = q1a + s ≥ a + r. And since

c ≥ b, we have c ≥ q1a+ s ≥ a+ s.

Since O(Y) = O(E(S)) = n − 1, we know Gn−1 ≤ Y . It follows that Gn =

D(Gn−1) ≤ D(Y) = D(E(S)) = S, and our induction is complete.

14 IAN COOPER

We call an the nth Fibonacci-triple number. This terminology is due to the

following recursion result:

Proposition 5.5. If Gk = (ak, bk, ck) is as above, then for k ≥ 4 we have

ak = ak−1 + ak−2 + ak−3.

Proof. We know

ak = ck−1

bk = ck−1 + ak−1

ck = ck−1 + bk−1

So, ak = ck−2 + bk−2 = ak−1 + ck−3 + ak−3 = ak−1 + ak−2 + ak−3.

In other words, if the G’s are arranged in columns as in 5.3(in previous section),

then each entry in Gk where k > 3 are the sum of the previous three in its column.

This is very similar to the way Fibonacci numbers work. If we arrange the first few

elements Fn of P in a similar manner we get,

F1 = 1 1

F2 = 1 2

F3 = 2 3

F4 = 3 5

F5 = 5 8

F6 = 8 13

Notice that every number after the second row is the sum of the previous 2 in their

column. This is why we refer to these an as Fibonacci-triple numbers. Again, we

have shown that for every n ∈ N, Gn is the smallest element of T of order n.

Slightly more generally, if g1, g2 and g3 is a non-decreasing set of positive integers,

we can iteratively define Fibonacci-triple numbers using the recursion relation

gk = gk−1 + gk−2 + gk−3.

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE15

In fact, it is not really the initial few values that are of most interest, but the way

in which the sequence behaves in the long term.

6. Convergence of fn/fn−1

Begin by defining ρn = fn+1/fn. Since the definition of a Fibonacci number is

fn = fn−1 + fn−2, we can divide through by fn−1 and get ρn = 1 + 1/ρn−1. This

gives us the following definition.

Definition 6.1. f(x) = 1 + 1/x

Therefore, ρn = f(ρn−1) = ... = fn−1(1). Our objective is the following well

known result:

Theorem 6.2. We have

lim
n→∞

ρn = Φ,

where Φ = (1 +
√

5)/2 is the Golden Ratio.

Proof. We examine the first few ρ’s.

ρ1 = 1

ρ2 = 2

ρ3 = 3/2

ρ4 = 5/3

Notice here that ρ1 < ρ3 < ρ4 < ρ2. In fact, we can generalize this to ρ2k+1 <

ρ2k+3 < ρ2k+2 < ρ2k for some integer k. [This follows by induction: If it holds for

k, then applying f to this leads to ρ2k+1 < ρ2k+3 < ρ2k+4 < ρ2k+2, and applying

f a second time leads to ρ2k+3 < ρ2k+5 < ρ2k+4 < ρ2k+2, which is the k+ 1st case

of the statement.] Thus, since the sequence ρ2k+1 is bounded and decreasing, it

must converge to some value. Let us call this value Φ. The same can be said for

limk→∞(ρ2k). Let us call the value that this approaches Φ’.

Notice that to move one spot up the ρ2k+1 or ρ2k lines, one must apply f(x)

twice, where x is the current ρ. In other words, ρ2k+2 = f(f(ρ2k)). Since f is

16 IAN COOPER

continuous, we must have f(f(Φ)) = Φ and f(f(Φ′)) = Φ′. So, if x = f(f(x)) has

a unique solution, Φ = Φ′. This begs the question: what does f(f(x)) look like?

Plugging 1 + 1/x in for x yields,

1 + 1/(1 + 1/x).

Multiply the last term by x/x for,

1 + x/(x+ 1).

We can simplify this further like so,

1 + (x+ 1− 1)/(x+ 1) = 2− 1/(x+ 1).

Thus,

f(f(x)) = 2− 1/(x+ 1).

Now, let’s solve x = 2− 1/(x+ 1) and see if we get the expected value, the Golden

Ratio ((1 +
√

5)/2).

x = 2− 1/(x+ 1)

x2 + x = 2x+ 1

x2 − x− 1 = 0

This is a very simple problem. If we just plug into the quadratic formula, we do

indeed get back x = (1 +
√

5)/2. We can discard the negative solution because all

of these numbers are positive.

So, we have shown that the ratio ρn of adjacent Fibonacci numbers approaches

some number Φ as n→∞. In addition, we have shown that Φ = (1 +
√

5)/2.

7. Convergence of gn+1/gn

In this section we would like to show that the ratio between adjacent Fibonacci-

triple numbers, gn and gn+1, approaches some number Ψ as n→∞.

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE17

Throughout this section we will let

g(x) = x+ 1 + 1/x.

To begin with we would like to show that g(x) is increasing on (1,∞): We take

the derivative and get g′(x) = 1− 1
x2 . It is fairly easy to see that g′(x) ≥ 0 for all

values on the interval (1,∞), since every larger value for x decreases the value of

the x term being subtracted.

We next let

f(x) = 1 + 1/x+ 1/x2.

We now observe that f(x) is decreasing on the interval (1,∞): In fact, any

increase in the value of x makes the fraction portions smaller thus decreasing the

value of f(x).

This brings us to the following important step in evaluating the ratios of Fibonacci-

triple numbers:

Lemma 7.1. There is a unique x > 1 with the property that f2(x) = f(f(x)) = x,

which is also the unique solution to the equation

x3 − x2 − x− 1 = 0.

Proof. Suppose that x0 > 1 is some number such that f2(x0) = x0. We would like

to show that if x1 = f(x0) then g(x0) = x0x1 = g(x1). We have

g(x0) = x0 + 1 + 1/x0 = x0(1 + 1/x0 + 1/x2
0) = x0f(x0) = x0x1.

We also have x0 = f(f(x0)) = f(x1), so that

g(x1) = x1 + 1 + 1/x1 = (1 + 1/x1 + 1/x2
1)x1 = f(x1)x1 = x0x1.

We would now like to verify that there is a unique solution x > 1 to x = f(x).

We know f(1) = 3 > 1 and f(2) = 7/4 < 2. Since f(x) − x is strictly decreasing

on [1,∞), there is a unique solution to f(x) = x in this interval.

18 IAN COOPER

Next, we need to show that f2(x) = x also has the same solution. Suppose we

have a solution x0 for f(f(x0)) = x0. If we let x1 = f(x0), we know from the above

that g(x1) = g(x0). Since g is strictly increasing, we can conclude f(x0) = x1 = x0.

This establishes our statement.

Finally, note that f(x) = x iff

f(x) = 1 + 1/x+ 1/x2 = x

iff

x2 + x+ 1 = x3

iff

0 = x3 − x2 − x− 1.

Let Ψ > 1 be the unique solution to the above equation.

Next, let a0 = 1 and an = f(an−1) or an = fn(1). Let us quickly pound out the

first few of these and look at their relationships to one another. a0 = 1, a1 = 3,

a2 ≈ 1.444444, and a3 ≈ 2.1716. Thus a0 < a2 < a3 < a1.

Lemma 7.2. For all k ∈ N we have a0 < a2 < ... < a2k < a2k−1 < ... < a3 < a1.

Proof. We prove by induction on k that

a2k < a2k+2 < a2k+3 < a2k+1.

We have just verified this for k = 0. If we assume it is true for k, then since f is

strictly decreasing, applying f to this gives

a2k+2 < a2k+4 < a2k+3 < a2k+1.

If we apply f once again, we obtain

a2k+2 < a2k+4 < a2k+5 < a2k+3,

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE19

which is the k + 1st case of our hypothesis.

Lemma 7.3. We have

lim
n→∞

an = Ψ.

Proof. By Lemma 7.2, a2k is a bounded increasing sequence, so it converges to

some value α. Since f(f(a2k)) = a2k+2 and f is continuous, we can conclude that

f(f(α)) = α. However, by Lemma 7.1, this means that α = Ψ. Similarly, the

subsequence a2k+1 must also converge to Ψ. However, this is just what we want to

prove.

Definition 7.4. With the above notation, let I1 = [a0, a1], I2 = [a2, a1] and so on.

In other words, for n = 1, 2, 3, ..., In = [an, an+1] if n is odd and In = [an+1, an] if

n is even.

Notice that for any n, In = fn(1, 3) and In+1 ⊆ In.

Lemma 7.5. For any ρ, ρ′ ∈ In, we have 1 + 1/ρ+ 1/ρρ′ ∈ In+1.

Proof. Two cases arise here: ρ ≤ ρ′ and ρ′ ≤ ρ. Let In = [b, c], thus In+1 =

[f(c), f(b)]. Since ρ, ρ′ ∈ In, b ≤ ρ, ρ′ ≤ c. In the case of ρ ≤ ρ′, we have

f(c) ≤ f(ρ′) ≤ 1 + 1/ρ′+ 1/(ρ′)2 ≤ 1 + 1/ρ+ 1/ρρ′ ≤ 1 + 1/ρ+ 1/ρ2 ≤ f(ρ) ≤ f(b)

This shows that 1 + 1/ρ+ 1/ρρ′ ∈ In+1.

However, in the case of ρ′ ≤ ρ, we have

f(c) ≤ f(ρ) ≤ 1 + 1/ρ+ 1/ρ2 ≤ 1 + 1/ρ+ 1/ρρ′ ≤ 1 + 1/ρ′+ 1/(ρ′)2 ≤ f(ρ′) ≤ f(b),

which again leads to what we want.

Definition 7.6. Let ρn = gn+1

gn
where g1, g2, g3, ... etc. are the Fibonacci-triple

numbers 1, 1, 1, 3, 5, 9...

20 IAN COOPER

Lemma 7.7. For any k ≥ 2, we have

ρk+1 = 1 +
1

ρk
+

1

ρkρk−1
.

Proof. If we take the equation

gk+2 = gk+1 + gk + gk−1

and divide by gk+1, it simplifies to the above.

This brings us to the main result of this section.

Theorem 7.8. We have

lim
n→∞

ρn = Ψ.

Proof. We show by induction that for all positive integers n, that ρ2n−1, ρ2n ∈ In.

Since ρ1 = ρ2 = 1, this clearly holds for n = 1. Assume ρ2n−1, ρ2n ∈ In. By

Lemma 7.7 (with k = 2n) and Lemma 7.5 (with ρ = ρ2n−1 and ρ′ = ρ2n), we can

conclude that ρ2n+1 ∈ In+1 ⊆ In. Again by Lemma 7.7 (with k = 2n + 1) and

Lemma 7.5 (with ρ = ρ2n and ρ′ = ρ2n+1), we can conclude that ρ2n+2 ∈ In+1.

This completes our induction.

Therefore, by the squeezing theorem, our result follows from Lemma 7.3.

The number Ψ which is the limit of the ratios of the Fibonacci-triple numbers,

is the unique solution x > 1 to the polynomial

x3 − x2 − x− 1 = 0.

Using Maple, we have an approximate solution

Ψ = 1.839286755...,

and an exact solution of

Ψ =
(19 + 3

√
33)1/3

3
+

4

3(19 + 3
√

33)1/3
+ 1/3.

THE EUCLIDEAN ALGORITHM AND A GENERALIZATION OF THE FIBONACCI SEQUENCE21

Notice that this is larger than the golden ratio ((1 +
√

5)/2 ≈ 1.618) which is the

ratio that adjacent Fibonacci numbers approach.

8. Fun application

Fibonacci numbers crop up in naturally occurring problems all the time. One

such application is tiling. First we look at tiling with two types of tiles. Imagine you

have square tiles (let us call these one unit) and rectangular tiles that are exactly

the size of two square tiles side by side or are two units. Now imagine you have

a section of floor one width of a square tile wide and some number of square tile

widths long or n units. It would be interesting to see how many ways you can tile

the floor, would it not?

We start with a section of floor that is non-existent. There is one way to tile

this section: you just don’t tile it. Now look at a section of floor that is exactly the

one unit in length. There is one way to tile this. You can put a single square tile

on it. Finally look at a section that is two units long. There are two ways to tile

this: one rectangular tile or two square tiles. Generally, if one has a section of floor

n units long, there are fn ways to tile it, where fn is the nth Fibonacci number.

This same idea can be used for tiling a section n units long with three kinds

of tile, squares, rectangles of length two, and rectangles of length three. The only

difference here is that instead of the normal Fibonacci numbers, we are going to

see the Fibonacci-triple numbers generated in section 2. Here is the result.

Theorem 8.1. The number of ways to tile a rectangle that is 1 by n units using

tiles that are either 1 by 1, 1 by 2 or 1 by 3, is the nth element of the sequence

1, 2, 4, 7, 13, 24,

Proof. Let tn be the nth element of this sequence, so that for n ≥ 3 we have

tn+1 = tn + tn−1 + tn−2. We proceed by induction, and it is easy to verify the result

for n = 1, 2, 3. So assume n ≥ 4 and we have verifies the result for n − 1 ≥ 3. If

we have n squares and only look at the last one, there are 3 ways in which to tile

22 IAN COOPER

that last square. One could use a single square, a double, or a triple. For the single

case, there are n− 1 remaining squares so there are tn−1 ways of tiling them. For

the double case there are n − 2 remaining squares, thus tn−2 ways of tiling them.

Finally for the triple case, we are left with n − 2 squares to tile and tn−2 ways to

do so. Thus the number of ways to tile n squares is tn−1 + tn−2 + tn−3 = t+ n.

9. conclusion

This concludes our investigation of the Fibonacci numbers and the Euclidean

Algorithm. We have shown that the adjacent Fibonacci numbers are the smallest

pairs of their order and that they are the slowest pairs when the Euclidean Algo-

rithm is applied to them. In addition we showed that the smallest triplets of their

order are in fact, very similar to the Fibonacci numbers. We also inspected the

ratios of adjacent Fibonacci numbers and Fibonacci Triples and found that both

approach some ratio and the Fibonacci numbers approach the Golden Ratio while

the triples approach some value slightly larger than the Golden Ratio. Finally, we

played around with the fun application of tiling and its expansion to the triples.

10. References

(1) http://www.math.ualberta.ca/ isaac/math324/s05/lame.pdf

(2) http://www.math.hmc.edu/funfacts/ffiles/20004.5.shtml

(3) http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html

