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Abstract. This paper is an empirical study of eight-wide elementary cellu-

lar automata motivated by Stephen Wolfram’s conjecture about widespread
universality in regular elementary cellular automata. Through examples, the

concepts of equivalence, reversibility, and additivity in elementary cellular au-

tomata are explored. In addition, we will view finite-width cellular automata
in the context of finite-size state transition diagrams and develop foundational

results about the behavior of finite-width elementary cellular automata.

1. Introduction

Stephen Wolfram’s A New Kind of Science explores elementary cellular au-
tomata and universality in simple computational systems [3]. In 1985, Wolfram
conjectured that an elementary cellular automaton could be Turing complete, thus
capable of universal computation. At the turn of the century, Matthew Cook pub-
lished a proof confirming that a particular cellular automaton, known as “Rule 110,”
was universal [1]. Wolfram currently conjectures that universality in non-trivial cel-
lular automata (and other simple systems) is likely to be extremely common. This
paper, in addition to an outline of Wolfram’s basic work, is an empirical study
seeking to add information and insight to the exploration of elementary cellular
automata.

Elementary cellular automata have become relevant given Wolfram’s develop-
ment of the Principle of Computational Equivalence. From Wolfram, the Principle
of Computational Equivalence states that “almost all processes that are not ob-
viously simple can be viewed as computations of equivalent sophistication [3, p.
5 , 716-717].” Wolfram’s MathWorld explains further that “the principle of com-
putational equivalence says that systems found in the natural world can perform
computations up to a maximal (“universal”) level of computational power, and that
most systems do in fact attain this maximal level of computational power. Conse-
quently, most systems are computationally equivalent. For example, the workings
of the human brain or the evolution of weather systems can, in principle, compute
the same things as a computer. Computation is therefore simply a question of
translating inputs and outputs from one system to another.” This principle has
powerful implications in a wide range of academic study including mathematics,
philosophy, religion, and physics. Much of its weight hinges on the abundance of
universality in non-trivial systems. Only one particular elementary CA has been
shown to be capable of universal computation (“rule 110”), but showing this prop-
erty in other cellular automata would add major significance to Wolfram’s work.
We begin an empirical exploration of finite-width elementary CA below.
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After a brief discussion of regular cellular automata, this paper will explore finite-
width elementary cellular automata. Section 2 will explain elementary cellular
automata (CA) in detail; specifically, we will address how they are constructed,
and explain Wolfram’s naming conventions used in discussing CA.

Section 3 documents Wolfram’s work with general elementary CA equivalence
and explores how this might be affected by restricting width. We will discuss
mirrored equivalence, complementary equivalence, and the combination of both.

Section 4 addresses the relationship of CA to discrete dynamical systems. An
explanation of the state space of finite-width elementary automata leads to a dis-
cussion on cycles, transients and properties of finite-width elementary CA.

Section 5 will demonstrate how state transition diagrams assists the study of
finite-width elementary CA. Specifically, we explore reversibility and attempt to
quantify it through the volume of transient states, “Garden of Eden States”, and
the number of branches in the state transition diagram.

A system capable of universal computation has the ability to emulate any other
system. In the words of Matthew Cook “when we say that some system is uni-
versal...we mean that it can run any program, or, in other words, execute any
algorithm [1, p. 2].” The most common example of a universal system is the dig-
ital computer. This project is focused on the exploration of much more simplistic
systems that display universality. Specifically, certain cellular automata are known
to be capable of universal computation.

Figure 1. Simple CA Model

2. Cellular Automata

In their most general form, cellular automata are dynamical systems that consist
of a regular array of cells. The array can be any finite number of dimensions, and
each row of the array takes on a particular element of a finite-set known as the
state space. These arrays evolve through time in accordance with some type of
rule. Figure 1 is example of a CA.

Wolfram uses elementary cellular automata to emphasize the notion that simple
systems following basic rules can acheive highly complex behavior–the first step in
recognizing that elementary CA could be capable of universal computation. All
elementary CA exhibit the following properties: a nearest neighbor scheme that
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has a range of 3 (the range will be discussed in Section 2.1), the use of a two
color scheme (each cell is either black or white), and its evolution must be one-
dimensional. To clarify, the pictorial representation of a one-dimensional CA is a
two-dimensional grid, but the evolution of the CA is in only one dimension. Figure
2 shows a typical elementary CA.

Wolfram has organized a comprehensive table of elementary CA in order to
analyze typical behavior. Though not rigorously defined, Wolfram categorizes all
elementary CA into four classes: Class I CA demonstrate trivial behavior, Class
II CA demonstrate behavior that quickly becomes stable or oscillatory, Class III
CA demonstrate chaotic behavior, and Class IV CA produce behavior which may
eventually become stable but contains nested structures that interact in complex
and interesting ways. Along with these classifications, Wolfram has commented on
the way elementary CA develop with rough facts, figures and empirical evidence–
some of which will be referenced later. It is the goal of this project to highlight and
comment further on typical elementary CA behavior. To do so, we further simplify
elementary CA by restricting width.

Figure 2. One-Dimensional CA

2.1. Finite-Width One-Dimensional Cellular Automata. This project re-
stricts its focus to finite-width elementary cellular automata, see Figure 2. The
grid of finite-width elementary CA is given by a collection of finite-length horizon-
tal arrays, called states. The CA of this particular class are still restricted to the
values for each cell of an array: “on” or “off”, black or white, or 0 or 1.

The way in which a CA evolves is described by a rule. Each state is determined
in a particular way by the state that precedes it. The rules that govern elementary
CA use a “nearest neighbor” scheme. That is, a cell at position p of a state at
time step t + 1 is given by the values of the cells at positions p − 1, p, and p + 1
of the state at time step t. The number of nearest neighbor cells used is called the
range–here, the range is 3. Note that t can also be thought of as the row number of
the grid. Rules take into account all possible three-cell combinations, hence there
are eight nearest neighbor stencils for each rule. Figure 4 is typically how rules are
displayed.

The cells at the beginning and end of each state need a third nearest neighbor.
For this reason, we will impose periodic boundaries. The finite-width CA grids can
then be visualized as hollow cylinders.

2.2. Constructing a Finite-Width One-Dimensional CA. We can now con-
struct a finite-width elementary cellular automata. Assume the width of all finite-
width CA discussed in this paper to be 8 unless otherwise stated.

(1) First, select an initial condition, the first row of a CA. Here, we use one
black cell like so:
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Figure 3. Elementary CA Initial Condition

(2) Next, select a rule. Consider rule 110, given by Figure 4.

Figure 4. An Elementary CA Rule

(3) Apply the rule to the initial state to obtain the second state. Notice all
but three cells will be determined by three white cells. The second state is
then

Figure 5. Two Evolutions of a CA Subject to Rule 110

(4) Next, apply the rule a second and third time to obtain

Figure 6. Four Evolutions of a CA Subject to Rule 110
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Notice Figure 6 is precisely the CA displayed in Figure 2. A rule may be applied
indefinitely to obtain as many evolutions of a particular elementary CA as desired.
However, it will be shown later that indefinite extensions of finite-width elementary
CA are unnecessary, and there is instead a natural stopping point.

2.3. Wolfram’s Numbering Scheme. The elementary rules of elementary CA
determine functions. Given any state we may apply an elementary rule to obtain
the next evolution in the cellular automaton. Each stencil of an elementary rule can
be thought of as a function from Z2 × Z2 × Z2 −→ Z2. Perhaps more familiarly,
each stencil takes a 3-bit binary number to a single bit binary number. Each of the
8 stencils determines one cell to be either black or white, thus there are a total of
28 = 256 possible configurations for the bottom portion of a rule, or 256 possible
elementary rules. The range of the stencil is extremely important: a CA with range
r has a total of 22

r

rules. Taking into account all possible functions taking 8-bit
numbers to 8-bit numbers would result in over 65,000, 28 ∗ 28, rules!

Figure 7. Rule Numbering Scheme [3, p. 53]

2^7=     2^6=        2^5=     2^4=       2^3=     2^2=      2^1=      2^0=
    1            1              0            1             0            0             1             0       210              

Figure 8. State Numbering Scheme

Elementary rules can be labeled from R = 0 − 255 in a natural way. Let black
be equal to 1 and white be equal to 0. Now, consider the single cells of the bottom
portion of the stencils together as an 8-bit binary number. Each rule derives its
label from its base ten analog, see Figure 7.

States use a similar naming convention. The number of states depends on the
width of the cellular automaton. In this project, the elementary CA have been
chosen to be 8-wide, thus there are 28 = 256 states. Though they are the same in
number, this is not related to the fact that there are 256 rules. However, the same
convention is used in naming. Each state corresponds to an 8-bit binary number
where black is 1 and white is 0, see Figure 8.
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2.4. Computation in Elementary CA. The Principle of Computational Equiva-
lence hinges upon the idea “that all processes, whether they are produced by human
effort or occur spontaneously in nature, can be viewed as computation (Wolfram,
cite).” Universal computation is achieved through the ability to execute any algo-
rithm, but how can natural processes be computation? It is instructive to examine
how CA exhibit computation. Elementary CA can easily count multiples via their
center columns: from a single black cell, rule 62 gives the multiples of 3 and rule
190 gives the multiples of four. Rule 129 shows more sophiscated computation.
From a single black cell, the center column gives the powers of 2. See Figure 9

Figure 9. From left to right: rule 62, rule 190, rule 129 [3, p. 641]

3. Rule Equivalence

A goal of this paper is to provide empirical insights into the behavior of finite-
width elementary CA. In 8-wide elementary CA there are 256 different rules with
256 different states. We can then produce 256 different CA for each rule, thus an
examination of all elementary CA involves 256×256 = 65536 different sets of data.
Typically, rules are examined by behavior from simple initial conditions (i.e. let
the initial state be equal to 8), or from random initial conditions (i.e. let the initial
state be equal to 113). Using the latter method of investigation, Wolfram was able
to recognize many common themes and behaviors in elementary CA. Elementary
CA are, in many cases, computationally redundant. For example, rule 0 (00000000)
and rule 255 (11111111) do the same computation only in the opposite color. Below
we discuss the common themes–providing examples of each class–in elementary CA
and comment on the effect of imposing a finite-width on elementary CA.

Beyond Wolfram’s classifications, elementary CA show three types of basic equiv-
alence to each other: mirrored equivalence (left-right equivalence), complementary
equivalence (interchanging black and white), and mirrored complementary equiva-
lence. Wolfram has compiled a chart of equivalence shown in Figure 28 in Appendix
A. The second column lists a rule’s complementary equivalent, the third column is
the mirrored equivalent, and the fourth mirrored complement.

3.1. Class 1 Rules. Wolfram characterizes Class 1 rules as those that rapidly
evolve into a completely uniform state. Rule 0 is an obvious example. Regardless
of the initial configuration, every cell is mapped to an empty cell. Thus, after one
evolution, the CA is in a completely uniform state of white cells that will persist
after more evolutions. By definition, Class 1 rules can only develop structures with
straight-line movement. Clearly, periodic boundaries will only affect structures that
move across that boundary, a lateral movement. Thus, the equivalance of Class 1
rules–from random initial conditions–will not be affected by width restrictions.
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Figure 10. Top: rule 250, Bottom: rule 160

In Figure 10, note the maintenance of complementary equivalence for rule 250
and rule 160 (see Table 28), both Class 1 rules. From random initial conditions, rule
250 evolves quickly to a uniform grid of black cells and rule 160 evolves quickly to a
uniform grid of white cells. Empirically and intuitively, we note that Class 1 rules
will maintain all indefinite-width equivalence patterns: complementary, mirrored,
and mirrored complementary.

3.2. Class 2 Rules. Class 2 rules are those that rapidly evolve into repetitive or
stable states. Rule 4 is an example: every cell with a black cell directly above it
remains black. From random initial conditions this produces CA with black and
white streaks. Such CA are their own mirrored equivalent, as are many Class 2
rules. In fact, the repetitive and simplistic behavior that defines Class 2 rules can
produce CA that are their own complements as well. Rule 170, rule 240, rule 15, rule
85 are examples, refer to Figure 28. Notice also that there are eight elementary
rules that are their own mirrored, complementary, and mirrored complementary
equivalents. Six of these rules are Class 2 rules from random initial conditions (rule
105 and rule 150 are Class 3 rules). In the case where a rule is equivalent in some
way to itself, equivalence is trivially maintained.

In general, Class 2 rules that are not their own equivalents do not maintain
equivalence. Consider the following simple example using finite-width CA: rule
170, the shift left rule, and its mirrored equivalent rule 240, the shift right rule are
not left-right symmetric, see Figure 11 and Figure 12. The fact that the figures are
top-bottom symmetric (as they also are for indefinite-width CA) does give a sense
of the effects of periodicity. In particular, periodic boundaries allow for interference
at the boundaries. Thus, Wolfram’s classifications may not be relied on.

Figure 11. A Full Cycle of rule 170, The Shift Left rule
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Figure 12. A Full Cycle of rule 240, The Shift Right rule

3.3. Class 3 and Class 4 Rules. The classifications above make up a majority
of elementary CA. Wolfram approximates that only 14% of elementary CA rules
produce more complex behavior than what is described above. Furthermore, 24
elementary CA rules produce nested patterns. Of those 24, there are only 3 fun-
damentally different forms that emerge. To complete the classification, Wolfram
asserts that only 10 of the 256 elementary rules produces CA that are “in many
respects random.” This group of elementary CA with more complex behavior make
up Wolfram’s Class 3 and Class 4 rules. Specifically, Class 3 rules are those that are
essentially random, see rule 30 below in Figure 14. Note that within the pattern
there are nested triangles, but of varied size and at no regular intervals. Class 4
rules form areas of repetitive or stable states, but also form from structures that
interact with each other in complicated ways, rule 110 is an example, see Figure
13.

Figure 13. Evolutions of rule 110 from simple initial conditions
(Wolfram, pg. 32)

Figure 14. Evolutions of rule 30 from simple initial conditions
(Wolfram, pg. 27)

In finite-width form, it appears that, in general, class 3 and class 4 rules do
not maintain equivalence–complementary or mirrored. From the table in Figure
28, rule 30 has three distinct rules for which it is equivalent to, none of which are
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itself. This is typical of Class 3 and Class 4 rules. In Figure 15 and Figure 16,
we examine rule 30 and rule 86 for mirrored equivalence. Visually we can be sure
that neither mirrored nor complementary equivalence is maintained. In Figure 15,
there are eleven evolutions and the final step is identical to the first. This is an
example of a cycle (or attractor) in a cellular automaton. Rule 86 in Figure 16
shows eleven evolutions, but does not repeat any states. Cycles will be discussed
in greater length in the following section, but strictly by noting the number of time
steps it takes to repeat a state we can conclude that equivalence is not maintained.

Figure 15. Evolutions of rule 30 from random initial conditions

Figure 16. Evolutions of rule 86 from random initial conditions

4. Discrete Dynamical Systems

Although Matthew Cook has shown rule 110 to be universal, using this system as
a model for other systems (natural or otherwise) is not immediately useful. Elemen-
tary CA are non-linear dynamical systems, thus they can be extremely difficult to
analyze. Essentially, CA that are not obviously simple–CA without trivial or highly
regular behavior–are not computationally reducible. According to Wolfram’s Math-
World, “computations that cannot be sped up by means of any shortcut are called
computationally irreducible.” The answer to computationally irreducible problems
comes only from actually performing the computation. CA are often computation-
ally irreducible problems (Class 3 and Class 4 rules for example). However, we
can use the notion (and notation) of dynamical systems in an attempt to counter
computational irreducibility in finite-width elementary CA.

A dynamical system provides a fixed rule that describes the time dependence of
a point in a geometrical space. At any given time a dynamical system has a state
(an element of a set of real numbers, vectors, or perhaps a collection of black or
white cells) which can be represented by a point in an appropriate state space.
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For example, Let C denote the state space. Then π ∈ C is a state. Now suppose
that this particular dynamical system (using state space C), has a time dependence
described by the rule f(x) = eix, where x is any state. Using x0 = π as the initial
point (time t = 0), we note that after one evolution in time x1 = f(x0) = eiπ = −1.
Thus, −1 is the state at time t = 1.

4.1. State Transition Sets. In this project, we use the notation of a discrete
dynamical system to indicate discrete steps in time. A discrete dynamical system
presents some rule, or function, f and describes the evolution of a variable x by
the formula xn+1 = f(xn) where n is some integer (as in the example above). We
will adopt this notation for this project: a rule R acts upon a state sn such that
sn+1 = R(sn). Using the CA defined in Section 2.2 and subject to rule 110 (R),
note that R(8) = 24, R(24) = 56, and so on.

We will call this ordered collection of elements from the state space–an initial
state, and the resulting states that follow after repeated applications of a rule–a
State Transition Set (STS). Let ER be a STS which is obtained using rule R
from above. Given initial condition s0 = 16, we can write the resulting CA as a
STS being careful to preserve order,

E110(s0) = {16, 48, 112, 208, 241, 19, 55, 125, 199, 76, 220, 245, 31, 49...}
E110(s0) is an ordered set representation of Figure 17.

16

48

112

208

241

19

55

Figure 17. Pictorial Representation of E(s0) where in the right
column we have listed the integer values of the 8-bit binary number
represented by the row.

4.2. Systems of Cellular Automata. We can assign any of the 256 possible state
configurations to s0 and obtain 256 different CA. Thus, to encompass all information
about a particular elementary rule we must consider all initial conditions. A system
of cellular automata is given by the collection of ordered sets,
G(R) = {ER(s) : s ∈ S}, where S is the state space. G is a collection of all
STS for a fixed rule R. A system actually contains less information than it at first
appears; CA in the same system often produce STS’s with duplicate information.
For example, if R is rule 110 consider the following STS

E110(14) = {14, 26, 62, 98, 230, 175, 248, 137, 155, ...}
and

E110(81) = {81, 243, 22, 62, 98, 230, 175, 248, 137, 155, ...}.
At four evolutions, E110(81) performs the same computations as E110(14) does at
three evolutions.
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Let R be a fixed elementary rule. Given a state s0 and its resulting STS, ER(s0),
we can find all initial conditions t that produce STS, ER(t), that share some state
with ER(s0). We will call this set of initial conditions a lobe set,
I(s0) = {t ∈ S | ER(s0)∩ER(t) 6= ∅}, where S is the state space, and s0 is an initial
conditions.

5. Finite-Size State Transition Diagrams

To organize this information, each STS, ER, will be interpreted as a directed
graph by assigning each element of the ordered set as a node. We then combine
STS with duplicate computation into single graphs that we will call lobes. If ER is
a graph, a lobe in its system is given by

L(s0) =
⋃

t∈I(s0)

ER(t),

where I(s0) is the lobe set of s0 and we use the graph union operation [2]. L(s0)
represents a union of directed graphs, whereas I(s0) is instead a collection of states
in no particular order. The collection of all lobes in a system,

L =
⋃
s0∈S

L(s0),

is called a finite-size state transition diagram and displays all the computations in
a system of CA, see Figure 18. Visually, the finite-size state transition diagram
suggests that the lobes of a system partition the state space. This is, in fact, true
for all systems of finite-size elementary CA.

Theorem 1. For any rule R, the lobes of a state transition diagram partition the
state space.

Proof. Let L be any finite-size state trasition diagram of a system of CA. The lobes
of the finite-size state transition diagram will partition the state space if every state
is in the system, and every state belongs to exactly one lobe. By definition, every
state s is in L. Thus, to show that the lobes of a finite-size state transition diagram
partition the state space, we need only to show that states cannot be members of
multiple lobes.

Let s, t, and r be states. Suppose s ∈ L(r) and s ∈ L(t), where L(r) 6= L(t).
This implies that I(r) 6= I(t) and ER(r) ∩ ER(t) = ∅. But, by definition, L(t) =⋃
v∈I(t)

ER(v) and since s ∈ L(t), s ∈ I(t). By the same logic, s ∈ I(r). By

the definition of the lobe set, then s ∈ ER(t) and s ∈ ER(r). It follows that
ER(t) ∩ ER(r) 6= ∅, a contradiction. Thus, L(r) = L(t), and a state cannot exist in
distinct lobes.

We conclude that L =
⋃
s0∈S

L(s0) includes every state in the state space and that

no two lobes can share a state in S. �

The finite-size state transition diagram of a system of CA is generally composed
of trees that lead to cycles. States that appear as nodes in a tree of a directed
graph are known as transients and states that appear as nodes in the cycles of a
graph are known as attractors. The set of all attractors is called the attractor set.
The finite-size state transition diagram suggests that, at some point, all finite-width
elementary CA will end in an attractor.
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Figure 18. Finite-Size State Transition Diagrams in Wolfram’s Mathematica

Theorem 2. All finite-size elementary cellular automata contain an attractor in
their evolution.

Proof. If a state is given by si, where i denotes the step in time, then we can write
any CA explicitly as the following STS: ER(s) = {s0, s1, s2, ..., sn, ...}. If si = sj for
some nonnegative integers i and j, then the CA contains an attractor. Because the
state space is finite, and R : S −→ S, there must be a point at which si = sj . �

5.1. Attractors. We can formalize the idea of an attractor by considering STS in
a given lobe of a system. In particular, the attractor of a lobe can be determined
by the intersection of all STS with initial conditions in the same lobe set. Let
I(q0) = {s0, t0, ..., q0} be the lobe set for the lobe L(s0). Consider the intersection⋂

r∈I(q0)

ER(r).

This set will be the attractor of the lobe determined by I(q0).

Figure 19. Eight-Wide State Transition Diagram for Rule 30

Attractors, in general, do not approach the maximum conceivable length–255
states. For 8-wide elementary CA, the largest attractor of any rule occurs on rule
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30 and has size 40. Many initial conditions under rule 30 produce the maximal
attractor length of 40. Rule 30 produces CA with an average attractor length
of 35.8906; see Appendix A Figure 2 for average attractor lengths of all rules.
Attractor length is, in general, a good indication of the Wolfram class in which
a rule lies. Those rules with average attractor lengths of 1 are in general class 1
rules. Short attractor lengths indicate CA that rapidly evolve to uniform states.
Furthermore, class 3 rules–CA which exhibit behavior that is essentially random–
have much higher average attractor lengths. Rule 30 is an example, see Figure
19.

5.2. Transient States and Reversibility. The transient states of CA are the
states that precede the first cyclic state. The finite-size state transition diagrams for
elementary rules are predominately characterized by disjoint directed graphs with
trees that evolve into cycles (a reflection of Theorem 2 and Theorem 1). However,
there are special cases in which rules produce finite-size state transition diagrams
without trees, see Figure 20. These elementary CA are reversibile. In particular, an
elementary CA exhibits reversibility when every state has exactly one predecessor,
and we can determine that predecessor when provided information about its rule.

Figure 20. Eight-Wide State Transition Diagram for Rule 105

Reversibility is an extremely important topic in CA modeling. Wolfram states
that “all current evidence suggests that the underlying laws of physics have [a kind
of] reversibility.” An effective model not only attempts to predict what will happen
in the future, but can tell us something about the past.

In the simple world of elementary CA, Wolfram asserts the existence of six
reversible rules: rule 15, rule 51, rule 85, rule 170, rule 204, and rule 240. Each
of these exhibit uniform class 2 behavior (see Figure 22, the reader will notice
the shift-left (rule 170), shift-right (rule 240), identity (rule 204), and complement
(rule 51) rules present in this list. Each of these rules exhibit a dependence on
their determining neighborhood. For example, consider G(170), the system of CA
on rule 170. If the cell in position p at time t+ 1 is black, then the cell in position
p + 1 at time t must be black as well. G(51) is equally simple: the predecessor of
any state is equal to its complement.
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Figure 21. Left: Rule 51, a reversible rule. Right: Rule 254 an
irreversible rule, note that it evolves to a uniformly black state,
and we cannot know the predecessors.

Figure 22. Rule 170: The reversible “Shift Left” Rule

Figure 23. Eight-Wide State Transition Diagram for Rule 51

When finite-size elementary CA are considered, the six rules above are, pre-
dictably, still reversible. For example, rule 51 produces a finite-size state transition
diagram that consists of 128 lobes; each lobe contains no transients and contains
attractors of length 2 (See Figure 23). However, the addition of periodic boundaries
allows for two more reversible rules, namely rule 105 and rule 150.

5.2.1. Additivity. The list of reversible rules (15, 51, 85, 105, 150, 170, 204, and
240) all share the property of additivity. Additive rules are those produced by the
addition modulo 2 of part or all of their determining neighborhood. Consider rule
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150 shown in figure 24. Note that if we add all three states of each neighborhood
modulo two, the result is the bottom portion of the stencil (1 + 1 + 1 = 1 mod
2; 1 + 1 + 0 = 0 mod 2; 1 + 0 + 1 = 0 mod 2; and so on). Some additive rules
add only 2 cells of the determing neighborhood, and others only 1 cell. The list of
reversible rules contains only those additive rules which add 1 and 3 cells of their
determining neighborhoods. The original list of six reversible rules includes only
those which add a single cell (the shift-right, shift left, identity, complement, shift-
right complement, and shift-left complement). When we restrict width, however,
we gain the ability to reverse the two additive rules which add all three cells in the
determining neighborhood, rule 150 and its complement rule 105.

Figure 24. Rule 150: An Additive Rule

5.3. Quantifying Reversibility. While determining whether a given CA is re-
versible is useful, the vast majority of finite-width elementary CA are not. In the
Appendix, Table 1 displays the average number of transient states for CA in a given
system. This number can be interpreted in two useful ways:

(1) First, the number of transient states provide a measure of how many possi-
ble predecessors a state in an attractor has. In modeling, this measurement
can be used to construct probability charts describing possible evolutions
of particular system. CA with lower average times to attractor indicate a
stronger confidence in what has occured previously to the observed state.

(2) Second, the average time to attractor provides a good measure of complexity
in finite-width automata. All systems that take over six time steps to enter
an attractor are class 3 rules.

Additionally, as we would expect, all reversible rules have zero time steps. Previ-
ously we discussed the reptition of computation in elementary CA. In fact, the table
in Figure 28 displays Wolfram’s observed equivalence explicitly. Note that in most
cases, the compliment of a rule does not yield the CA to which it is a complimentary
equivalent. For example, CA produced by rule 89 has an observed complimentary
equivalence to CA produced by rule 101; however, rule 89 (01011001) is comple-
mentary to rule 166 (10100110) in form. This notion is supported by the fact that
the average time to attractor follows no such pattern. However, there is a symmetry
that may be observed through “Garden of Eden” states.

5.4. “Garden of Eden” States. Another way we might quantify reversibility is
through Garden of Eden states. A state is called a “Garden of Eden” when it
has exactly zero predecessors under a given rule. These states are the root nodes
in each lobe of a system. The fewer Garden of Eden states a particular system
has, the more likely we are able to deduce the predecessor of a given state. Table 3
displays the number of Garden of Eden states for each elementary rule in an eight-
wide system. As expected, each reversible rule has zero Garden of Eden states.
The more interesting result, however, is the symmetry between rule compliments.
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Figure 25. Rule 105: A Reversible Eight-Wide Elementary CA

Rule 0 has the same number of Garden of Eden states as rule 255, as do rule 1
and 254, rule 2 and 253, rule 3 and 252, and so on. Thus, although rules and their
compliments have extremely different structure (See rule 1 and rule 254 in Figures
26 and 27), they have an equal number of unreachable states.

Figure 26. Rule 105: A Reversible Eight-Wide Elementary Rule

Figure 27. Rule 105: A Reversible Eight-Wide Elementary Rule
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5.5. Open Questions. The empirical nature of this project often highlighted other
areas of interest in elementary CA. In the search for widespread universality in
these simple systems, exploration of computation in class 3 and class 4 rules would
undoubtedly be productive. In particular, a study of specific computation in rule
30 and additive rule 90 would help build intution about the possibility of their
conjectured universality.

The implementation of periodic boundary conditions made much of Wolfram’s
analysis of indefinite-width elementary CA inapplicable. If we were to model finite-
width elementary CA as 3-dimensional objects (hollow cylinders), can we find other
duplicate computation or equivalence in these systems?

For modeling purposes, reversibility remains a key topic. Might it be possible
to build an algorithm that tests the reversibility of a given state under a given
rule? Moreover, can we generalize theory on finite-width elementary CA to make
statements about complexity, reversibility, and computation in N-wide elementary
CA?
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Figure 28. Wolfram’s Table of rule Equivalence
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