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Abstract. This paper explores systems of Pythagorean triples. It describes

the generating formulas for primitive Pythagorean triples, determines which

numbers can be the sides of primitive right triangles and how many primitive

right triangles those numbers can be a side of, and finally explores systems of

three and four right triangles that fit together in three dimensions.
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1. Introduction

Pythagoras lived during the late 6th century B.C.E. His most famous discovery

by far is that on a right triangle, the sum of the squares of the lengths of the two legs

is equal to the square of the length of the hypotenuse. This theorem, which has come

to be known as the Pythagorean Theorem, is not only incredibly powerful, but rich

with mathematical extensions that still fascinate mathematicians today. Moreover,

at times, seemingly unrelated problems can be reduced to problems involving the

Pythagorean Theorem and the many discoveries related to it.

The motivation for this paper stems from the following problem. Consider the

ellipsoid (x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1

with a > b > c > 0 and a, b, c ∈ Z. Note that if x = 0, then

(y/b)2 + (z/c)2 = 1
1
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is an ellipse with focal points at (0,±
√
b2 − c2, 0). Similarly, if y = 0, then

(x/a)2 + (z/c)2 = 1

is an ellipse with focal points at (±
√
a2 − c2, 0, 0) and if z = 0, then

(x/a)2 + (y/b)2 = 1

is an ellipse with focal points at (±
√
a2 − b2, 0, 0). We are interested in ellipsoids

whose focal points have integer coordinates. In other words, we are interested in

the system

b2 − c2 = n21,(1.1)

a2 − b2 = n22 and

a2 − c2 = n23

where a, b, c, n1, n2, n3 ∈ Z.

Rearranging these equations gives us a system of equations, each of the form

given in the Pythagorean Theorem:

n21 + c2 = b2,(1.2)

n22 + b2 = a2 and

n33 + c2 = a2.

Therefore, the motivation for this paper stems from trying to find integral solu-

tions to System 1.2. However, we start with the basics of the Pythagorean Theorem.

We begin by looking at generating formulas for Pythagorean triples. From there,

we explore the properties of each side of a primitive right triangle, focussing on

how it is possible to fit two right triangles together so that they share either a leg

or the hypotenuse. We show that with each side of a primitive right triangle, the

total number of triangles that can share that side is 2n−1, where n is the number of

distinct primes in the standard prime factorization of the length of that side. We
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follow with a proof that the lengths of the two legs of one right triangle cannot be

the lengths of the leg and hypotenuse of another right triangle.

From there we move into three dimensions where we first consider the Euler

Brick, giving a few simple results as well as considering the perfect cuboid. Lastly,

we return to System 1.2 and give Euler’s solution to the problem.

2. Generating All Pythagorean Triples

When asked to give examples of Pythagorean triples, a typical math student

can usually give two or three examples: (3,4,5), (5,12,13) and maybe (15,8,17).

Not many students can come up with more triples off the top of their heads. It

is therefore desirable to find a way of generating Pythagorean triples that is sim-

pler than the guess and check method. We begin with some basic definitions and

introductory lemmas.

Definition 2.1. A Pythagorean triple is a triple of positive integers (a, b, c)

satisfying a2 + b2 = c2.

We call a triple primitive when the three integers (a, b, c) have no common factor.

To describe Pythagorean triples, it is only necessary to find the primitive triples,

since any non-primitive triple is just a multiple of a primitive triple, as is proved

in Lemma 2.4.

The following basic result will be used frequently throughout this paper.

Lemma 2.2. For integers a, b and d, if d divides a and d divides b, then d divides

any linear combination of a and b.

Proof. Suppose d|a and d|b, then a = dx for some integer x, and b = dy for some

integer y. Therefore, for any α and β, αa+ βb = (αx+ βy)d and thus d|(αa+ βb).

This completes the proof. �

Note that if d|a and d|b, then d|(a2 + b2) and d|(a2 − b2). Also, if a and b are

relatively prime and if d|(a+ b) and d|(a− b), then either d = 2 or d = 1, since the

sum and difference of (a+ b) and (a− b) are 2a and 2b respectively.
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Figure 1. The Smallest Primitive Pythagorean Triple

The next lemma is important when dealing with numbers that can be written

as the sum of two squares.

Lemma 2.3. Suppose x2 = kl where x, k and l are all positive integers. If

gcd(k, l) = 1, then both k and l must be squares.

Proof. By the unique factorization of the integers, there exist unique primes

p1, p2, . . . , pm

and unique positive integers

α1, α2, . . . , αm

such that

x = pα1
1 pα2

2 . . . pαm
m

and

x2 = p2α1
1 p2α2

2 . . . p2αm
m .

Since x2 = kl and gcd(k, l) = 1, we know that if pi|k, then pi - l. Thus, k and l are

both equal to the product of some of the pi’s, where each pi is raised to an even

power. Thus, the square roots of both k and l are integers, and therefore, both k

and l are squares. �



SYSTEMS OF PYTHAGOREAN TRIPLES 5

Using mathematical induction, it is easy to show that if x2 = k1k2 . . . kn where

the ki are pairwise relatively prime, then each ki is a perfect square. We now prove

the following lemma about the primitivity of Pythagorean triples.

Lemma 2.4. For a Pythagorean triple (a, b, c), the following properties are equiv-

alent:

(1) a, b, and c have no common factor, i.e., the triple is primitive,

(2) a, b, and c are pairwise relatively prime,

(3) two of a, b, and c are relatively prime.

Proof. We start by showing that (1) implies (2). To do this, we will prove the

contrapositive. Let p be prime and suppose that p divides both a and b. Then by

Lemma 2.2, p divides a2 + b2 = c2. But if p divides c2, then p|c, and thus (1) is

violated. Similarly, if p|a and p|c, then by Lemma 2.2, p|(c2 − a2) = b2, and again,

(1) is violated. Obviously the same is true if p|b and p|c. Thus, we have shown that

(1) implies (2). It is obvious that (2) implies (3). To prove that (3) implies (1),

first assume that a and b are relatively prime. Let p be prime and assume that p|c

and p|a. Then p|(c2 − a2) = b2 which implies that p|b, which is a contradiction. A

similar argument can be used for the other cases. This completes the proof. �

Theorem 2.5 gives us an easy way to generate primitive Pythagorean triples.

This is a standard result in number theory and can be found in an article entitled

Pythagorean Triples by Keith Conrad [1].

Theorem 2.5. If (a, b, c) is a primitive Pythagorean triple, then one of a or b is

even and the other is odd. Moreover, taking b to be even,

a = k2 − l2, b = 2kl, c = k2 + l2

for some integers k and l with k > l > 0, gcd(k, l) = 1, and k 6≡ l mod 2. Con-

versely, for such integers k and l the above formulas yield a primitive Pythagorean

triple.
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Proof. First, let k and l be positive, relatively prime integers with k > l > 0 and

k 6≡ l mod 2. We check that given a = k2− l2, b = 2kl and c = k2 + l2 that (a, b, c)

is a primitive Pythagorean triple. We observe that

a2 + b2 = (k2 − l2)2 + (2kl)2 = k4 + 2k2l2 + l4 = (k2 + l2)2 = c2,

showing that (k2 − l2, 2kl, k2 + l2) is a Pythagorean triple. To show that it is

primitive, let d be an integer that divides (k2 − l2) and (k2 + l2); by Lemma 2.2,

d must also divide the sum and difference of (k2 − l2) and (k2 + l2), which are 2k2

and 2l2. Since (k2 − l2) and (k2 + l2) are odd, d must also be odd, and thus d|k2

and d|l2. But since gcd(k, l) = 1 and thus gcd(k2, l2) = 1, we have d = 1 and thus

(k2 − l2) and (k2 + l2) are relatively prime. By Lemma 2.4, we can conclude that

(k2 − l2, 2kl, k2 + l2) is a primitive Pythagorean triple.

Next, assume that (a, b, c) is a primitive Pythagorean triple. To show that one

of a and b is even and the other is odd, note that if both a and b are even, then they

are both divisible by 2, which, by Lemma 2.4, is a contradiction to the fact that

(a, b, c) is a primitive Pythagorean triple. Thus, both a and b cannot be even. Next,

assume that both a and b are odd. Then a2 ≡ b2 ≡ 1 mod 4, so c2 = a2 + b2 ≡ 2

mod 4. However, 2 is not a square modulo 4, thus a and b cannot both be odd.

Therefore, one of a and b is odd and the other is even.

Without loss of generality, from now on, we will take b to be even. We rewrite

our equation a2 + b2 = c2 as

(2.1) b2 = c2 − a2 = (c+ a)(c− a).

Since b is even and (c + a) and (c − a) are both even, we can divide both sides of

equation (2.1) by 4. Doing this yields(
b

2

)2

=
(c+ a)

2

(c− a)

2
.

Now we see that the two integers on the right are relatively prime, because by

Lemma 2.2 if d divides both (c+ a)/2 and (c− a)/2, it must divide their sum and
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Table 1. Examples of Pythagorean Triples

k l a b c
2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
4 3 7 24 25

difference, which are c and a respectively. Since c and a are relatively prime, d = 1.

Thus gcd((c+ a)/2, (c− a)/2) = 1. By Lemma 2.3, since the product of (c+ a)/2

and (c − a)/2 is a square, and since gcd((c + a)/2, (c − a)/2) = 1, we know that

(c+ a)/2 = k2 and (c− a)/2 = l2 for some relatively prime positive integers k and

l. Doing some simple algebra yields

c = k2 + l2, a = k2 − l2.

Finally, (b/2)2 = k2l2 implies that b = 2kl.

Lastly, we must check that k 6≡ l mod 2. Since k and l are relatively prime, they

are not both even. If they were both odd, then k2 + l2, 2kl, and k2 − l2 would all

be even, violating the primitivity of (a, b, c). This completes the proof. �

Example: Let k = 2 and l = 1. Clearly gcd(k, l) = 1 and k 6≡ l mod 2. There-

fore, Theorem 2.5 tells us that (22− 12, 2 · 2 · 1, 22 + 12) is a primitive Pythagorean

triple. This, of course, is just the triple (3,4,5). Table 1 has a list of primitive

Pythagorean triples along with their generators.

It is helpful to categorize primitive Pythagorean triples in a slightly different

way. Again, this is a standard result in number theory and can be found in the

article Pythagorean Triples by Keith Conrad [1].

Theorem 2.6. Given a primitive Pythagorean triple (a, b, c) with b even, there

exist s and t where s > t ≥ 1 are odd integers that are relatively prime such that

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
.
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Moreover, for such integers s and t the above formulas yield a primitive Pythagorean

triple.

Proof. From Theorem 2.5 we know that there exist integers k and l such that

a = k2 − l2 = (k + l)(k − l)

where k > l > 0, gcd(k, l) = 1, and k 6≡ l (mod 2). If we take s = k+ l and t = k− l

we have two odd integers that are relatively prime with s > t ≥ 1. From Theorem

2.5 we know that b = 2kl. Solving for k and l in terms of s and t yields k = (s+t)/2

and l = (s− t)/2, which implies that b = (s2− t2)/2, and c = k2 + l2 = (s2 + t2)/2.

This completes the proof. �

Example: Let s = 5 and t = 3. Then Theorem 2.6 tells us that

(5 · 3, (52 − 32)/2, (52 + 32)/2),

or rather (15, 8, 17), is a primitive Pythagorean triple.

3. Primitive Pythagorean Triangles that share a Side

The obvious geometric interpretation of Pythagorean triples is right triangles.

The sides of a right triangle with integer lengths form the terms of a Pythagorean

triple, and visa versa. In this section, and for the rest of the paper, we will be

considering Pythagorean triples with right triangles in mind. The first question

that we address concerns primitive right triangles that share a side where sharing

a side means that two right triangles have one side that is the same length, while

the other two sides are different lengths.

3.1. Triangles that share the even length side. From Theorem 2.5, we know

that every primitive right triangle has one leg that is even, one leg that is odd,

and a hypotenuse that is odd. We first consider those triangles that share the even

length side.

Lemma 3.1. The even side of a primitive right triangle is divisible by 4.
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Proof. The result is clear from Theorem 2.5. �

Theorem 3.2. Given a number b divisible by 4, let n denote the number of distinct

primes in the prime factorization of b. Then b is the even length side of exactly

2n−1 primitive right triangles.

Proof. From Theorem 2.5, we know that given a primitive Pythagorean triple

(a, b, c), then

a = k2 − l2, b = 2kl, c = k2 + l2

for some positive integers k and l where gcd(k, l) = 1, k > l and one of k and l is

even while the other is odd. Moreover, we know that given k and l that meet these

criteria, they generate a primitive Pythagorean triple.

Suppose that b is a number divisible by 4, and let n be the number of distinct

primes in the prime factorization of b. In other words, let p1, p2, . . . , pn be the

primes in the prime factorization of b such that

b = pα1
1 pα2

2 · · · pαn
n .

Since b is divisible by 4, one of the primes is equal to 2, and moreover, we know that

there are at least 2 factors of 2 in the factorization of b. Without loss of generality

we can assume that p1 = 2.

With this in mind, we see that the number of primitive right triangles that have

a leg of length b is equal to the number of ways we can factor b into b = 2kl where

k and l are as in Theorem 2.5. Since b is divisible by 4, and thus (b/2) is divisible

by 2, we know one of k and l will be even and the other one will be odd.

Since gcd(k, l) must equal 1, we are simply interested in the number of ways we

can partition the n primes into two sets where the product of all the terms in one

set is k and the product of the terms in the other set is l. In other words, we are

interested in the total number of subsets of an n element set divided by 2, since

each subset corresponds to a value for k or l, and the compliment of the subset

corresponds to the other. This gives us (2n/2) = 2n−1. The reason we divide by
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2 is that k must be greater than l, and the total number of subsets counts those

partitions where l > k.

It remains to show that each new choice of k and l will give a distinct prim-

itive right triangle. Let k1, l1 and k2, l2 be generators for two different primitive

Pythagorean triples with even term b. If k1 = k2, then l1 must also equal l2, and

we would not have two distinct right triangles. Thus, we can assume without loss

of generality that k1 > k2, meaning that l1 < l2. It does not take much to see that

it necessarily follows that a1 = k21 − l21 > k22 − l22 = a2. Thus, given two different

choices of k and l, we necessarily get a different value for a, the odd length leg of our

triangle, which necessitates a different hypotenuse, or c value, as well. Therefore,

there are 2n−1 primitive right triangles that have the even side length equal to b.

This completes the proof. �

Example: Consider an example with the number 12. We factor 12 into 3 · 22.

Theorem 3.2 tells us that there are 22−1 = 2 primitive right triangles that have 12

as the even leg. Let k = 3 and l = 2. Then clearly k and l satisfy the necessary

conditions to generate a primitive Pythagorean triple, and indeed, we see that

a = 32 − 22 = 5, b = 2 · 3 · 2 = 12, c = 32 + 22 = 13

is a primitive right triangle. However, we could choose k = 6 and l = 1, in which

case we get

a = 62 − 1 = 35, b = 2 · 6 · 1 = 12, c = 62 + 1 = 37

as our primitive right triangle.

3.2. Triangles that share an odd length side. In the same way that we counted

the number of triangles that share an even length leg, we can count the number of

triangles that share an odd length leg.

Lemma 3.3. Any odd number can be the odd length leg of a primitive Pythagorean

triangle.



SYSTEMS OF PYTHAGOREAN TRIPLES 11

Figure 2. Pictorial Example of Theorem 3.2

Proof. By Theorem 2.6, the odd length leg of a primitive Pythagorean triangle can

be factored into a = st for relatively prime, odd, positive integers s and t where

s > t. Thus, given any positive odd integer q, let t = 1, and set s = q. Therefore,

a = q. �

Theorem 3.4. Given an odd number a, let n denote the number of distinct primes

in the prime factorization of a. Then a is the odd length leg of 2n−1 primitive right

triangles.

Proof. Not surprisingly, the proof of this theorem is similar to the proof given for

Theorem 3.2. Because of this, some of the details will be left out. From Theorem

2.6, we know that given a primitive Pythagorean triple (a, b, c), that

a = st, b =
s2 − t2

2
, c =

s2 + t2

2

for some positive odd integers s and t where gcd(s, t) = 1, s > t. Moreover, we know

that given s and t that meet these criteria, they generate a primitive Pythagorean

triple.

Let a be an odd positive integer, and let n be the number of distinct primes in

the prime factorization of a. In a similar fashion as in the proof of Theorem 3.2, we

see that the number of primitive right triangles that have a leg of length a is equal
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to the number of ways we can factor a into a = st where gcd(s, t) = 1 and s > t.

Exactly as in the proof of Theorem 3.2, this number is 2n−1.

Checking that each distinct choice of s and t gives a distinct primitive right

triangle can be done in the same way as the proof of Theorem 3.2. Thus, given

two different choices of s and t, we necessarily get a different value for b, the even

length side of our triangle, which necessitates a different hypotenuse, or c value, as

well. Therefore, there are 2n−1 primitive right triangles that have the odd length

leg equal to a. This completes the proof. �

Example: The number 15 factors into 5 · 3. Theorem 3.4 tells us that there are

22−1 = 2 primitive right triangles that have 15 as the odd length leg. Let s = 5

and t = 3. Clearly s and t satisfy the conditions of 2.6, and so

a = 5 · 3, b =
52 − 32

2
= 8, c =

52 + 32

2
= 17

is a primitive right triangle.

However, we could choose s = 15 and t = 1, in which case we get

a = 15 · 1, b =
152 − 1

2
= 112, c =

152 + 1

2
= 113

as our primitive right triangle.

Figure 3. Pictorial Example of Theorem 3.4

3.3. The Hypotenuse of a primitive right triangle. The last side of the tri-

angle we consider is the hypotenuse. Determining which numbers can be the hy-

potenuse of more than one primitive right triangle is more involved than the proofs

of Theorems 3.2 and 3.4. Because of this, we include references to proofs, instead

of the proofs themselves, for some of the theorems that follow.
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Theorem 3.5 uses results from Quadratic Reciprocity. Specifically, it uses the

well known result in number theory that the equation n2 ≡ −1 (mod p) for an

integer n has a solution if and only if p ≡ 1 (mod 4). For more information on

Quadratic Reciprocity, see Chapter 24 of A Friendly Introduction to Number Theory

by Joseph H. Silverman[2].

Theorem 3.5. If c is the hypotenuse of a primitive right triangle, then c is of the

form

c = pe11 p
e2
2 · · · penn

where pi ≡ 1 (mod 4) for 1 ≤ i ≤ n.

Proof. Choose k and l as in Theorem 2.5 so that c = k2 + l2 where gcd(k, l) = 1

and k 6≡ l (mod 2). Since c is odd, c = pe11 p
e2
2 · · · penn where each pi is odd. For each

1 ≤ i ≤ n,

k2 + l2 ≡ 0 (mod pi)

k2 ≡ −l2 (mod pi)

and (kl−1)2 ≡ −1 (mod pi).

Here, l−1 is the inverse of l under multiplication mod pi, which we are guaran-

teed exists since gcd(k, l) = 1. By Quadratic Reciprocity, pi ≡ 1 (mod 4). This

completes the proof. �

Theorem 3.5 has further clarified our understanding of the hypotenuse of prim-

itive right triangles. In the following theorems, we use this result, as well as a

result proved by Judith D. Sally and Paul J. Sally Jr. in Chapter 4 of Roots To

Research[3] to prove that given a number c of the form

c = pe11 p
e2
2 · · · penn

where each pi ≡ 1 (mod 4), that c is the hypotenuse of exactly 2n−1 primitive

Pythagorean triangles.
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Definition 3.6. Given a number c = pe11 p
e2
2 · · · penn where each pi ≡ 1 (mod 4), let

N(c2) denote the total number of ways, both primitive and non-primitive, that c2

can be written as the sum of two squares of positive integers, not counting trivial

variations (a2 + b2 does not count separately from b2 + a2). Let Np(c2) denote the

number of primitive ways c2 can be written as the sum of two squares of positive

integers.

In Theorem 4.12 of Roots To Research[3], Judith Sally and Paul Sally Jr. prove

that given a number c = pe11 p
e2
2 · · · penn where each pi ≡ 1 (mod 4), that

N(c2) =
1

2
((2e1 + 1)(2e2 + 1) · · · (2en + 1)− 1) .

Our task in the remainder of this section is to use this number N(c2) to find Np(c
2).

For the sake of brevity, for the remainder of this section we will assume that c

is of the form c = pe11 p
e2
2 · · · penn where each pi ≡ 1 (mod 4).

Lemma 3.7. Given c,

Np(c
2) = N(c2)−

∑
Np
(
(c/d)2

)
where the summation runs through each divisor d of c where 1 < d < c.

Proof. We must prove that
∑
Np
(
(c/d)2

)
is equal to the number of ways c2 can

be written as the sum of two squares in a non-primitive way, since by removing the

non-primitive solutions we are left with only the primitive solutions.

First, note that given a triple a21 + b21 = (c/d1)2, multiplying through by d2 gives

us a non-primitive solution (a1d1)2 + (b1d1)2 = c2 that is counted in N(c2). This

proves that each triple in
∑
Np
(
(c/d)2

)
corresponds to exactly one non-primitive

triple in N(c2).

Next, note that given a non-primitive triple a22 + b22 = c2 with d2 the greatest

common factor of a2, b2 and c, that the triple (a2/d2)2 + (b2/d2)2 = (c/d2)2 is

counted in
∑
Np
(
(c/d)2

)
exactly once. This proves that each non-primitive triple

in N(c2) corresponds to exactly one triple in
∑
Np
(
(c/d)2

)
.



SYSTEMS OF PYTHAGOREAN TRIPLES 15

Therefore, there is a one to one relationship between the non-primitive triples in

N(c2) and
∑
Np
(
(c/d)2

)
. Thus, Np(c

2) = N(c2)−
∑
Np
(
(c/d)2

)
as was claimed.

This completes the proof. �

Lemma 3.7 gives us a formula for finding Np(c
2), but the formula is recursive.

The next two theorems prove that the formula for Np(c
2) simplifies to 2n−1 where

n is the number of distinct primes in the prime factorization of c.

Theorem 3.8. Given c = p1p2 · · · pn, Np(c2) = 2n−1.

Proof. We proceed by induction. Let c = p1 where p1 ≡ 1 (mod 4). Then by

Lemma 3.7, Np(c
2) = N(c2)−

∑
Np
(
(c/d)2

)
for each divisor d of c between 1 and

c. But since c = p1 (and thus e1 = 1),

Np(c
2) = N(c2) =

1

2
((2e1 + 1)− 1) = 1.

Since n = 1 in this base case, Np(c
2) = 1 = 2n−1.

Our induction hypothesis is that Np(p
2
1p

2
2 · · · p2k) = 2k−1 for all 1 ≤ k < n. Since

each ei = 1, note that

∑
Np
(
(c/d)2

)
=(3.1) (

Np(p
2
1) +Np(p

2
2) + · · ·+Np(p

2
n)
)

+(
Np(p

2
1p

2
2) +Np(p

2
1p

2
3) + · · ·+Np(p

2
1p

2
n) + · · ·+Np(p

2
n−1p

2
n)
)

+

+

...

+(
Np(p

2
1p

2
2 · · · p2n−1) + · · ·+Np(p

2
2p

2
3 · · · p2n)

)
.

Since by our induction hypothesis Np(p
2
i ) = 20 = 1 and Np(p

2
i p

2
jp

2
k) = 22 = 4

etc., Equation 3.1 can be simplified to

∑
Np
(
(c/d)2

)
=

(
n

1

)
20 +

(
n

2

)
21 + · · ·+

(
n

n− 1

)
2n−2.
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The binomial theorem tells us that

(1 + 2)n =

(
n

0

)
20 +

(
n

1

)
21 + · · ·+

(
n

n− 1

)
2n−1 +

(
n

n

)
2n,

and therefore(
n

1

)
20 +

(
n

2

)
21 + · · ·+

(
n

n− 1

)
2n−2 =

(1 + 2)n − 1

2
−
(
n

n

)
2n−1.

Therefore, it follows that

Np(c
2) =

(1 + 2)n − 1

2
−
∑

Np
(
(c/d)2

)
=

(1 + 2)n − 1

2
−
(

(1 + 2)n − 1

2
−
(
n

n

)
2n−1

)
=

= 2n−1.

This completes the proof. �

The following theorem is the final result for this section. It is proved by induction

on the sum of the powers on each prime in the prime factorization of c, and uses

Theorem 3.8 as the base case.

Theorem 3.9. Suppose c = pe11 p
e2
2 · · · penn where each pi ≡ 1 (mod 4). Then c is

the hypotenuse of exactly 2n−1 primitive Pythagorean triangles, or Np(c
2) = 2n−1.

Proof. We proceed by induction on the sum of the powers on each prime in the

prime factorization of c, or rather, we proceed by induction on

∑
0<i≤n

ei.

Assume e1 = e2 = · · · = en = 1. Then by Theorem 3.8, Np(c
2) = 2n−1. This will

serve as our base case.

Our induction hypothesis is that Np(c
2) = 2n−1 for

∑
0<i≤n ei < K for some

fixed integer K. Next, notice that the total number of divisors of c with 1 prime in
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their prime factorization is (e1 + e2 + · · ·+ en), and the total number of divisors of

c with 2 primes in their prime factorization is

(e1e2 + e1e2 + · · ·+ e1en + e2e3 + · · ·+ en−1en).

This pattern continues until we notice that the total number of divisors of c with

all n primes in their prime factorization of c is (e1e2e3 · · · en − 1). We subtract 1

since we are only including those divisors which are less than c.

Now that we understand how many divisors of c there are, we can calculate

Np(c
2) using Lemma 3.7. First we compute

∑
Np
(
(c/d)2

)
=

Np(p1)(e1 + e2 + · · ·+ en) +Np(p2)(e1 + e2 + · · ·+ en) + · · ·+

Np(pn)(e1 + e2 + · · ·+ en) +

Np(p1p2)(e1e2 + e1e3 + · · ·+ en−1en) +

Np(p1p3)(e1e2 + e1e3 + · · ·+ en−1en) + · · ·+

Np(pn−1pn)(e1e2 + e1e3 + · · ·+ en−1en) +

+ · · ·+

Np(p1p2 · · · pn)(e1e2 · · · en − 1)

which, according to our induction hypothesis, can be rewritten as

∑
Np
(
(c/d)2

)
= (20)(e1 + e2 + · · ·+ en) +

(21)(e1e2 + e1e3 + · · ·+ en−1en) +

+ · · ·+

(2n−1)(e1e2 · · · en − 1).

Next, consider the expression

(2e1 + 1)(2e2 + 1) · · · (2en + 1).
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Expanding gives us

(2e1 + 1)(2e2 + 1) · · · (2en + 1) =(3.2)

1 + 2(e1 + e2 + · · ·+ en) +

22(e1e2 + e1e3 + · · ·+ en−1en) +

+ · · ·+

2n−1(e1e2 · · · en−1 + e1e2 · · · en−2en) +

2n(e1e2 · · · en)

We note that

1

2
((2e1 + 1)(2e2 + 1) · · · (2en + 1)− 1) =

(e1 + · · ·+ en) + · · ·+ 2n−1(e1e2 · · · en) =∑
Np
(
(c/d)2

)
+ 2n−1.(3.3)

Therefore, since

Np(c
2) =

1

2
((2e1 + 1)(2e2 + 1) · · · (2en + 1)− 1)−

∑
Np
(
(c/d)2

)
,

Np(c
2) = 2n−1 as we set out to prove. This completes the proof. �

Example: Consider the number 65 which factors into 65 = 5 · 13. Both 5

and 13 are primes equivalent to 1 modulo 4. Therefore, 65 can be the hypotenuse

of 22−1 = 2 primitive right triangles, namely (63, 16, 65) and (33, 56, 65). Notice

that unlike the proofs of Theorems 3.2 and 3.4, the proof of Theorem 3.9 does not

provide us with an easy way to find multiple solutions.

Theorem 3.9 concludes our discussion of the sides of primitive Pythagorean tri-

angles nicely. We have shown that for all three sides, if we have a number that can

be a side of a primitive Pythagorean triple, it can be that same side (odd leg, even

leg, hypotenuse) of exactly 2n−1 primitive Pythagorean triangles, where n is the

number of primes in the prime factorization of the number.
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Figure 4. Pictorial Example of Theorem 3.9

3.4. Triangles that share a leg and hypotenuse. Now that we have an un-

derstanding of how one number can serve as the side of more than one primitive

right triangle, we consider right triangles, primitive or not, which share two sides.

In other words, we consider whether it is possible for the lengths of the two legs

of one right triangle to be the lengths of the leg and hypotenuse of another right

triangle.

Figure 5. Pictorial Example of Theorem 3.10

Theorem 3.10 states that this is impossible.
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Theorem 3.10. Given a Pythagorean triple (a, b, c) where a2 + b2 = c2, it is never

the case that there exists another triple (c, b, d) where c2 + b2 = d2.

Proof. We proceed by contradiction using a reduction argument. Assume that there

exists a system of Pythagorean triples (a, b, c) and (c, b, d) where

(3.4) a2 + b2 = c2

and

(3.5) c2 + b2 = d2.

Since we are only interested in positive integers, and since we are assuming that

there is at least one solution, there must be a solution for this system where the

value of d is smaller than all other values of d that are values in solutions to this

system of equations. We call the solution with the smallest d value minimal.

Let a, b, c and d be the minimal solution for equations 3.4 and 3.5. Note that if

p|b and p|c, then by Lemma 2.2, p|d and p|a. This would mean that both triples

could be divided through by p resulting in two Pythagorean triples (a/p, b/p, c/p)

and (c/p, b/p, d/p) that still share two terms. This would contradict the fact that

a, b, c and d is the minimal solution. Thus, we know that (a, b, c) and (c, b, d) are

both primitive Pythagorean triples.

Solving equations 3.4 and 3.5 for c2 and adding the resulting equations together

yields

2c2 =
(d+ a)2

2
+

(d− a)2

2
.

Since d and a are both odd, d− a and d+ a are both even, and it follows that

c2 =

(
d+ a

2

)2

+

(
d− a

2

)2

.

Note that by Lemma 2.2, (d+ a)/2 and (d− a)/2 are relatively prime. Therefore(
d− a

2
,
d+ a

2
, c

)
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is a primitive Pythagorean triple. By Theorem 2.5, either:

Case 1:
d+ a

2
= k2 − l2, d− a

2
= 2kl

or

Case 2:
d− a

2
= k2 − l2, d+ a

2
= 2kl

where gcd(k, l) = 1, k > l > 0, and one of k and l is even and the other is odd.

Solving equations 3.4 and 3.5 for b2 and adding the resulting equations together

yields 2b2 = d2 − a2 = (d + a)(d − a). Regardless of whether we are in Case 1 or

Case 2, we see that 2b2 = (d + a)(d− a) = 2(k2 − l2)2(2kl). Using the fact that b

is even, it follows that (
b

2

)2

= (k2 − l2)kl.

Since gcd(k, l) = 1, it is clear that gcd(k2 − l2, k) = 1 and gcd(k2 − l2, l) = 1,

since any divisor of k divides k2 but not l2, and visa versa for l. Thus, k2 − l2, k

and l are pairwise relatively prime, and so by Lemma 2.3 each one must itself be a

square, since their product is a square.

Let k = r2, l = s2 and k2 − l2 = t2 and note that t2 = k2 − l2 = (k+ l)(k− l) =

(r2 + s2)(r2 − s2). Since one of k and l is even and the other is odd, we know that

t2 is odd. Because of this, (k+ l) and (k− l) are relatively prime, since any divisor

of the two of them would have to divide their sum and difference, which are 2k and

2l respectively. But since t2 is odd, we know that the divisor cannot be 2, thus

the divisor would have to divide both k and l, meaning that the divisor is simply

1. It follows that r2 + s2 and r2 − s2 are relatively prime. Thus, by Lemma 2.3,

r2 + s2 and r2 − s2 are squares, since their product is t2. Thus, r2 + s2 = x2 and

r2 − s2 = y2 for some positive integers x and y.

Therefore, (y, s, r) and (r, s, x) are two Pythagorean triples where y2 + s2 = r2

and r2 + s2 = x2. In other words, the numbers y, s, r and x yield another solution

to equations 3.4 and 3.5. However,

x2 = s2 + r2 = k + l < 2k ≤ 2kl ≤ d+ a

2
< d ≤ d2.
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Since a, b, c and d was taken at the beginning to be the minimal solution, the

fact that x2 < d2 is a contradiction. Therefore, given a Pythagorean triple (a, b, c),

it is never the case that there is exists another Pythagorean triple (c, b, d). This

completes the proof. �

4. Pythagorean Triples in 3-Dimensions

4.1. The Euler Brick. We now move our discussion to considering how we can

fit three Pythagorean triangles together in 3-dimensions. Consider a cuboid (right

parallelepiped) with side lengths a, b, and c, and face diagonals dab, dac, and dbc,

where dab is the face diagonal across the face with sides a and b, and so on, as in

Figure 6.

Figure 6. Pictorial Example of a Cuboid

From the faces of this cuboid, we find three equations:

a2 + b2 = d2ab(4.1)

a2 + c2 = d2ac(4.2)

b2 + c2 = d2bc(4.3)

When all six values, a, b, c, dab, dac, and dbc, are integers, the cuboid is called an

Euler Brick, and the three equations above are Pythagorean triples.
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Euler Bricks have not yet been fully classified, but there are some things we

know about them. We call an Euler Brick primitive if all three Pythagorean triples

are primitive.

Theorem 4.1. There are no primitive Euler Bricks.

Proof. We proceed by contradiction. Suppose we have a primitive Euler Brick, and

that in Equation 4.1, b is the even term. Then by Theorem 2.5, both a and c must

be odd. This is a contradiction because both a and c cannot be odd in Equation 4.2

by Theorem 2.5. Next, let a be the even term in 4.1. Then by Theorem 2.5, both b

and c must be odd. This is a contradiction because both b and c cannot be odd in

Equation 4.2. Therefore, there are no primitive Euler Bricks. This completes the

proof. �

In 1740, Nicholas Saunderson found a formula for generating different Euler

Bricks, although perhaps not all Euler bricks [4].

Theorem 4.2. If (x, y, z) is a Pythagorean triple, then

(a, b, c) = (x(4y2 − z2), y(4x2 − z2), 4xyz)

is an Euler Brick with face diagonals

dab = z3

dac = x(4y2 + z2)

dbc = y(4x2 + z2).

Proof. The proof is just a matter of computation. �

Theorem 4.2 proves that there are infinitely many Euler Bricks. The smallest

Euler Brick (measured by the longest side) has sides (a, b, c) = (240, 117, 44) and
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face diagonals dab = 267, dac = 244 and dbc = 125, and was discovered by Paul

Halcke in 1719[4].

If the interior diagonal D of an Euler Brick is also an integer, that is, if

D =
√
a2 + b2 + c2

is an integer, then the Euler Brick is called a Perfect Cuboid. It is not known

whether any Perfect Cuboids exist, despite many efforts to prove it impossible and

many efforts to find an example of one.

4.2. A Tetrahedron of Right Triangles. Consider the following system of equa-

tions:

n21 + c2 = b2(4.4)

n22 + b2 = a2

n33 + c2 = a2.

These three equations actually describe the edges of a tetrahedron where three

of the faces are right triangles. Moreover, with a little algebra, we see that

n21 + n22 = n23,

meaning that the fourth face of the tetrahedron is a right triangle as well. Figure

7 shows how this tetrahedron might look.

The question is whether or not it is possible to have a tetrahedron like this with

integer sides. In a paper [E753], Euler proved that this is indeed possible.

Euler, however, was pursuing a different question. He was looking for three inte-

gers a, b and c where all three sums and all three differences are squares. However,

a solution to this problem also gives us a solution to our tetrahedron problem.
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Figure 7. Pictorial Example of System 4.4

Suppose we have three integers a, b and c such that

a+ b, a− b,

a+ c, a− c,

b+ c, and b− c

are all squares. Then,

(b+ c)(b− c) = b2 − c2 = n21

(a+ b)(a− b) = a2 − b2 = n22

(a+ c)(a− c) = a2 − c2 = n23

is a solution to System 4.4, since the product of two squares is a square.

We will not go through the solution that Euler gives for this problem. The

interested reader can read How Euler Did It by Ed Sandifer[5] for a complete

explanation of Euler’s solution. The result is stated below.

Theorem 4.3. Given positive integers f and g,
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a = (4f2g2((f4 + 2f2g2 + 9g4) + (f4 − 2f2g2 + 9g4)))2

·(16f4g4 − (f4 − 2f2g2 + 9g4)(f4 + 2f2g2 + 9g4))2

b = 2(4f2g2((f4 + 2f2g2 + 9g4) + (f4 − 2f2g2 + 9g4)))

·(16f4g4 − (f4 − 2f2g2 + 9g4)(f4 + 2f2g2 + 9g4))

c = 2(4f2g2((f4 + 2f2g2 + 9g4)− (f4 − 2f2g2 + 9g4)))

·(16f4g4 − (f4 − 2f2g2 + 9g4)(f4 + 2f2g2 + 9g4))

is a solution to System 4.4.

Proof. The proof is just a matter of calculation. We can factor all the sums and

differences to see that they are all indeed squares. That is,

a+ b = (f − g)2(f − 3g)2(f + 3g)2(f + g)2(f2 + 2fg + 3g2)2(f2 − 2fg + 3g2)2,

a− b = (f2 + 9g2)2(f2 + g2)2(f4 − 2f2g2 + 9g4)2,

a+ c = (f4 + 2f3g + 2f2g2 − 6fg3 + 9g4)2(f4 − 2f3g + 2f2g2 + 6fg3 + 9g4)2,

a− c = (f4 − 2f2g2 + 9g2)2(f2 + 2fg + 3g2)2(f2 − 2fg + 3g2)2,

b+ c = 16f2g2(f2 − 3g2)2(f2 + 2fg + 3g2)2(f2 − 2fg + 3g2)2, and

b− c = 16f2g2(f2 + 3g2)2(f4 − 2f2g2 + 9g4)2.

�

Example: Consider the following example. Let f = 2 and g = 1. It follows

from Theorem 4.3 that

a = 733, 025, b = 488, 000 and c = 418, 304.

Here we see that:

a+ b = 11052, a− b = 4952,
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a+ c = 10732, a− c = 5612,

b+ c = 9522, b− c = 2642.

We then use these values to solve for n1, n2 and n3 in our original equation:

n21 = (b+ c)(b− c) = 63, 165, 763, 584 = 251, 3282,

n22 = (a+ b)(a− b) = 299, 181, 650, 625 = 546, 9752, and

n23 = (a+ c)(a− c) = 362, 347, 414, 209 = 601, 9532.

In Euler’s solution, due to the complexity of the problem, he makes assumptions

that simplify the problem. Thus, it is not at all clear whether Theorem 4.3 will

produce every solution to System 4.4. Moreover, many solutions generated by

Theorem 4.3 are trivial. For example, if f = g or f = 3g, then a+ b = 0, meaning

that n2 = 0, from which it follows that b = a and n1 = n3.

Theorem 4.4. Suppose that a, b, c, n1, n2 and n3 is a solution set to System 4.4.

Then

A = a2 + b2 − c2, B = a2 + c2 − b2, and C = |b2 + c2 − a2|

and

N1 = 2cn2, N2 = 2an1, and N3 = 2bn3

is also a solution set.

Proof. We need to prove that A2 − B2, A2 − C2 and B2 − C2 are all squares. To

see that A2 −B2 is square, note that

A−B = 2(b2 − c2) = 2n21,

and

A+B = 2a2.

Thus,

A2 −B2 = (A+B)(A−B) = 22a2n21 = N2
2 .
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In a similar fashion, we see that

A2 − C2 = 22b2n23 = N2
3 and

B2 − C2 = 22c2n22 = N2
1 .

This completes the proof. �

Example: From the example above, we know that a = 733, 025, b = 488, 000,

c = 418, 304, n1 = 251, 328, n2 = 546, 975 and n3 = 601, 953 is a solution set to

System 4.4. By Theorem 4.4,

A = 733, 0252 + 488, 0002 − 418, 3042 = 600, 491, 414, 209,

B = 733, 0252 + 418, 3042 − 488, 0002 = 474, 159, 887, 041,

C = |488, 0002 + 418, 3042 − 733, 0252| = 124, 203, 414, 209,

N1 = 2 · 418, 304 · 546, 975 = 457, 603, 660, 800,

N2 = 2 · 733, 025 · 251, 328 = 368, 459, 414, 400, and

N3 = 2 · 488, 000 · 601, 953 = 587, 506, 128, 000

is also a solution set. The calculations can be verified.

5. Conclusion

Theorems 4.3 and 4.4 give us some solutions to our original problem, but perhaps

not all solutions. As was mentioned, Euler made many simplifications before coming

up with his solutions to System 4.4, and therefore potentially threw out many

solutions. However, we have shown that there are, at least, some solutions to the

problem we set out to solve.

Other questions remain unanswered. It is still unknown whether there are any

Perfect Cuboids. The solutions to both the Euler Brick and System 4.4 could

potentially be classified in much more elegant terms. We leave these, as well as

many other questions, for others to pursue.
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