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1 Introduction

Linear Modeling, in a broad sense, involves using information that we have to predict outcomes in
the future. As one can gather, this is concept is widely applicable to disciplines across the board.

Big data is an up and coming catch phrase in the media these days. With the rise of technology
and the Internet, we have more data at our fingertips than ever before. The question then becomes:
How can we most effectively use it to our advantage? How can we filter it so that it is managable
and still useful to us? How can we profit from or make use of its patterns? Data is cheap and easy
to find. Effective tools for analysis and individuals who can use these tools, on the other hand, are
neither cheap nor easy to find.

This is where linear modeling comes in. Statisticians are working to develop algorithms that will
efficiently select, compile, and sort through these data sets to most efficiently flesh out pertinent
information. Using model selection, statisticians are able to parse through data sets, emphasizing
the most pertinent information and diminishing or ignoring information which is repetitive or
unrelated. In this way, our data sets are both interpretable and more computationally feasible so
that prediction can move with the click of a button.

As will be discussed in this paper, the most popular linear modeling technique is the Ordinary Least
Squares technique, which minimizes the sum of the squared errors of the model. This technique,
however, is unreliable when there are extreme outliers or when there is collinearity between variables
in the model. Statisticians have been developing new modeling techniques to remedy these issues.
This paper will explore the machinery behind these techniques, study their asymptotic behaviors,
and run simulations to analyze their performance in various modeling scenarios.

2 Linear Models

2.1 Some Notation

As will be discussed, there exist many different modeling techniques at the fingertips of statisticians,
each with a different approach to the problem at hand and each with their own pros and cons. The
goal of the statistican is to use the one which is best. An illustrative example will help us see what
this could mean.

Suppose we want to model systolic blood pressure against age. In other words, this model will
predict an individual’s blood pressure given their age. We collect data from existing patients and
plot it, as in Figure 5. The line through the data shows one example of a predictive linear fit of
the data. Input an age and the curve will output an expected blood pressure.
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Figure 1: Blood Pressure vs. Age

One obvious criterion for the performance of a linear model is to sum up the squares of the residuals,
shown in the figure to be the distance between the predictive curve and each individual data point.
We will discuss this in more detail later.

In the above example we collected data on one predictor (age) and one outcome (blood pressure).
In general , we have p predictors and list their observations in the obervational matrix as below.

X =



1 x11 x21 . . . xp1
1 x12 x22 . . . xp2
. . . . . . .
. . . . . . .
. . . . . . .
1 x1n x2n . . . xpn


The matrix X is n × P where P = p + 1. The first column of ones accounts for an intecept term
β0. We assume that the outcomes yj are distributed as

yj = β0 + β1x1j + ...+ βpxpj + εj = XT
j β + εj (1)

1 ≤ j ≤ n. The vector β is the P × 1 vector β = (β0, β1, ..., βp)
T and the ε terms are normally

distributed with a mean of 0 and a standard deviation of σ. We write: ε ∼ N (0, σ).
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All modeling techniques discussed attempt to estimate the value of β through some estimator β̂.
The hat notation indicates that the quantity is an estimate of β. Given a set of n observations,
we apply a modeling technique which generates an estimate β̂ of the true β. Because β̂ depends
on a set of observations, its value will change as the set of observations changes. In this sense, the
estimator β̂ is a random variable. Often times we are concerned with the bias of such an estimator
which captures the difference between the expected value of an estimator and the true value of the
parameter which it estimates.

In general, we say that an estimator, X̂ is unbiased iff E(X̂) = X.

This leads right in to the variance of an estimator, defined as the expected value of the squared
sampling deviations, that is,

var(X̂) = E[(X̂ − E(X̂))2] = σ2(X̂)

This tells us the average squared distance an estimate X̂ is away from its expected value, capturing
a measure of spread of the values of X̂.

We also examine the covariance matrix of the predictors. The covariance between two variables X1

and X2 is measured by

σ(X1, X2) = E{[X1 − E(X1)][X2 − E(X2)]
T }.

Covariance measures the percentage of variation in one variable that is explained by variation in
the other. Thus we define the covariance matrix of the set of variables by

σ2(X) = E





X1 − E(X1)
X2 − E(X2)

.

.

.
Xp − E(Xp)


[
X1 − E(X1) X2 − E(X2) ... Xp − E(Xp)

]


σ2(X) =



σ2(X1) σ(X1, X2) ... σ(X1, Xp)
σ(X2, X1) σ2(X2) ... σ(X2, Xp)

. . .

. . .

. . .
σ(Xp, X1) σ(Xp, X2) ... σ2(Xp)

 .

Noting σ(X1, X2) = σ(X2, X1) we see that covariance matrices are symmetric. These matricies
are helpful at identifying highly correlated variables. Note that the correlation of X1 and X2 is
defined as corr(X1, X2) = σ(X1, X2)/

√
σ2(X1)σ2(X2). Correlation matricies are defined similarily

and serve to standardize covariance matricies by making the diagonal entries equal to 1.

The correlation matrix captures pairwise linear correlations between the predictor variables. For a
more intuitve sense of this, we can imagine that in predicting a level of job satisfaction, years of
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experience and annual income would be highly correlated predictors: when one changes, the other
tends to change as well. This idea of correlation between predictors will play a large role in the
performance of modeling techniques.

2.2 Ordinary Least Squares

The Ordinary Least Squares (OLS) technique is the oldest and most popular method by which we
measure other modeling techniques. Many of the techniques discussed in the paper involve some
type of modification to the least squares approach. We will study it now to establish its machinery
and its performance so that we have a basis for comparsion.

The OLS approach attempts to minimize the squares of the error terms εi = yi −XT
i β as such:

β̂OLS = min
β

n∑
i=1

(εi)
2

where yi is the predicted outcome for the ith set of predictor observations xi. Minimizing this
quantity over all possible values of β will produce an optimal P × 1 vector β̂OLS which satisfies

β̂OLS = (XTX)−1XT y

and the OLS model then becomes
ŷ = Xβ̂OLS

where again, a hat is placed over the y to indicate that it is only an estimate of our true observations
y. We can see that our estimates are dimensionally correct by noting that the matrix X is n× P
and the vector ŷ is n× 1. Each element of β̂ represents the estimated coefficient of a corresponding
element of the true β. To foreshadow a future discussion, we note that if the matrix XTX is not
invertible then problems arise in our β̂OLS estimates.

Theorem 1. Suppose yj is distributed as in (1). Then, β̂OLS is an unbiased estimator of β.

Proof. By definition, β̂OLS = (XTX)−1XT (Xβ + ε). Thus,

E[β̂OLS ] = E[(XTX)−1XT (Xβ + ε)]

= E[β] + E[(XTX)−1XT ε]

= β + (XTX)−1XTE[ε]

= β + 0 = β. (2)

By noting that E is a linear operator with E[ε] = 0 and that xi is not a random variable by
assumption.

This is reassuring. It tells us that, on average, the β̂ coefficients will correctly estimate the β
coefficents in the true model. On the other hand, the variance of β̂ can be large. Since variance
captures the spread of an estimate, we can say that high variance in the β̂ coefficents results
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Figure 2: Sampling Variations in β̂ against correlation between predictors

in imprecise estimates of β. So although OLS produces unbiased esimates it can also have high
variance in the estimates, causing them to be unreliable.

When does the OLS estimate have high variance? As we will see, it will be when the predictors are
highly correlated. Earlier we noted that the β̂OLS are highly sensitive to the invertibility of XTX.
We review the following theorem from Lay [5] to find where the OLS technique is unreliable.

Theorem 2. The matrix ATA is invertible iff the columns of A are linearly independent. [5]

If we have highly correlated predictors then there exists some dependancy between the colums
of X. In this sense, there is a spectrum of the invertibility of a matrix. This causes interesting
dynamics in the β̂ values. To illustrate this we ran some simulations in R to generate histograms of
estimator coefficients in two models. Both models had two predictors (p=2). The first model had
highly correlated predictors corr(X1, X2) = .99, while the second had lower correlation between
predictors corr(X1, X2) = .2. The histograms in Figure 2 above reveal a widely spread distribution
of estimates in the correlated case and a more narrowly spread distribution in the other case. The
ranges along the x-axis are constant to illustrate the idea.

Thus, when the predictors in a linear model are highly correlated, the OLS approach can give impre-
cise estimates. The OLS estimates are good in the sense that they are unbiased estimators. Their
pitfall, however, is that their variance is highly dependant on the correlations between predictors.
The other modeling techniques described below find unique ways to address this problem.
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Figure 3: Biased estimators in Ridge Regression [4]

2.3 Performance Criterion: MSE

Good estimators should have low bias and low variance. To capture both of these, we look at the
Mean Square Error (MSE) for an estimater X̂ or a parameter X , defined as

E[(X̂ −X)2].

Theorem 3. The Mean Square Error of X̂ is equal to the sum of the variance of X̂ and the square
of the bias of X̂. Mathematically, E[(X̂ −X)2] = (variance of X̂) + (bias of X̂)2.

Proof.

E[(X̂ −X)2] = E[{(X̂ − E(X̂)) + (E(X̂)−X)}2]
= E[(X̂ − E(X̂))2] + E[(E(X̂)−X)2] + 2E[(X̂ − E(X̂))(E(X̂)−X))]

= (variance of X̂) + (bias of X̂)2 + 2E[X̂E(X̂)− E[X̂]2 − X̂X + E[X̂]X)

= (variance of X̂) + (bias of X̂)2 + 2(E[X̂]2 − E[X̂]2 −XE[X̂] +XE[X̂])

= (variance of X̂) + (bias of X̂)2 (3)

So, we often use MSE as the performance criterion when doing model selection. We saw that
the bias of the OLS estimates is zero, but their variance can be high. Some modeling techniques
introduce bias into their estimates in a way that lowers their variance and minimizes the MSE. See
Figure 3 for an illustration of this idea.
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2.4 Model Shrinkage

Including more predictors in our model will almost always improve the fit of the model. This
kitchen sink approach, however, has huge pitfalls including but not limited to multiple collinear
relationships between predictors. This causes the optimal β̂ coefficients to be highly sensitive to
small changes in X and largely unstable due to the matrix XTX being nearly singular (barely
invertible). More recently we have developed more complex measures for predictive power.

Ideally, we want our model to emphasize the stronger predictors of the outcome variable and
diminish or eliminate the other predictors. In some way, shape, or form, this is exactly what the
techniques below attempt to do.

2.5 Subset Selection

Why do we want to screen out data which may be useful in the model? For one, large data sets are
time consuming and computationally inefficient. Having a model with fewer independent variables
is also beneficial because it is easier to analyze and interpret. Furthermore, highly correlated
variables often add little predictive power, but do negatively affect the sampling variation of the β
coefficients. For the reasons discussed, it is desirable to screen out independent variables. We first
look for the ones which are either not fundamental to the problem, are subject to large errors, or
effectively duplicate other variables. This process is called subset selection.

Its goal, then, is to find the ‘best’ subset of independent variables and while the criteria to measure
this may be objective and mechanical, the process of screening ought not be such. With a set of
P predictors, there are 2P−1 possible subsets of independent variables. We run OLS analysis on
each of these subsets to find their respective MSE values and pick the subset of predictors which
minimizes the MSE. Subset selection often generates models that perform very well, but the process
takes a lot of computing time and energy, especially as P gets large. So, while subset selection often
outperforms the other techniques, it is not efficient for larger models.

Forward Stepwise Regression is an offshoot of subset selection that begins with all of the
predictors and strategically removes one at a time from the model until the remaining model has
optimized its MSE. This is a more computationally feasible approach, even with large P.

As Kutner [4] notes, subjective judgment should be used to ensure that important predictors are not
being thrown away. When considering a potential predictor we look to see whether its β coefficient
is statistically significant. That is, we seek predictors with high t-scores where

t∗i = β̂i/s(β̂i)

recalling that s(β̂i) is the sampling variation of β̂i. So, predictors with larger values tend to have
high statistical significance. A pivotal predictor may be ignored because of a narrow range of values,
resulting in a statistically insignificant t-score. This is where judgement need be employed.
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2.6 Ridge Regression

Ridge Regression introduces a penalty contraint on the size of the model. Specifically, Ridge
Regression controls how large the sum of the squares of the estimated coefficients. That is, ridge
finds β̂R that minimizes

n∑
j=1

(yj −XT
i β)2 subject to

p∑
j=1

(βj)
2 ≤ t.

The parameter t ≥ 0 is a tuning parameter which controls the amount of shrinkage applied to the
model. It can be shown that the ridge regression estimates satisfy

β̂Ri =
1

1 + γ
β̂OLSi

where γ depends on the choice of t as above.

2.7 Lasso and its Extentions

Lasso controls the size of the sum of the absolute value of the estimated coefficients. That is, it
finds β̂L which minimizes

n∑
i=1

(yi −XT
i β̂)2 subject to

p∑
j=1

|β̂j | ≤ t.

Again t ≥ 0 is a tuning parameter which controls the amount of shrinkage applied to the model.
Solving for the lasso coefficients gives:

β̂Li = sgn(β̂OLSi )(|β̂OLSi | − γ)+

where γ > 0 depends on the choice of t above. The + notation means that β̂Li = 0 for |β̂OLSi | < γ

We can see the differences between Lasso and Ridge in figure 4 above. Both produce estimates
which scale down the OLS coefficients. But while ridge regression scales the OLS coefficients
continuously, Lasso sets smaller OLS coefficients to zero and thereby helps shrink and interpret the
model. Therefore we note that Lasso is a nice combination of subset selection and Ridge regression:
it shrinks the model both by eliminating some predictors (similar to subset selection) and by scaling
the coefficients on the remaining predictors (similar to ridge).

Adaptive and Group Lasso Adaptive Lasso is an extension of Lasso which helps to account for
differences in the magnitudes of estimated β̂ coefficients. Adaptive Lasso minimizes
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Figure 4: Model Shrinkage across techniques of Linear Modeling. The dotted line represents the
OLS coefficients. [9]

n∑
i=1

(yi −XT
i β

aL)2 subject to

p∑
j=1

|βaLj |
|β̂OLSj |

≤ t

which increases the penalty for not eliminating predictors with smaller OLS coefficients and reduces
the penalty for not scaling predictors with larger OLS coefficients. In this way, adaptive lasso has
more of the advantages that subset selection has.

2.8 Choosing Optimal Contraints

AIC

For Lasso, choose the optimal tuning parameter (t constraint) we let t change across a range of
values and choose the value that minimizes the AIC criteria according to:

AIC = ln(
1

n
||Y −Xβ̂||2) + 2df/n. [10]

where df is equal to the number of non-zero coefficents in the model. We see that the first term
measures the accuracy (bias) of the model while the second term captures the size (variance) of the
model. Under this procedure, larger models are therefore penalized. In this way, minimizing the

9



Figure 5: K fold cross validation, K=5 [2]

AIC statistic will drive more coefficients to zero in the selected model and will balance bias and
variance.

For ridge regression, the process is more involved. AIC minimization is inappropriate for Ridge
Regression. As discussed, the AIC procedure penalizes models that include more nonzero coeffi-
cients. Because Lasso sets some coefficients to zero, as t varies, so too will the number of nonzero
estimated coefficients (df). Since AIC chooses the value of t that minimizes the AIC criterion, it
will find a balance between subset selection and ridge regression.

Ridge Regression, on the other hand, uniformly scales the OLS coefficients but sets none equal to
zero. This means that df is constant across all values of t. Thus, the AIC will be minimized for the
smallest value in the range of t. In this case the Ridge solutions will be driven towards the OLS
solutions because these minimize the bias of the model.

K-Fold Cross Validation

Instead, we use a technique called cross validation to optimize our t for ridge regression. Cross
validation partitions the sample data into K equally sized complementary subsets. We remove one
subset and fit the model using the data remaining in the K − 1 subsets. Then we calculate the
prediction error by using the fitted model to predict the data from the removed subset.

For an illustation, Figure 5 above shows data divided into 5 groups. For the ith part (i = 1, 2, 3, 4, 5),
we fit the model to the other 4 parts of the data and calculate the prediction error of the model
when predicting the ith part of the data. We repeat the process across all values of i and combine
the values of prediction errors.

Then, we let the t constraint vary, repeating the above process, and choose the value of t which
minimizes the total sum of the squared residual errors. This becomes our optimal contraint.

3 Asymptotics

3.1 Motivation

As shown in Figure 3, some models introduce bias into their estimators to lower variance and
improve overall prediction accuracy. We know that the OLS estimates whose solutions minimize
the sum of the squares of the residual errors produce unbiased estimators. By contraining the size
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Figure 6: Sampling Variations in β̂OLS and β̂L

of the model (as Lasso and Ridge Regression do), we introduce some bias into the estimates.

To illustrate this, we plotted the histograms of some OLS and Lasso estimates of β4 = 2 of 100
simulations, each with 20 observations from a population

y = Xβ + 3ε.

We had β = (2, 2, 2, 2, 0, 0, 0, 0)T and ε is the standard normal. There was a pairwise correlation
between predictors xi and xj of ρ|i−j| with ρ = .9. The results are shown in Figure 6. Note that
the OLS estimates are widely spread and roughly centered around 2. The Lasso estimates, on the
other hand, are more narrowly spread but their center is closer to 0. This is a perfect recreation of
Figure 3.

A well known result is that Lasso estimates are consistent. Essentially, they are biased with finite
sample size (n < ∞) but their bias approaches zero as n approaches infinity. En route to proving
this, we will first show that the OLS estimates are asymptotically normal.

3.2 Some Notation

First, we will extend our notion of a sequence of real numbers to a sequence of random variables. The
motivation for doing so should become clear to the reader before proceeding. Much of statistics is
focused on estimating parameters (such as the mean, variance, etc.) of a population of an unknown
distribution. We do so by collecting random observations X1, X2, ..., Xn (called random variables)
from the population distribution and then use these to generate an estimate θ̂n = θ̂(X1, ..., Xn) of
a population parameter θ. It should be noted that the estimate θ̂n is itself a random variable due
to its dependence on the set of random variables.

11



Specifically, we attempt to find the analogous concept of a limit for a sequence of random variables.
For example, let Xn be the number of heads observed after flipping a fair coin n times. One may
expect that

Xn/n � 1/2

as n � ∞. Upon closer inspection however, we find some glaring pitfalls with this notation: it is
possible, albeit unlikely, that Xn/n = 1 even for large n. We can, however say that Xn/n is likely
to be close to 1/2. This motivates our definition of convergence in probablity and in distribution.

Definition 1. A sequence of random variables Xn converges to a constant c in probability, denoted
Xn

p→ c if and only if for each ε > 0

P [|Xn − c| < ε] � 1

as n �∞. Equivalently, P (|Xn − c| ≥ ε) � 0.

As Lehmann [6] notes, this condition may be hard to verify. We use the following lemma to find
an equivalent condition for convergence in probability.

Lemma 1. Chebyshev Inequality. For any random variable Xn and any constants ε > 0 and
c,

E[(Xn − c)2] ≥ ε2P [|Xn − c| ≥ ε]

The proof is omitted but we can now find an alternative condition for convergence in probablity.

Theorem 4. A sufficient condition for Xn
p→ c is that

E[(Xn − c)2] � 0.

Proof. Suppose E[(Xn − c)2] � 0. Fix ε > 0. By the previous lemma we find

P [|Xn − c| ≥ ε] ≤ 1/ε2E[(Xn − c)2]

Letting n �∞ and noting the choice of ε is arbitrary gives the desired result.

Since it is often much easier to show that E(Xn− c)2 converges to zero, this theorem is very useful.
We will discuss one last related topic (using suggestive notation for our parameters) before moving
on.

Definition 2. A sequence of estimators X̂n of a parameter X is consistent if

X̂n
p→ X.

Theorem 5. A sufficient condition for X̂n to be a consistent estimator of X is that both the bias
and the variance of X̂n tend to zero as n �∞.

Proof. Theorem 3 along with Theorem 4 give the desired result.
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Theorem 1 shows that Mean Square Error, MSE = E[(X̂n −X)2] can be decomposed into terms
having to with both the bias and the variance of Xn. Theorems 2 and 3 show that the limiting
behavior of the MSE of Xn determines the consistency of Xn.

We introduce a few concepts to expand our asymptotic analysis of sequences before visiting the
limiting distributions of the Lasso estimators.

Definition 3. Two sequences {an} and {bn} are asymptotically equivalent, denoted an ∼ bn, if
an/bn � 1 as n �∞.

In the case where bn approaches a finite limit b 6= 0, we can say that an approaches the same limit.
In the case that the limit b is 0 or ±∞, we must use more caution: {n} and {n2} both approach
∞. They are not, however, equivalent since their ratio does not tend to 1. We thus need to look
at order relations and rates of convergence.

Definition 4. A sequence {an} has order smaller than the sequence {bn}, denoted an = o(bn) as
n �∞ if an/bn � 0.

Lemma 2. A sequence {an} satisfies an = o(1) if and only if an � 0.

Definition 5. Two sequences {an} and {bn} are said to be of the same order, denoted an � bn if
an/bn 6= 0 is finite. That is, there exists positive numbers m, M, and N such that

m < |an/bn| < M, n > N.

Combining these gives rise to big O notation:

Definition 6. A sequence {an} has order smaller than or equal to the sequence {bn}, denoted
an = O(bn) as n �∞ if an/bn is bounded.

3.3 The Central Limit Theorem and the Delta Method

The Central Limit Theorem is one of the most widely cited theorem in statistics. It involves the
asymptotic distribution of sample means and will be central to the analysis of behaviors of linear
models in the remainder of this paper.

Theorem 6. Central Limit Theorem [6]. Let Xi, i = 1, 2, ..., n be independently and identically
distributed from an unknown distribution with E(Xi) = ζ and V ar(Xi) = σ2 <∞. Then,

√
n(X̄ − ζ)/σ

d→ N(0, 1)

or equivalently,
√
n(X̄ − ζ)

d→ N(0, σ2).

This theorem is incredibly powerful because no matter what population distribution the Xi come
from, the distribution of their sample means converges in distribution to the normal distribution.
Some other useful tools are Taylor’s Theorem and the Delta Method.
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Theorem 7. Taylor’s Theorem [6]. Suppose that f(x) has r derivatives at a the point a. Then,

f(a+ ∆) = f(a) + ∆f ′(a) + ...+
∆r

r!
f (r)(a) + o(∆r).

Theorem 8. Delta Method [6]. If

√
n(Tn − θ)

d→ N(0, τ2)

then,
√
n[f(Tn)− f(θ)]

d→ N(0, τ2[f ′(θ)]2).

Proof. By Taylor’s Theorem, with a = θ and ∆ = Tn − θ,

f(Tn) = f(θ) + (Tn − θ)f ′(θ) + op(Tn − θ)

and hence √
n[f(Tn)− f(θ)] =

√
n(Tn − θ)f ′(θ) + op[

√
n(Tn − θ)].

The first term on the right hand side tends in distribution to N(0, τ2[f ′(θ)]2). On the other hand,
we know that

√
n(Tn − θ) is bounded in probability and hence, the remainder tends to zero in

probability. The result follows from previous results.

3.4 Asympotic Normality of the LS Estimators

The paper by Knight and Fu [3] notes the apparently well known fact that the Ordinary Least
Squares estimator β̂n satisfies

√
n(β̂n − β)

d→ N(0, σ2C−1)

under the conditions

Cn =
1

n

∞∑
i=1

(xixi
T ) � C

where C is a nonneagtive definite matrix and

1

n
max
1≤i≤n

xi
Txi � 0.

We will prove this here for the one dimensional (p = 1) case and note that the multivariate case is
simlply a generalization shown using Slutzky’s Theorem.

We have shown that β̂OLS = (XTX)−1XTy. In summation notation this translates to

β̂ =
( 1

n

n∑
i=1

xixi
T
)−1( 1

n

n∑
i=1

xiyi

)

14



=

 1 x̄

x̄

n∑
i=1

xi

n


−1  ȳ

n∑
i=1

xiyi

n

 =

[
β̂0
β̂1

]

(for the simple case where p=1) which, after inverting the matrix on the left and solving for β̂1 can
be shown to give

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
=

n∑
i=1

dniyi dni =
(xi − x̄)
n∑
i=1

(xi − x̄)2

We invoke the following theorem from Lehmann [6] to arrive at our desired result.

Theorem 9 [6]. Let Y1, ..., Yn be independently and identically distributed with E(Yi) = 0 and
V ar(Yi) = σ2 > 0. Then

n∑
i=1

dniYi

σ

√√√√ n∑
i=1

dni
2

d→ N(0, 1).

If we normalize our yi to be Yi = yi − ȳ then, since our β̂ is an unbiased estimator of β, the
conditions of the above theorem are met and we find that:

n∑
i=1

dni(yi − ȳ)
(
√√√√ n∑

i=1

(xi − x̄)2

σ

)
=

n∑
i=1

dniYi

σ

√√√√ n∑
i=1

dni
2

d→ N(0, 1).

Which is the univariate case of the result given in Knight [3].

3.5 Asymptotic Consistency of Lasso Estimates and its Limiting Distribution

Here, we again assume that the matrix C, defined above as

Cn =
1

n

∞∑
i=1

(xixi
T ) � C
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is nonsingular. We consider the asymptotic behavior of Lasso’s objective function by first defining
a random variable Zn(β̂):

Zn(β̂) =
1

n

n∑
i=1

(yi −XT
i β̂)2 +

λn
n

p∑
j=1

|β̂j |

which, as we have seen, is minimized at β̂ = β̂Ln . The following theorem tells us that β̂Ln is a
consistent estimator of β provided that λn = o(n)

Theorem 10 [3]. If C is nonsingular and λn/n � λ0 ≥ 0 then β̂Ln
p→ argmin(Z) where

Z(β̂) = (β̂ − β)TC(β̂ − β) + λ0

p∑
j=1

|β̂j |

Thus, if λn = o(n) then λ0 = 0 and argmin(Z) = β so that β̂Ln is consistent.

Proof. We will show that Zn(β̂), defined above, converges in probability to Z(β̂) + σ2. The result
will follow by applying established previous results from Pollard [7]. To show convergence of Zn we
translate it into matrix notation.

Zn(β̂) =
1

n

n∑
i=1

(yi −XT
i β̂)2 +

λn
n

p∑
j=1

|β̂j |

=
1

n
(Y −Xβ̂)T (Y −Xβ̂) +

λn
n

p∑
j=1

|β̂j |

=
1

n
((ε+Xβ)−Xβ̂)T ((ε+Xβ)−Xβ̂) +

λn
n

p∑
j=1

|β̂j |

=
1

n
(ε+X(β − β̂))T (ε+X(β − β̂)) +

λn
n

p∑
j=1

|β̂j |

=
1

n
[εT ε+ 2εX(β − β̂) + (β − β̂)TXTX(β − β̂)] +

λn
n

p∑
j=1

|β̂j |

Now, we let n �∞ and note the following facts:

σ2Inxn = var(ε) = E(εT ε) + E(ε)TE(ε) = E(εT ε).

1

n
εtε

p→ E[εT ε] = σ2Inxn (by the law of large numbers)
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1

n
XTX � C

E[
1

n

n∑
i=1

εi] =
1

n

n∑
i=1

E[εi] = 0

2
1

n
εTX(β − β̂) � 2E[

1

n

n∑
i=1

εi]X
T (β − β̂) = 0 (by the law of large numbers)

λn
n

� λo = 0

so that

Zn(β̂)
p→ σ2 + (β − β̂)TC(β − β̂) + λ0

p∑
j=1

|β̂j | = Z(β̂) + σ2

The pointwise convergence of Zn(β̂) to Z(β̂) + σ2 allows us to conclude that

sup
β̂∈K
|Zn(β̂)− Z(β̂)− σ2| p→ 0

for any compact set K by Pollard [7] and that

β̂Ln = Op(1).

It follows that
argmin(Zn)

p→ argmin(Z).

[3]

This tells us that the lasso estimates are consistent. To find their limiting distribution, we invoke
the following theorem.

Theorem 11 [3]. If λn/
√
n � λ0 ≥ 0 and C is nonsingular then

√
n(β̂Ln − β)

d→ argmin(V )

where

V (u) = uTCu− 2uTW + λ0

p∑
j=1

ujsgn(β̂j)

and W ∼ N (0, σ2C). [3]
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Proof. Define Vn(u) =

||ε−Xu/
√
n||2 + λn

p∑
j=1

|βj + uj/
√
n|

−
||ε||2 + λn

p∑
j=1

|βj |

 and note

that Vn(u) = Qn(β + u/
√
n)−Qn(β) where

Qn(z) = ||Y −Xz||2 + λn

p∑
j=1

|zj |

We find that argmin Vn =
√
n(β̂n − β) by noting that

Vn(
√
n(β̂n − β)) = Qn(β + (β̂n − β))−Qn(β) = Qn(β̂n) + C

and that the objective function Qn is analogous to the Lasso objective function, minimized at β̂n.

To show convergence of Vn, note that

Qn(β + u/
√
n)−Qn(β) = |(Y −Xβ)−Xu/

√
n|T |(Y −Xβ)−Xu/

√
n|+ λn

p∑
j=1

|βj + uj/
√
n| −Qn(β)

= ||ε||2 − 2uT /
√
nXT + uTXTXu/n+ λn

p∑
j=1

|βj + uj/
√
n| − (||ε||2 + λn

p∑
j=1

|βj |)

= uT
XTX

n
u− 2uT

XT ε√
n

+ λn

p∑
j=1

[|βj + uj/
√
n| − |βj |]

Then, letting n �∞ we apply the following facts:

1

n
XTX � C

XT ε√
n

d→ W

λn√
n

� λo

So that Vn(u)
d→ V (u), as defined above.

4 Simulations in R

4.1 The Regression Scenario

For the following simulations in R, we are in the usual regression situation. We have collected
n observational data points from a set of p predictors ~x = (x1, x2, ..., xp)

T along with from a

18



response/outcome variable y. In this case we will model the data without the intercept term so we
are left with the augmented data matrix:

X| y =



x11 x21 . . . xp1 y1
x12 x22 . . . xp2 y2
. . . . . . .
. . . . . . .
. . . . . . .
x1n x2n . . . xpn yn


In the following simulations, we compare the Ordinary Least Squares Estimates with the estimates
of Lasso, Ridge Regression, Adaptive Lasso, and Forward Stepwise Regression. To optimize the
tuning parameters we used five fold cross validation in ridge regression and AIC minimization in
Lasso and its extensions. We also used cross validation in Lasso for comparative purposes. The steps
procedure in R was used to perform forward stepwise regression. These examples are consistent
with those published in Tibshirani’s paper Regression Shrinkage and Selection via the Lasso [9] in
hopes of recreating his results.

4.2 Example 1

This example simulated 25 data sets, each with 20 observations from the population modeled as:
y = Xβ + σε where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T , ε is the standard normal, and σ = 3. There was a
pairwise correlation between predictors xi and xj of ρ|i−j| with ρ = .5 Table 1 shows the median
Mean Square Errors from each of the techniques. We use the median because it is a robust to
outliers. We see that Lasso and Ridge Regression perform best. Table 2 shows the proportion
of models from Lasso and forward stepwise regressions which include each β coefficient. We see
that Ridge and Lasso perform comparably well and both outperform stepwise and OLS by a good
measure. Table 2 shows that Lasso retains the correct coefficients more often than does forward
stepwise. On average forward stepwise has closer to the correct number of zero coefficients (5)
but suffers from high variablity in the nonzeo coefficients. Figure 7 below shows the inter quartile
range of β estimates of the four linear models over the 25 data sets. We see that Lasso and forward
stepwise are able to drive the zero β coefficents to zero very successfully.

Table 1: Results for Example 1

Method Median MSE Avg. no. of 0 coefficients

OLS 5.27 0
Ridge Regression 1.43 0

Lasso (AIC) 1.77 3.26
Lasso (cross-validation) 1.40 3.44

Adaptive Lasso 2.18 3.5
Forward Stepwise 2.45 3.62
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Figure 7: Estimates of the 8 coefficients in example 1. 1=OLS 2=Ridge 3=Lasso 4=Fwd Stepwise
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Table 2: Proportion of Models including β coefficients

Coefficient Lasso Forward Stepwise

β1=3 1.0 .98
β2=1.5 .82 .78
β3=0 .22 .34
β4=0 .22 .26
β5=2 .98 .88
β6=0 .16 .30
β7=0 .22 .26
β8=0 .24 .18

4.3 Example 2: Highly Correlated Predictors

This example is similar to example 1 except we set ρ = .9 to increase the correlation between
predictors. Table 3 shows the results and we see that ridge regression, Lasso and its extensions are
able to handle the correlation issue by significantly outperforming the OLS estimates. Again we
see that forward stepwise, on average, chooses the correct number of zero coefficients. Here, the
variance problem in the nonzero coefficients in magnified, as its median mean square error is well
above that of lasso and ridge regression.

Table 3: Results for Example 2

Method Median MSE Avg. no. of 0 coefficients

OLS 4.35 0
Ridge .27 0

Lasso (AIC) .64 5.76
Lasso (cross-validation) .75 5.2

Adaptive Lasso 1.92 4.92
Forward Stepwise 2.99 5.08

4.4 Example 3: Sparse Signals

Here we let β = (5, 0, 0, 0, 0, 0, 0, 0)T and σ = 2. As before, there are eight coefficients to estimate
but only the first one is non-zero. In this sense the signals of β are sparse. This set up should be
well suited for Lasso and its extensions. The results in Table 4 confirm this: Lasso’s median mean
square error is unprecedentedly low.

4.5 Example 4: Smaller Signals

Here we had the same set-up as in example 1 except βj = .85 for all 1 ≤ j ≤ 8. That is, the signals
of β are equally weighted but relativiely smaller in magnitude. The results in Table 5 reveals
that Ridge Regression outperforms the others. Lasso comes in second. OLS actually outperforms
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Table 4: Results for Example 3

Method Median MSE Avg. no. of 0 coefficients

OLS 4.71 0
Ridge 1.07 0

Lasso (AIC) .26 5.44
Lasso (cross-validation) .018 5.68

Adaptive Lasso 1.18 5.12
Forward Stepwise 2.41 5.12

forward stepwise selection in this case. This could be due to the fact that model selection is useless
in this case. Since all β elements are equal, it is impossible to forward stepwise to choose the
strongest signals.

Table 5: Results for Example 4

Method Median MSE Avg. no. of 0 coefficients

OLS 6.6 0
Ridge 1.7 0

Lasso (AIC) 3.7 2.4
Lasso (cross-validation) 3.4 2.16

Adaptive Lasso 5.89 3.64
Forward Stepwise 6.93 4

4.6 Example 5: Larger Models

Here, we are set up to analyze the performance of the estimators in larger models to better reflect
a real world application. We simulated 25 data sets, each with 100 observations and 40 predictors.
The coefficient vector was β = (0, 0, ..., 0, 2, 2, ..., 2, 0, 0, ..., 0, 2, 2, ..., 2)T and σ = 15. As in example
1, we had ρ = .5. Table 6 shows the performance results. We see that ridge outperforms the others
but is doing no model selection. Lasso under cross validation has a reasonably low MSE and does
a great job at model selection.

Table 6: Results for Example 5

Method Median MSE Avg. no. of 0 coefficients

OLS 164.99 0
Ridge 10.81 0

Lasso (AIC) 111.83 33.08
Lasso (cross-validation) 43.45 21.2

Adaptive Lasso 95.91 20.72
Forward Stepwise 305.22 27.4
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5 Conclusion

We began our discussion by studying the Ordinary Least Squares technique. After some sensitivity
analysis where we increased the correlation between predictors, we found that the OLS estimates
are unreliable estimators when there is collinearity between predictors. We then touched on alter-
native modeling techniques that attempt to improve upon OLS and remedy its shortcomings. By
constraining the size of the model, we introduce bias into our estimates in an attempt to lower
the overall mean square error of the model. By applying the Central Limit Theorem and Taylor’s
Theorem, we found that the distribution of OLS estimates are centered around the true parameter
value and approach normality as n approaches infitity. After some legwork, we also found that the
Lasso estimates are asymptotically consistent. That is, as n approaches infinity, the bias in the
Lasso model approaches zero. Further, the distribution of the Lasso estimates is asymptotically
normal. This is reassuring because with a lagre sample size, we are confident that the bias of the
Lasso estimates is negligible.

To test performance of the various models with finite sample size we ran simulations in R. For the
most part, our mathematical intuitions were correct. In small models with sparse signals, Lasso
outperformed all other techniques by a significant margin. Ridge was next followed by forward
stepwise. In models with more signals and larger signals, Here Lasso and Ridge performed well
(especially with highly correlated predictors) while forward stepwise and OLS did poorly. Finally,
in models with a large number of smaller signals (no zero coefficients), Ridge Regression does best
by far. Lasso still outperforms both OLS and forward stepwise. Overall, when the true model
is unknown, we can conclude that Lasso will do the best job at balancing model selection with
prediction accuracy.

By using improved linear modeling techniques such as subset selection, ridge regression and Lasso,
we are able to efficiently parse though large data sets (full of redundant and/or useless information)
and accurately predict outcomes. These tools will continue to be improved upon and applied to
larger and more complicated models.
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