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Introduction

We are surrounded by partially ordered sets, though we rarely view them as such. We will formally
define partially ordered sets, or posets, in the first section of this paper, but for now, consider the
following example: a family tree is a set of objects (the family members) together with a relation
(pun intended) defined on the elements of the set. For example, you could say that a person a is
“≤” a person b if they are a direct descendant of b. Say person a is person b’s sister. Neither is a
descendant of the other, so they are not related (according to “≤”). This is a non-numeric partially
ordered set. Given the obvious relevance of such sets, it is only natural that we should wish to
investigate functions defined on them.

In this paper, we begin with a simple seed of an idea, that of a partially ordered set. We proceed
by considering properties of compatible matrices, walking through a proof of the existence and
uniqueness of what is known as the Möbius function, µ, and subsequently offering a proof of the
Möbius inversion formula. The development of the Möbius function and the proof of the Möbius
inversion formula lead to results in several branches in mathematics, including combinatorics and
number theory. In combinatorics, the Möbius inversion formula implies the principle of inclusion
and exclusion, which is a tool used to count the number of elements of a given set in a somewhat
inverted way. The Möbius function and inversion formula may also be defined number theoretically
and used to prove a plethora of results. For example, we will discuss an explicit formula for counting
the number of integers less than a given integer that are relatively prime to that integer. In addition
to a certain level of mathematical know-how, we will assume, on the part of our reader, a working
knowledge of basic set theory – including familiarity with set unions and intersections – as well as
a firm understanding of basic operations on matrices.

1 Partially Ordered Sets

When asked to imagine an ordered set, most moderately informed students of mathematics would
picture a set with a total ordering relation. That is, if we chose any two elements in their set, they
would be related by the ordering relation on the set. For instance, consider the integers with the
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ordering relation ≤. Given any two integers a and b, either a ≤ b or b ≤ a. Suppose, instead,
that we have an ordered set where it is not guaranteed that two given elements will be related at
all. Such sets, called partially ordered sets, or posets, will be essential to our discussion, and are
defined formally below.

1.1 Definitions and Examples

Definition 1.1. [3, p.353] A relation ≤ on a set S is called a partial order, or a partial ordering
relation, if ≤ is reflexive, antisymmetric, and transitive.

As a quick review, recall that a relation ≤ on S is said to be reflexive if x ≤ x for all x ∈ S,
antisymmetric if exactly one of x ≤ y or y ≤ x is true for distinct x, y ∈ S, and transitive if
x ≤ y ∧ y ≤ z implies that x ≤ z for x, y, z ∈ S.

Definition 1.2. [3, p.372] The pair (S,≤) is called a partially ordered set, or poset, if the relation
≤ on the set S is a partial ordering relation.

Partially ordered sets can take numerous forms. For example, we could have a partially ordered set
comprised of the set S = {2, 3, 6, 7}, and the partial ordering relation “divides,” so that d1 ≤ d2 if
d1|d2 for d1, d2 ∈ S. Clearly, 2|6, but 3 and 7 are not related.

In order to visualize partially ordered sets, we may use what are called Hasse diagrams, which are
defined as follows:

Definition 1.3. [3, p.373] If ≤ is a partial order on a finite set V , we construct a Hasse diagram
for ≤ on V by drawing a line segment from x up to y if x, y ∈ V with x ≤ y and if there is no
other element z ∈ V such that x ≤ z and z ≤ y. (So there is nothing “in between” x and y.)

For example, Figure 1 helps us to see the partial ordering relation ⊆ on P({a, b, c}). Note that
P({a, b, c}) denotes the power set of {a, b, c}, which is the set of all subsets of the set {a, b, c}. We
may travel (strictly “vertically”) between {a} and {a, b, c}, and so, sure enough, {a} ⊆ {a, b, c}.
However, we may not travel in this fashion between {a, b} and {c}. So, {a, b} and {c} are not
related.

1.2 A Nice Property of Partially Ordered Sets

Let V = {x1, x2, . . . , xn}, together with the partial ordering relation ≤, be a partially ordered set.

We propose that we may take the elements of V and create an ordered list so that if, for integers i
and j between 1 and n, xi falls to the left of xj in our list, then xj � xi.
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Figure 1: The Hasse diagram for the partially ordered set (V,⊆), where V = P({a, b, c}).

To show that we may do this, we use the principle of mathematical induction on the number of
elements in our partially ordered set.

Proof. As our base case, consider a partially ordered set defined by a set containing two elements
and the partial ordering relation ≤. Then, these two elements, call them a and b, either have no
relation, or exactly one of a ≤ b, b ≤ a is true. Notice that we may write our two elements in list
form as [a, b] (or [b, a]) if they have no relation, [a, b] if a ≤ b, or [b, a] if b ≤ a. It is easy to see that
these listings satisfy the necessary condition.

Next, suppose that we may list the elements as desired for a partially ordered set defined by a set
containing k elements and the partial ordering relation ≤. Call the set of k elements Vk. Then, we
will add one more element to the set. We claim that we can place this element so that the resulting
list of k + 1 elements has the desired properties.

Consider the sets:

S = {xi : xi ∈ Vk, xi ≤ xk+1}

T = {xi : xi ∈ Vk, xk+1 ≤ xi} .

Notice that the union of these two sets is comprised of all elements in Vk which are related to k+1,
and that this union is a (not necessarily proper) subset of Vk.

If either S or T is the empty set, place xk+1 at the far left or right end of the list, respectively. It
is clear that this new list of k + 1 elements satisfies our conditions, and we are done.
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Otherwise, there are finitely many elements in each set, so there exists an element of S that is
farthest to the right in our ordered list of Vk, and, similarly, there exists an element of T that is
farthest to the left in our list.

Call these elements xs and xt, respectively. We claim that xs is to the left of xt on our list of Vk,
and that we may place xk+1 anywhere between xs and xt to obtain a list of Vk+1 with the desired
properties.

Because xs ≤ xk+1 and xk+1 ≤ xt by our definitions of S and T , and the partial ordering relation
≤ is transitive by definition, we find that xs ≤ xt. Since it cannot be the case that xs is to the
right of xt, it follows that xs must be to the left of xt. We can thus place xk+1 between xs and xt.
We claim that this is an ordered list of Vk+1.

(Aside: Because this is a rather abstract argument, we will give a brief example of how this
inductive step might work. Let Vk = {∅, {a}, {a, c}, {b}, {a, b, c}}, and let ⊆ be the partial or-
dering relation on Vk. Then, we may order Vk in the desired way as: ∅, {a}, {b}, {a, c}, {a, b, c} or
∅, {b}, {a}, {a, c}, {a, b, c}. If we want to introduce the element {c}, we note that the set S, as defined
above, is equal to {∅}, and the set T , also as defined above, is equal to {{a, c}, {a, b, c}}. So, we may
place {c} anywhere between ∅ and {a, c} in either of our above ordered lists and have a new ordered
list that includes {c} and satifies our desired properties. For example, ∅, {b}, {c}, {a}, {a, c}, {a, b, c}
is one such final ordering.)

We will now show that we have created an ordered list of Vk+1 with the desired properties. Suppose
that xk+1 ≤ xm for some integer m between 1 and k.

Then, xm ∈ T . Since xt is the leftmost of the elements of T , xm is to the right of xt and, by our
choice of xk+1’s location, xm is to the right of xk+1.

By contraposition, we find that if xm is to the left of xk+1, then xk+1 � xm. So, our ordered list of
Vk+1 has the desired properties, and, by the principle of mathematical induction, we find that we
may create such an ordered list of a partially ordered set of any size. Actually, a permutation that
places the elements of a partially ordered set so that xi ≤ xj implies that xi falls to the left of xj
is called a linear extension of the partially ordered set.

2 Compatible Matrices

In our later proof of Möbius inversion, we will make use of what are called compatible matrices
and several of their properties. We will begin our discussion of compatible matrices with their
definition. Note that a matrix is said to be compatible in relation to a specific partially ordered
set.
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2.1 Definition and Example

Definition 2.1. An n× n matrix A is compatible with respect to the partially ordered set (V,≤),
where V = {x1, x2, . . . , xn}, if Aij 6= 0 implies that xi ≤ xj .

For example, consider the partially ordered set (V,⊆), where V = P({a, b, c}) (see Figure 1). Define
the following:

x1 = ∅

x2 = {a}

x3 = {b}

x4 = {c}

x5 = {a, b}

x6 = {a, c}

x7 = {b, c}

x8 = {a, b, c}

Then, the reader may verify that the following are all compatible matrices relative to the partially
ordered set (V,⊆), with the last of the three having a 1 in every entry that may be nonzero (we
will later define this particular matrix as the “complete” compatible matrix of (V,⊆)):

6 0 0 e 0 0 0 1
0 0 0 0 0 0 0 0
0 0 7 0 0 0 2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 0





1 0 0.65 0 6 0 0 500
0 0 0 0 3 π 0 1
0 0 20 0 0 0 0 0
0 0 0 0 0 0 4 0
0 0 0 0 5 0 0 2
0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 5





1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



We may note that the 8× 8 matrix comprised of all zeros is also compatible with respect to (V,⊆).
That the zero matrix satisfies the necessary conditions for being compatible in reference to any
partially ordered set is clear.

2.2 Several Properties

From the properties of a partial ordering relation, several properties of compatible matrices are
immediately evident. First, note that if Aij (the ijth entry of the matrix A) is nonzero for distinct
i and j, then Aji = 0. This follows directly from the antisymmetric property established in
Definition 1.1. Furthermore, Aii may always be nonzero, and if Aij and Ajk are nonzero, then Aik
may be nonzero. In these cases, we are using the reflexive and transitive properties, respectively,
of Definition 1.1.

Some other, perhaps less obvious, properties of compatible matrices follow.

Theorem 2.1. Let A and B be n × n matrices that are compatible with respect to the partially
ordered set (V,≤), where V = {x1, x2, . . . , xn}, and ≤ is a partial ordering relation on V . Then
A+B = C is also compatible with respect to (V,≤).
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Proof. Consider two n× n matrices, A and B, which are compatible with respect to the partially
ordered set (V,≤), where V = {x1, x2, . . . , xn}, and ≤ is a partial ordering relation on V .

Because A is compatible, if Aij is nonzero for positive integers i and j less than or equal to n, then
xi ≤ xj . Since B is also compatible, Bij can be either nonzero or zero. Then, Aij +Bij is nonzero
or zero (the latter is the case in which Aij = −Bij) and the property “Cij 6= 0 implies xi ≤ xj” is
preserved in such entries of the matrix C = A+B. Note that the same argument can be made for
the case in which Bij is nonzero and Aij is zero.

In the case in which both Aij and Bij are zero, Cij = Aij +Bij = 0 + 0 = 0, and so the conditional
statement “Cij 6= 0 implies xi ≤ xj” is certainly preserved in such entries of the matrix C = A+B.

Thus, by definition, if A and B are compatible matrices with respect to (V,≤), C = A+B is also
compatible with respect to (V,≤).

Before we state and prove the next property of compatible matrices, it is important to first note
that we may multiply two n× n matrices using the standard method of matrix multiplication.

Theorem 2.2. If A and B are n × n matrices that are compatible with respect to the partially
ordered set (V,≤), where V = {x1, x2, . . . , xn} and ≤ is a partial ordering relation on V , then their
product, AB, is also compatible with respect to (V,≤).

Proof. Consider a partially ordered set (V,≤) with V = {x1, x2, . . . , xn}, and take n× n matrices
A and B that are compatible with respect to (V,≤). Let C = AB.

To show that C is also compatible with respect to (V,≤), we must prove that if Cij is nonzero for
positive integers i and j less than or equal to n, then xi ≤ xj . If this is the case, Aij must have
been nonzero or what I will call a “secret zero,” which will denote an entry Aij that is zero while
xi ≤ xj . (Recall that our definition for compatible matrices is not a biconditional.)

We find that, for C to be compatible, it is necesssary and sufficient to show that the following is
satisfied: if Cij is nonzero, then Aij is either nonzero or a “secret zero”.

(Note that this is equivalent to the statement: if Cij is nonzero, then Bij is either nonzero or a
“secret zero”.)

Suppose that Cij is nonzero, and recall that Cij = Ai1B1j +Ai2B2j + . . .+AinBnj .

Then, it is clear that at least one of the terms in this sum must be nonzero. Call this term AikBkj .
If the product of Aik and Bkj is nonzero, then each is separately nonzero and we have the following
relations: xi ≤ xk and xk ≤ xj .

Because our partial ordering relation is, by definition, transitive, we find that xi ≤ xj , and so Aij
is either nonzero or a “secret zero”.
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Therefore, if Cij is nonzero, then Aij is either nonzero or a “secret zero,” and we are done.

2.3 Groundwork for the Final Property

The next property of compatible matrices is in no way self-evident. It states that if the inverse
of a compatible matrix exists, then it is also compatible. However, we do not yet have the tools
necessary to prove this property, and so will need to work up to its statement and proof.

Consider a matrix A that is compatible with respect to the partially ordered set (V,≤), where
V = {x1, x2, . . . , xn}. From our findings in Section 1.2, we know that we may order the elements
of V such that for any pair xi and xj where xi falls to the left of xj in our list, xj � xi.

For the sake of notation, let this list be: y1, y2, . . . , yn, where y1 is the element of V that is farthest
to the left in this list, y2 is second from the left, etc. up to yn, which is the rightmost element of V in
our ordered list. So if, for example, the beginning of our ordered listing of x’s is x7, x4, x2, x13, . . .,
then, y1 = x7, y2 = x4, y3 = x2, y4 = x13, etc.

If we think of a compatible matrix as an n × n matrix whose rows and columns are labeled
x1, x2, . . . , xn, we may also consider the matrix whose rows and columns are labeled by y1, y2, . . . , yn.
It then becomes clear that another important concept in our discussion will be that of a permu-
tation matrix, which is simply the n × n identity matrix with its rows reordered so that, when
multiplied by any other n×n matrix on the left or right, it reorders that matrix’s rows or columns,
respectively. Note that in discussing permutation matrices, we are moving outside of the realm of
compatible matrices: that is, a given permutation matrix is not necessarily compatible.

So, using two permutation matrices, we may reorder the rows and columns of A so that it is a
compatible matrix corresponding to the relationship between the y’s rather than the x’s. Call this
matrix T .

In order to define these permutation matrices more explicitly, recall that:

Definition 2.2. [4, p.114] Given an m × n matrix A, the transpose of A is the n × m matrix,
denoted by AT , whose columns are formed from the corresponding rows of A.

We say that T = PAQ for permutation matrices P and Q; P is defined as a permutation matrix
where Pij is 1 if xj is in the ith position in our ordered listing of V . Otherwise, Pij is zero. Q is
simply the transpose of P . To illustrate this concept, consider the following example:

Example 2.1. Suppose our ordered listing of {x1, x2, x3, x4} is [x1, x4, x2, x3]. Then our permuta-
tion matrix P would be:


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
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Multiplied on the left, this matrix will take a compatible matrix, B, of the partially ordered set
defined on the set {x1, x2, x3, x4}, and will reorder its rows so that the first row of B becomes the
first row of B′, the second row of B becomes the third row of B′, the third row of B becomes the
fourth row of B′, and the fourth row of B becomes the second row of B′.

Q, then, is the transpose of P :


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


Q will rearrange the columns of B′ in a similar fashion in order to create TB.

It is not too difficult to see that T will always be an upper triangular matrix. Consider the entry
Tij . If i is greater than j (in the traditional sense of ordered integers), then Tij must be zero by
Definition 2.1, since, by our creation of the y’s as an ordered listing of the x’s, we have established
that yi � yj .

We have concluded that, given a matrix that is compatible with respect to a partially ordered set
(V,≤), where V = {x1, x2, . . . , xn}, we may create a corresponding upper triangular matrix, T ,
that is compatible with respect to the partially ordered set (V ?,≤), where V ? = {y1, y2, . . . , yn}
is comprised of the elements of V relisted so that if xm ≤ xn, then xm falls to the left of xn on
our list. For notational simplicity, we then re-label the x’s as y’s, in sequential order. Note that
if the inverse of T is compatible with respect to V ?, then the inverse of our original matrix A is
compatible with respect to V .

Recall the following properties of matrices:

Theorem 2.3. If A is a triangular matrix, then detA is the product of the entries on the main
diagonal of A.

Theorem 2.4. A square matrix A is invertible if and only if detA 6= 0.

Definition 2.3. The n×n identity matrix is the matrix with 1’s on the diagonal and 0’s elsewhere.

So, T is invertible if and only if the entries on its main diagonal are all nonzero. It will also be
helpful to be aware of a few additional properties of T−1 before we begin to work with it in earnest:

• T−1 is an upper triangular matrix. To see that this is true, consider deriving T−1 by row
reducing the augmented matrix [T I]. If T−1, exists, [T I] is row equivalent to [I T−1] [4,
p.124]. Since T is upper triangular, to reduce T to I, for each given row we need only subtract
rows that fall below that given row. When we consider what is happening to I, on the right,
while we do this, we see that I only gains entries above the diagonal as it becomes T−1.
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• The entries on the main diagonal of T−1 are all nonzero. Recall that an n × n matrix is
invertible if and only if its determinant is nonzero, and that the determinant of an upper
triangular matrix is the product of the entries on its main diagonal. Then, if any of the
entries on the diagonal of T−1 were zero, T−1 would not be invertible. However, T−1 is
clearly invertible, as it is the inverse of T .

So, all entries T−1
ij where i > j are equal to zero, and all entries T−1

jj are nonzero. We can see that

both properties are allowed in a compatible matrix. So, in our proof that T−1 is compatible, we
need only look at entries T−1

ij of T−1 where i < j, and ensure that if T−1
ij 6= 0, then yi ≤ yj .

2.4 The Final Property

Now, we may move on to the final property of compatible matrices that we will explore in this
paper.

Theorem 2.5. If the inverse of an upper triangular matrix T that is compatible with respect to the
partially ordered set (V ?,≤) exists, then T−1 is also compatible with respect to (V ?,≤).

Proof. We will use the principle of strong induction to show that for all entries that lie above the
diagonal in the jth (where 2 ≤ j ≤ n) column of an n× n matrix T−1 (where T−1 is the inverse of
a compatible upper triangular matrix T ), the following property holds:

If the entry T−1
ij is nonzero, then yi ≤ yj .

In other words, we will prove that T−1 is a compatible matrix by considering the entries T−1
(j−k)j

for 1 ≤ k ≤ (j − 1). In particular, in each step of our induction on k, we will prove that T−1
(j−k)j 6=

0⇒ yi ≤ yj by contraposition.

As our base case, let k = 1 and suppose yj−1 � yj . Then we are considering the entry T−1
(j−1)j .

Recall that TT−1 = I(= T−1T ), where I is the n× n identity matrix. The (j − 1)jth entry of I is
equal to zero by definition, and so, from standard matrix multiplication,

T(j−1)1T
−1
1j + T(j−1)2T

−1
2j + . . .+ T(j−1)(j−1)T

−1
(j−1)j + T(j−1)jT

−1
jj + . . .+ T(j−1)nT

−1
nj = 0. (1)

However, because T and T−1 are both upper triangular matrices, we see that T(j−1)1, T(j−1)2, T(j−1)2, . . . ,

T(j−1)(j−2) and T−1
(j+1)j , T

−1
(j+2)j , T

−1
(j+3)j , . . . , T

−1
nj are all equal to zero. So, our sum on the left in

equation (1) reduces to
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T(j−1)(j−1)T
−1
(j−1)j + T(j−1)jT

−1
jj = 0.

Since T is a compatible matrix and yj−1 � yj , we see that T(j−1)j = 0 by definition. Then, we have

T(j−1)(j−1)T
−1
(j−1)j = 0.

Because T is an invertible upper triangular matrix, and T(j−1)(j−1) is an entry on its diagonal,

T(j−1)(j−1) is nonzero. Then, T−1
(j−1)j must be equal to zero. We have now shown that, for k = 1, if

yj−k � yj , then b(j−k)j = 0. By contraposition, if b(j−k)j 6= 0, then yj−k ≤ yj .

Next, suppose this holds true for all k up to k = l − 1. Thus, if T−1
(j−k)j 6= 0 for 1 ≤ k ≤ (l − 1),

then yj−k ≤ yj .

Suppose yj−l � yj . We will look at the (j − l)jth entry of the identity matrix. This entry will
be equal to zero, since (j − l) 6= j. From the product of T and T−1, it is clear that the following
equation holds

T(j−l)1T
−1
1j + T(j−l)2T

−1
2j + . . .+ T(j−l)(j−l)T

−1
(j−l)j + . . .+ T(j−l)jT

−1
jj + . . .+ T(j−l)nT

−1
nj = 0.

As was the case before, this reduces down to

T(j−l)(j−l)T
−1
(j−l)j + T(j−l)(j−l+1)T

−1
(j−l+1)j + . . .+ T(j−l)jT

−1
jj = 0.

Since T is a compatible matrix and yj−l � yj , we see that T(j−l)j = 0. Then:

T(j−l)(j−l)T
−1
(j−l)j + T(j−l)(j−l+1)T

−1
(j−l+1)j + . . .+ T(j−l)(j−1)T

−1
(j−1)j = 0. (2)

Suppose, by way of contradiction, that T(j−l)(j−l)T
−1
(j−l)j 6= 0. Then, in order for equation (2) to

hold, it must be the case that T(j−l)(j−l+1)T
−1
(j−l+1)j + . . .+ T(j−l)(j−1)T

−1
(j−1)j 6= 0. Clearly, at least

one of the terms must be nonzero. Without loss of generality, call this nonzero term T(j−l)tT
−1
tj ,

where (j − l + 1) ≤ t ≤ (j − 1). Note that t = j −m for 1 ≤ m ≤ (l − 1) and that T(j−l)t and

T−1
tj are both nonzero. From our induction step, we know that if T−1

tj is nonzero, then yt ≤ yj . T
is compatible relative to (V ?,≤), and so T(j−l)t 6= 0 implies that yj−l ≤ yt. Because our partial
ordering relation is transitive, we see that:

yj−l ≤ yt ∧ yt ≤ yj ⇒ yj−l ≤ yj .
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However, this contradicts our assumption that yj−l � yj . Then what we assumed is false, and
T(j−l)(j−l)T

−1
(j−l)j = 0. We know that T(j−l)(j−l) 6= 0, since it is an entry on the diagonal of T ,

so we conclude that T−1
(j−l)j = 0. In summary, yj−l � yj implies that T−1

(j−l)j = 0, and so, by

contraposition, T−1
(j−l)j 6= 0 implies that yj−l ≤ yj .

We have shown that the statement “if T−1
(j−k)j 6= 0, then yj−k ≤ yj” holds for k = 1, and that if it

holds for all k up to k = l − 1 then it holds for k = l. Thus, by the principle of strong induction,
“if T−1

(j−k)j 6= 0, then yj−k ≤ yj” holds for all positive integers k. Note, however, that this does not

make sense for k > (j − 1), so we limit our conclusion to encompass only the integers k such that
1 ≤ k ≤ (j − 1).

Finally, recall that our choice of column j was completely arbitrary. Thus, we have effectively
shown that if any entry T−1

ij that lies above the main diagonal is nonzero, then yi ≤ yj . This is

sufficient to show that T−1 is compatible with respect to the partially ordered set (V ?,≤).

As mentioned earlier, this implies that the inverse of our original matrix A, from which T was
derived, is compatible with respect to (V,≤). So, we have shown the following:

Theorem 2.6. If the inverse of a matrix A that is compatible with respect to the partially ordered
set (V,≤) exists, then A−1 is also compatible with respect to (V,≤).

2.5 Complete Compatible Matrices

Earlier, we mentioned that there are infinitely many matrices that are compatible with respect to
a given partially ordered set (V,≤). In order to take away the most information about a partially
ordered set from one of its compatible matrices, we would like that matrix to have a nonzero entry
in each position it is allowed to have a nonzero entry by definition. The concept of a complete
compatible matrix addresses this desire by defining a particular (and quite tidy) “ideal” compatible
matrix of (V,≤).

Definition 2.4. A matrix Z, which is compatible with respect to the partially ordered set (V,≤),
is said to be the complete compatible matrix of (V,≤) when

Zij =

{
1 if xi ≤ xj ,
0 otherwise,

where xi, xj ∈ V = {x1, x2, . . . , xn}.

Note that the complete compatible matrix of a given partially ordered set is unique up to the
labeling of the elements. For example, we may use permutation matrices to create a matrix that
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is the complete compatible matrix with respect to any linear extension of a given partially ordered
set (See the Section 2.3). This complete compatible matrix is not necessarily equal to the complete
compatible matrix generated by the original labeling of the partially ordered set. However, assuming
a fixed labeling of the elements of our partially ordered set, its corresponding complete compatible
matrix is, indeed, unique.

In considering M , the inverse of a complete compatible matrix Z, we note that, if M exists, then it
is also compatible with respect to (V,≤) (see Theorem 2.5). In fact, M always exists, which brings
us to the following result:

Theorem 2.7. If Z is the complete compatible matrix of a partially ordered set (V,≤), then Z−1 =
M exists.

Proof. For a given partially ordered set, we may label the elements of the set in any way we choose.
Specifically, label the elements such that if xm ≤ xn, then m ≤ n. Then, Z is an upper triangular
matrix (see Sections 1.2 and 2.3), and all diagonal entries of Z are equal to 1 by definition. Since
the determinant of an upper triangular matrix is the product of its diagonal entries by Theorem
2.3 (in the case of the complete compatible matrix, detZ = 1), and an n × n matrix is invertible
if and only if its determinant is nonzero by Theorem 2.4, we find that Z is invertible. Therefore,
Z−1 = M exists.

3 The Möbius Function

In order to work up to the concept of Möbius inversion, we must first define what is known as
the Möbius function. In this section, we will state the definition of the Möbius function, prove its
existence, and explicitly define the function in the context of several common structures of partially
ordered sets. These last definitions will be useful as we begin to look at applications of the Möbius
inversion formula in later sections.

Definition 3.1. [6] The Möbius function µ is defined on (V,≤)× (V,≤) by the following properties
for xi, xj , xk ∈ V :

µ(xi, xj) = 0 if xi � xj ,

µ(xi, xi) = 1 ,∑
xi≤xj≤xk

µ(xi, xj) = 0 if xi < xk .

(Note that “xi < xk” is defined as “xi ≤ xk and xi 6= xk.”)

12



3.1 Establishing Existence

We will show that µ(xi, xj) = Mij , where M is the inverse of the complete compatible matrix Z of
(V,≤), satisfies each of these properties and so is, by definition, the Möbius function.

Lemma 3.1. Mij = 0 if xi � xj.

Proof. As was previously noted, M , as the inverse of the compatible matrix Z, is also compatible
with respect to (V,≤) (see Theorem 2.5). By the definition of a compatible matrix (see Definition
2.1), if Mij 6= 0, then xi ≤ xj . By the contrapositive of this conditional statement, if xi � xj , then
Mij = 0.

We will review several results from linear algebra before we show the validity of the next property
of the Möbius function.

Definition 3.2. [4, p.187] For any square matrix A, let Ãij denote the submatrix formed by
deleting the ith row and jth column of A.

Definition 3.3. [4, p.203] The adjugate, or classical adjoint, of a matrix A is denoted by adjA,
and is given by: C11 . . . C1n

...
. . .

...
Cn1 . . . Cnn

 ,

Where Cij = (−1)i+j det Ãij .

Theorem 3.1. [4, p.203] Let A be an invertible n× n matrix. Then

A−1 =
1

detA
adjA .

Now we may move on to a proof that the second property of the Möbius function holds for
µ(xi, xj) = Mij .

Lemma 3.2. Mii = 1.

Proof. By Theorem 3.1, Z−1 = 1
detZ adjZ where ‘adj’ denotes the adjugate of Z. So,

Z−1 =
1

detZ

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

 ,

where Cij = (−1)i+j det Z̃ij .
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Since detZ = 1,

Z−1 =

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

 ,
So, Mii = Cii = (−1)2i det Z̃ii = det Z̃ii.

Note that det Z̃ii = 1, since Z̃ii is simply the matrix Z defined on (V \ {xi},≤), and all arguments
we have made regarding the determinant apply to the matrix Z regardless of the size of the partially
ordered set from which Z is formed.

Therefore, Mii = 1.

Lemma 3.3. ∑
xi≤xj≤xk

Mij = 0 if xi < xk .

Proof. Since MZ = I, where I is the n × n identity matrix, we see that for xi < xk (and thus
i 6= k),

Mi1Z1k +Mi2Z2k + . . .+MinZnk = Iik = 0.

Since Z is compatible, the only Zjk’s that will be nonzero are those for which xj ≤ xk. Furthermore,
these entries will be equal to 1 by the definition of Z. Then, our sum reduces to a sum of all Mij ’s
where xj ≤ xk. Note that, because M is also compatible, the only terms of this simplified sum that
will be nonzero are those for which xi ≤ xj . In summary,

∑
xi≤xj≤xk

Mij = 0.

Therefore, because µ(xi, xj) = Mij satifies the necessary and sufficient properties outlined in Def-
inition 3.1, it is a representation of the Möbius function. Now that we have proven its existence,
we will prove the uniqueness of the Möbius function. Note that M is unique up to the labeling of
the elements of the partially ordered set (See Section 2.5 for further discussion of uniqueness). As
we develop our proof, we will assume a fixed labeling. Regardless of how we label, however, the
Möbius function’s uniqueness holds: we are claiming that specific entries of M define the Möbius
function, not the structure of M itself.

3.2 Establishing Uniqueness

Lemma 3.4. The Möbius function is unique.
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Proof. To prove that the Möbius function is unique, consider a function γ defined on (V,≤)×(V,≤),
where V = {x1, x2, x3, . . . , xk}, such that γ satisfies all the properties necessary to be deemed the
Möbius function. Build a k × k matrix N such that Nij = γ(i, j), and let Z be the complete
compatible matrix of (V,≤). We established in earlier in this section that Z−1 = M is the Möbius
function. To show the uniqueness of the Möbius function, it is sufficient to show that N = M , or,
alternatively, that ZN = I, where I is the k × k identity matrix.

To do so, consider the product ZN . We must show that each diagonal entry of this product is
equal to 1, and that each entry not on a diagonal is equal to zero.

Consider (ZN)ii, an arbitrary diagonal entry of the product. Performing basic matrix multiplica-
tion, we find that:

(ZN)ii =

k∑
j=1

ZijNji .

Note that because Z is the complete compatible matrix of (V,≤), Zij is nonzero exactly when
xi ≤ xj , and that when this is true, Zij = 1. We may, then, simplify our sum:

(ZN)ii =
∑

1≤j≤k, xi≤xj

Nji .

However, by the first property of the Möbius function (see Definition 3.1), Nji = 0 when xj � xi.
Thus, the only nonzero term of our sum is Nii, which, from the second property of the Möbius
function, is equal to 1. So, (ZN)ii = 1.

Next, consider an entry (ZN)il of the matrix ZN , where i 6= l. As before, we may rewrite this
entry in summation notation:

(ZN)il =
k∑
j=1

ZijNjl . (3)

As in the first case, note that Zij = 1 when xi ≤ xj , and is equal to zero otherwise. Then, rewriting
again:

(ZN)il =
∑

1≤j≤k, xi≤xj

Njl .

By our definition of N , the only nonzero terms of this sum are those j’s for which xj ≤ xl. Then,
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(ZN)il =
∑

xi≤xj≤xl

Njl =
∑

xi≤xj≤xl

µ(j, l) .

By the third property of the Möbius function, (ZN)il = 0 when xi < xl. (Note that if xi ≮ xl,
either xi ≮ xj or xj ≮ xl for each 1 ≤ j ≤ k since the partial ordering relation is transitive, and so
the terms of Equation 3 are all equal to zero, and thus the entire sum is equal to zero.)

Thus, we have shown that ZN = I, or N = M , and so the Möbius function is unique.

3.3 Several Examples

Next, we will look at partially ordered sets that are made up of the subsets of a set paired with the
partial ordering relation ⊆, and the divisors of a positive integer paired with the partial ordering
relation “divides” (|). By looking at several specific examples, we will develop the general form of
the Möbius function for similarly constructed partially ordered sets.

3.3.1 Sets

Our first example will be the partially ordered set consisting of all subsets of the set {a, b, c} together
with the partially ordering relation ⊆. Recall that we discussed this particular partially ordered
set in Section 1.1. We will refer to the Hasse diagram in that section throughout this example.

Example 3.1. The relationships between elements of the partially ordered set V defined by
P({a, b, c}), ⊆ may be seen in its corresponding Hasse diagram (Figure 1).

Building the Möbius function of this poset from the ground up, we first note that, by definition, if
A * B for A, B ∈ S, then µ(A,B) = 0. Furthermore, µ(A,A) = 1 for each A ∈ V .

We will start by looking at any two elements A and B that are consecutive in Figure 1. By
consecutive, we mean to say that two elements are directly connected by a single line segment. For
example, {a} and {a, b} are consecutive elements, while {a} and {a, b, c} are not. By the third
property of the Möbius function (see Definition 3.1),

∑
A⊆X⊆B

µ(A,X) = 0.

However, because A and B are consecutive, there are no elements of the poset that are strictly
“between” them. So we find that:
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∑
A⊆X⊆B

µ(A,X) = µ(A,A) + µ(A,B) = 0. (4)

As discussed, µ(A,A) = 1. Then, it is clear that:

µ(A,B) = −1.

This argument takes care of much of our work:

µ(∅, {a}) = µ(∅, {b}) = µ(∅, {c}) = −1
µ({a}, {a, b}) = µ({a}, {a, c}) = −1
µ({b}, {a, b}) = µ({b}, {b, c}) = −1
µ({c}, {a, c}) = µ({c}, {b, c}) = −1

and,

µ({a, b}, {a, b, c}) = µ({a, c}, {a, b, c}) = µ({b, c}, {a, b, c}) = −1.

The only µ’s we have left to define are µ(∅, {a, b}), µ(∅, {a, c}), µ(∅, {b, c}), µ(∅, {a, b, c}), µ({a}, {a, b, c}),
µ({b}, {a, b, c}), and µ({c}, {a, b, c}).

Again using the third property of the Möbius function, we find that this is relatively straightforward:

∑
{a}⊆X⊆{a,b,c}

µ({a}, X) = µ({a}, {a}) + µ({a}, {a, b}) + µ({a}, {a, c}) + µ({a}, {a, b, c}) = 0. (5)

So, 1− 1− 1 + µ({a}, {a, b, c}) = 0, and µ({a}, {a, b, c}) = 1.

By similar arguments,

µ({b}, {a, b, c}) = µ({c}, {a, b, c}) = µ(∅, {a, b}) = µ(∅, {a, c}) = µ(∅, {b, c}) = 1,

and,

µ(∅, {a, b, c}) = −1.

We have thus explicitly defined the Möbius function for all elements of (V,⊆)× (V,⊆).

Generalizing our results, we arrive at the following:

Theorem 3.2. Suppose A and B are elements of the partially ordered set defined by P(S) for some
set S and the partial ordering relation ⊆, such that A ⊆ B. Then, µ(A,B) = (−1)|B|−|A|.
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Proof. Suppose A and B are elements of the partially ordered set defined by P(S) for some set
S and the partial ordering relation ⊆, such that A ⊆ B. We will prove Theorem 3.2 using the
principle of strong induction on k = |B| − |A|.

As our base case, suppose k = 0. Then, |B| = |A|. Since A ⊆ B, we find that A = B.

By definition, µ(A,B) = µ(A,A) = 1 = (−1)0 = (−1)|B|−|A|, and we have shown that Theorem 3.2
holds for k = 0.

Suppose k = 1. Then, B = A ∪ {b1} for some b1 not in A. So, A and B are consecutive subsets,
and we know from a generalization of our argument in Example 3.1 (specifically, Equation 4) that
µ(A,B) = −1 = (−1)1 = (−1)|B|−|A|. So, Theorem 3.2 holds for k = 1.

Suppose Theorem 3.2 holds for all k up to k = n− 1. Consider the case in which k = n.

We note that B = {b1, b2, . . . , bn} ∪A, where b1, b2, . . . , bn are distinct and are not elements of A.

Note that we may remove b1, b2, . . ., bn−1, or bn from the setB to produce the subsets {b2, b3, . . . , bn}∪
A, {b1, b3, . . . , bn}∪A, . . ., {b1, b2, . . . , bn−2, bn}∪A, and {b1, b2, . . . , bn−1}∪A. Thus, there are

(
n
1

)
subsets of B of order (n − 1) + |A|. Note that, by our induction hypothesis, µ(A,C), where C is
one of these subsets, is equal to (−1)|C|−|A|.

Similarly, there are
(
n
2

)
subsets of order (n − 2) + |A|, etc, all the way down to

(
n
n−1

)
subsets of

order (1) + |A|, and finally,
(
n
n

)
= 1 subset of order |A| (namely, A itself).

Then, from the third property of the Möbius function, and because Theorem 3.2 holds for all k up
to k = n− 1,

∑
A⊆S⊆B

µ(A,S) =

(
n

1

)
(−1)n−1 +

(
n

2

)
(−1)n−2 + . . .+

(
n

n− 1

)
(−1)1 +

(
n

n

)
(−1)0 + µ(A,B) = 0.

Simplifying and rearranging, we see that:

n∑
j=1

(
n

j

)
(−1)n−j + µ(A,B) =

n∑
j=0

(
n

j

)
(−1)n−j −

(
n

0

)
(−1)n + µ(A,B) = 0.

By noticing that the sum may be rewritten using the binomial theorem, we see that:

(1− 1)n −
(
n

0

)
(−1)n + µ(A,B) = 0−

(
n

0

)
(−1)n + µ(A,B) = 0.

And so,
(
n
0

)
(−1)n = (−1)n = (−1)|B|−|A| = µ(A,B), and we have shown that Theorem 3.2 holds
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Figure 2: The Hasse diagram for the partially ordered set (V, |), where V is the set of all divisors
of 12.

for k = n.

Thus, by the principle of strong induction, Theorem 3.2 holds for all positive integers k and thus
µ(A,B) = (−1)|B|−|A| for all sets A and B such that A ⊆ B.

3.3.2 Divisors

Our definition of the Möbius function in the case of a partially ordered set made up of the divisors
of an integer and the partial ordering relation “divides” is similar to the definition for the subsets
case. Consider that, by the fundamental theorem of arithmetic, we may express any integer greater
than 1 uniquely as a product of primes. So, we may express each integer in our partially ordered
set as a set made up of its prime divisors. For example, 14 = 2 × 7 would be expressed as {2, 7}.
Note, however, that these primes are not necessarily distinct, and so we may have multisets such
as {2, 2, 2}, which is the set form of 8 = 2× 2× 2, and is not the same as {2, 2} or {2}, which are
the set forms of 4 = 2 × 2 and 2 = 2, respectively. It is clear, then, that we must revise Theorem
3.2 in some way in order to apply it to this new partially ordered set.

First, consider as an example the integer 12 and its prime divisors together with the partial ordering
relation “divides.”

Example 3.2. The Hasse diagram of the partially ordered set defined by the set of divisors of 12
and the partial ordering relation “divides” is shown in Figure 2.

As was the case in Example 3.1, if d is a divisor of 12, then µ(d, d) = 1. Also as in our previous
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example, we see that for two “consecutive” divisors d1 and d2 of 12, µ(d1, d2) = −1. Thus,

µ(1, 3) = µ(1, 2) = µ(2, 4) = µ(2, 6) = µ(3, 6) = µ(4, 12) = µ(6, 12) = −1.

What remains to be defined are the following: µ(1, 4), µ(1, 6), µ(1, 12), µ(2, 12), and µ(3, 12).

Note, however, that from the third property of the Möbius function,

∑
1|d|4

µ(1, d) = µ(1, 1) + µ(1, 2) + µ(1, 4) = 0,

∑
1|d|6

µ(1, d) = µ(1, 1) + µ(1, 2) + µ(1, 3) + µ(1, 6) = 0,

∑
1|d|12

µ(1, d) = µ(1, 1) + µ(1, 2) + µ(1, 3) + µ(1, 4) + µ(1, 6) + µ(1, 12) = 0,

∑
2|d|12

µ(2, d) = µ(2, 2) + µ(2, 4) + µ(2, 6) + µ(2, 12) = 0,

and,

∑
3|d|12

µ(3, d) = µ(3, 3) + µ(3, 6) + µ(3, 12) = 0.

So, µ(1, 4) = 0, µ(1, 6) = 1, µ(1, 12) = 0, µ(2, 12) = 1, and µ(3, 12) = 0.

We may state a generalization of our findings:

Theorem 3.3. Suppose a and b are elements of some partially ordered set defined by the set of
divisors of some integer c and the partial ordering relation “divides,” such that a|b. Then,

µ(a, b) =

{
(−1)k if b

a = p1p2 . . . pk for distinct primes p1, p2, . . . pk,

0 if some prime in the prime decomposition of b
a has multiplicity ≥ 2.

Proof. Suppose a and b are elements of the partially ordered set as described in Theorem 3.3.

We will prove the theorem using the principle of strong induction on k, the number of (not neces-
sarily distinct) primes in the unique prime factorization of the quotient b

a .
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Suppose, first, that k = 0. Then there are no primes in the quotient b
a . In other words, b = a.

Then, by our definition of the Möbius function, µ(a, b) = µ(a, a) = 1 = (−1)0. Thus, we have
shown that the proposition holds for k = 0.

Next, consider the case where k = 1. Then b = ap for some prime p. By the third property of the
Möbius function (see Definition 3.1),∑

a|d|b

µ(a, d) = µ(a, a) + µ(a, b) = 1 + µ(a, b) = 0,

so µ(a, b) = −1 = (−1)1, which proves Theorem 3.3 for k = 1.

Suppose k = 2. Here, we begin to see the reasoning behind the extra caveat of Theorem 3.3. When
k = 2, we have two cases. Either b = ap2 for some prime p, or b = apq for distinct primes p and q.

In the first case, by the third property of the Möbius function,∑
a|d|b

µ(a, d) = µ(a, a) + µ(a, ap) + µ(a, b) = 1− 1 + µ(a, b) = 0,

and so µ(a, b) = 0.

In the second case, the same property of the Möbius function yields:∑
a|d|b

µ(a, d) = µ(a, a) + µ(a, ap) + µ(a, aq) + µ(a, b) = 1− 1− 1 + µ(a, b) = 0,

and so µ(a, b) = 1 = (−1)2. From this and the first case, we have shown that Theorem 3.3 holds
for k = 2.

Suppose, next, that the proposition holds for k = (n − 1). Consider the case in which k = n.
Then b = ap1p2 · · · pn for not necessarily distinct p1, p2, . . . , pn. If p1, p2, . . . , pn are distinct, then
we may simply revert back to our idea of integers as sets and our proof of Theorem 3.2 to show
that µ(a, b) = (−1)n. Suppose, instead, that p1, p2, . . . , pn are not distinct, and consider µ(a, d),
where d 6= b and a|d|b. Since there must be fewer than n primes in the prime decomposition of d

a ,
Theorem 3.3 holds for all µ(a, d) by our induction hypothesis.

So, we know that if t is a divisor of b such that t 6= b and t
a has a prime divisor with multiplicity

greater than 1, µ(a, t) = 0. Otherwise, the divisor of b divides c = aq1q2 · · · qm, where the qis are
exactly the distinct elements of {p1, p2, . . . , pn}. Again drawing on the third property of the Möbius
function, ∑

a|d|c

µ(a, d) = 0.

Then, ∑
a|d|b

µ(a, d) =
∑
a|d|c

µ(a, d) +
∑

µ(a, t) + µ(a, b) = 0,
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where c is defined as above and the t’s are such that t 6= b and t
a has a prime in its prime

decomposition with multiplicity greater than 1. Simplifying,∑
a|d|b

µ(a, d) =
∑
a|d|c

µ(a, d) +
∑

µ(a, t) + µ(a, b) = 0 + 0 + µ(a, b) = 0.

Thus, we have shown that Theorem 3.3 holds for k = n, and so, by the principle of strong induction,
Theorem 3.3 holds for every possible choice of primes in the prime decomposition of b

a , and so holds
for all a and b, where a and b are elements of the partially ordered set described in Theorem 3.3,
and a|b.

4 The Möbius Inversion Formula

In Section 3.1, we established that µ(xi, xj) = Mij , where M is the inverse of the complete compat-
ible matrix Z, satisfies the properties necessary to be defined as the Möbius function. From this,
showing the validity of what is known as the Möbius inversion formula, which is stated below, is
straightforward.

4.1 Definition

Theorem 4.1. [6] Suppose that f is any function on the partially ordered set (V,≤), xi and xj ∈ V ,
and

g(xj) =
∑
xi≤xj

f(xi) .

Then,

f(xj) =
∑
xi≤xj

g(xi)µ(xi, xj) .

Proof. Suppose that f is any function on (V,≤), xi and xj ∈ V , and

g(xj) =
∑
xi≤xj

f(xi) .

Let Z be the complete compatible matrix on (V,≤), and let M = Z−1. Since Zij is equal to 1
exactly when xi ≤ xj , we may rewrite this as:

g(xj) = the jth entry of the product
[
f(x1) f(x2) . . . f(xn)

]
Z
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Consider the sum: ∑
xi≤xj

g(xi)µ(xi, xj) =
∑
xi≤xj

g(xi)Mij .

Since Mij is nonzero only if xi ≤ xj , we may rewrite this as:

the jth entry of the product
[
g(x1) g(x2) . . . g(xn)

]
M .

As we found above, g(xi) is the ith entry of the (1×n) matrix
[
f(x1) f(x2) . . . f(xn)

]
Z. Then,∑

xi≤xj g(xi)Mij= the jth entry of
[
f(x1) f(x2) . . . f(xn)

]
ZM . Since ZM is the n×n identity

matrix, we find that this product is simply
[
f(x1) f(x2) . . . f(xn)

]
. The jth entry, then, is

f(xj). Therefore,

∑
xi≤xj

g(xi)Mij = f(xj) ,

and we have proven Theorem 4.1.

5 The Principle of Inclusion and Exclusion

The combinatorially invaluable principle of inclusion and exclusion is a tool used to indirectly count
the number of elements in some universal set that satisfy a given condition. Essentially, we count
the number of things that do not satisfy our given condition, and subtract that number from the
size of the universal set. Certainly it is sometimes easier to directly count how many things satisfy
the condition. However, in many cases, the principle of inclusion and exclusion provides a vastly
expedited method. Though the proof of the principle of inclusion and exclusion typically follows
a combinatorial argument, we will provide an alternate method of proving its validity using the
Möbius inversion formula (see Theorem 4.1).

5.1 A Bit of an Aside

In order to prove the principle of inclusion and exclusion using the Möbius inversion formula, we
first must establish several properties of set unions and intersections. While the results of this
section are necessary to our later proof of the principle of inclusion and exclusion, their proofs,
though interesting in and of themselves, become a bit tedious. The squeamish reader may accept
the final result of the section without proof and pass on to Section 5.2.

We will begin by letting A1, A2, . . . , Aj be subsets of some set S, and letting J = {1, 2, . . . , j}.
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Lemma 5.1. Suppose K is a set of positive integers such that K ⊆ J . Then,

⋂
i/∈K

Ai =
⋃
I⊆K

[⋂
i∈I

Aci ∩
⋂
i/∈I

Ai

]
.

Proof. We will prove equality by showing that the two sets are subsets of one another.

First, let m ∈
⋃
I⊆K

[⋂
i∈I A

c
i ∩
⋂
i/∈I Ai

]
. Then, m ∈

[⋂
i∈I0 A

c
i ∩
⋂
i/∈I0 Ai

]
for some I0 ⊆ K and

so m ∈
⋂
i/∈I0 Ai.

Note that
⋂
i/∈I0 Ai ⊆

⋂
i/∈K Ai. We may see this by noting that if k ∈

⋂
i/∈I0 Ai, then k ∈

Ak1 , Ak2 , Ak3 , . . . , and Ak|J|−|I0| , where the ki’s are exactly the elements of the complement of
I0. Some of these ki’s belong to K. Remove these and notice that the A’s that remain are exactly
those Ai’s such that i /∈ K. Then, k ∈

⋂
i/∈K Ai.

Therefore, since m ∈
⋂
i/∈I0 Ai and

⋂
i/∈I0 Ai ⊆

⋂
i/∈K Ai, it is clear that m ∈

⋂
i/∈K Ai.

Thus, ⋃
I⊆K

[⋂
i∈I

Aci ∩
⋂
i/∈I

Ai

]
⊆
⋂
i/∈K

Ai . (6)

Next, suppose that m ∈
⋂
i/∈K Ai.

Consider each i ∈ K. If m /∈ Ai, place i in the set I0. Otherwise, leave it out. Clearly, I0 ⊆ K.

Then, since m is an element of both
⋂
i/∈K Ai and

⋂
i/∈I0, i∈K Ai, it is clear that m ∈

⋂
i/∈I0 Ai .

From our definition of I0, we know that m /∈ Ai for any i ∈ I0. So, m ∈ Aci for all i ∈ I0. Then
m ∈

⋂
i∈I0 A

c
i .

Therefore, m ∈
[⋂

i∈I0 A
c
i ∩
⋂
i/∈I0 Ai

]
and so, m ∈

⋃
I⊆K

[⋂
i∈I A

c
i ∩
⋂
i/∈I Ai

]
.

We have shown that: ⋂
i/∈K

Ai ⊆
⋃
I⊆K

[⋂
i∈I

Aci ∩
⋂
i/∈I

Ai

]
. (7)

From Equations 6 and 7, we may conclude that:

⋂
i/∈K

Ai =
⋃
I⊆K

[⋂
i∈I

Aci ∩
⋂
i/∈I

Ai

]
.
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Lemma 5.2. ∑
I⊆K
|
⋂
i∈I

Aci ∩
⋂
i/∈I

Ai| = |
⋃
I⊆K

[⋂
i∈I

Aci ∩
⋂
i/∈I

Ai

]
| .

Proof. Note that it is sufficient to show that the sets in the union on the right-hand side are pairwise
disjoint. We will show this by way of contradiction.

Suppose m is an element of both
⋂
i∈H A

c
i ∩
⋂
i/∈H Ai and

⋂
i∈I A

c
i ∩
⋂
i/∈I Ai for H, I ⊆ K, H 6= I.

We now have several cases: H ⊂ I, I ⊂ H, or H and I are not subsets of one another. Without
loss of generality, suppose I ⊂ H or H and I are not subsets of one another. In either of these two
cases, there exists l such that l ∈ H but l /∈ I.

Because m ∈ Ai for all i /∈ I, it is clear that m ∈ Al. Similarly, because m ∈ Aci for all i ∈ H, it is
clear that m ∈ Acl . However, this contradicts the fact that m cannot be an element of both Al and
Acl . Therefore, what we assumed is false, and m cannot be an element of both

⋂
i∈H A

c
i ∩
⋂
i/∈H Ai

and
⋂
i∈I A

c
i ∩
⋂
i/∈I Ai.

Thus, the sets in the union on the right side of the equation in Lemma 5.2 are pairwise disjoint,
and so the size of their union is equal to the sum of their individual sizes.

We may now easily prove the following:

Theorem 5.1. Let A1, A2, . . . , Aj be subsets of some set S, let J = {1, 2, . . . , j}, and suppose K
is a set of positive integers such that K ⊆ J . Then,

|
⋂
i/∈K

Ai| =
∑
I⊆K
|
⋂
i∈I

Aci ∩
⋂
i/∈I

Ai| .

Proof. From Lemma 5.1, we know that

|
⋂
i/∈K

Ai| = |
⋃
I⊆K

[⋂
i∈I

Aci ∩
⋂
i/∈I

Ai

]
| .

Substituting in our result from Lemma 5.2, we see that

|
⋂
i/∈K

Ai| =
∑
I⊆K
|
⋂
i∈I

Aci ∩
⋂
i/∈I

Ai| .
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Figure 3: A Venn diagram illustrating the structure of the sets described in Example 5.1. The
entire set S is the large box enclosing the Aδ’s.

We mentioned at the beginning of this section that the proof of Theorem 5.1 is a bit galling. As a
concrete illustration of the theorem’s worth, consider the following example:

Example 5.1. Suppose we know 7 people, whose names are Caleb, Eve, Blake, Kenneth, Scott,
Hannah, and Abbey. Our set S is the set of all 7 people, and the subset Aδ of S is the set of people
who have at least one “δ” in their first name. Let J = {a, b, c, e, v}, and K ⊆ J be equal to {a, b, c}.
A visual description of this setup may be found in Figure 3. Theorem 5.1 tells us that:

|
⋂
δ /∈K

Aδ| =
∑
I⊆K
|
⋂
δ∈I

Acδ ∩
⋂
δ /∈I

Aδ| .

The expression on the left tells us how many of these 7 people have both e’s and v’s in their first
name. From simply counting, we see that the size of the set on the left is 1 (only Eve fits into this
category). The expression on the right is a bit more cryptic. To understand what it is saying, we
must evaluate

|
⋂
δ∈I

Acδ ∩
⋂
δ /∈I

Aδ|

for each subset I of K. In particular, we have I = ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, or {a, b, c}.

For I = ∅, we have
⋂
δ∈∅A

c
δ representing the complement of the emptyset (which is the union of

all of the Aδ’s, and thus all 7 people), and
⋂
δ /∈∅Aδ representing the intersection of all of the Aδ’s,

where δ ∈ {a, b, c, e, v} (that is, the emptyset). So, their intersection is the emptyset:
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|
⋂
δ∈∅

Acδ ∩
⋂
δ /∈∅

Aδ| = |{Caleb, Eve, Blake, Kenneth, Scott, Hannah, Abbey} ∩ ∅| = 0.

For I = {a}, we see that
⋂
δ∈{a}A

c
δ represents the complement of Aa (which includes exactly Scott,

Kenneth, and Eve), and
⋂
δ /∈{a}Aδ represents the intersection of all of the Aδ’s where δ ∈ {b, c, e, v}

(that is, again, the emptyset). So, their intersection is the emptyset:

|
⋂
δ∈{a}

Acδ ∩
⋂
δ /∈{a}

Aδ| = |{Eve, Kenneth, Scott} ∩ ∅| = 0.

We may evaluate this intersection for the other subsets of {a, b, c} in a similar fashion, yielding the
following.

For I = {b},
|
⋂
δ∈{b}

Acδ ∩
⋂
δ /∈{b}

Aδ| = |{Eve, Kenneth, Scott, Hannah} ∩ ∅| = 0.

For I = {c},

|
⋂
δ∈{c}

Acδ ∩
⋂
δ /∈{c}

Aδ| = |{Eve, Blake, Kenneth, Hannah, Abbey} ∩ ∅| = 0.

For I = {a, b},
|
⋂

δ∈{a,b}

Acδ ∩
⋂

δ /∈{a,b}

Aδ| = |{Eve, Kenneth, Scott} ∩ ∅| = 0.

For I = {a, c},
|
⋂

δ∈{a,c}

Acδ ∩
⋂

δ /∈{a,c}

Aδ| = |{Eve, Kenneth} ∩ ∅| = 0.

For I = {b, c},
|
⋂

δ∈{b,c}

Acδ ∩
⋂

δ /∈{b,c}

Aδ| = |{Hannah, Eve, Kenneth} ∩ ∅| = 0.

For I = {a, b, c},

|
⋂

δ∈{a,b,c}

Acδ ∩
⋂

δ /∈{a,b,c}

Aδ| = |{Eve, Kenneth} ∩ {Eve}| = 1.

Adding all of these up, we find that
∑

I⊆K |
⋂
δ∈I A

c
δ ∩
⋂
δ /∈I Aδ| = 1, as Theorem 5.1 foretold.
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5.2 Proof Using Möbius Inversion

Theorems 4.1, 5.1 and 3.2 (that is, the Möbius inversion formula, our previous theorem, and the
definition of the Möbius function on subsets of a set) allow us to prove the principle of inclusion
and exclusion, which is stated below.

Theorem 5.2. Let A1, A2, . . . , An ⊆ S where S is a finite set, and let [n] = {1, 2, 3, . . . , n}. Then,

|
⋂
i∈[n]

Aci | =
∑
I⊆[n]

(−1)|I||
⋂
i∈I

Ai| .

Proof. Let K ⊆ {1, 2, 3, . . . , n} = [n]. By Theorem 5.1, we know that:

|
⋂
i/∈K

Ai| =
∑
I⊆K
|
⋂
i∈I

Aci ∩
⋂
i/∈I

Ai| .

Then, define g(K) = |
⋂
i/∈K Ai|. By Theorems 4.1 and 3.2,

|
⋂
i∈K

Aci ∩
⋂
i/∈K

Ai| =
∑
I⊆K

µ(I,K)|
⋂
i/∈I

Ai| =
∑
I⊆K

(−1)|K|−|I||
⋂
i/∈I

Ai| .

Letting K = [n] and simplifying,

|
⋂
i∈[n]

Aci ∩
⋂
i/∈[n]

Ai| = |
⋂
i∈[n]

Aci | =
∑
I⊆[n]

(−1)|[n]|−|I||
⋂
i/∈I

Ai| .

We find that the right-hand side of this equation is, in fact, the following sum, with the terms
rearranged:

∑
I⊆[n]

(−1)|I||
⋂
i∈I

Ai| .

Then,

|
⋂
i∈[n]

Aci | =
∑
I⊆[n]

(−1)|I||
⋂
i∈I

Ai| .
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5.3 Derangements

As was mentioned at the beginning of this section, the principle of inclusion and exclusion is a tool
for counting the number of objects that satisfy a given condition. Suppose we would like to count
the number of derangements of a sequence. A derangement is defined as follows:

Definition 5.1. A derangement of the set [n] = {1, 2, 3, . . . , n} is a permutation π : [n]→ [n] such
that π(i) 6= i for each 1 ≤ i ≤ n.

For example, the only two derangements of {1, 2, 3} are {3, 1, 2} and {2, 3, 1}. The permutation
{1, 3, 2}, for example, is not a derangement because 1 appears in its natural place (the first position).
We will denote by Dn the set of all derangements of a set of n objects. Unsurprisingly, we find the
size of Dn using the principle of inclusion and exclusion. Brualdi [1] offers the following theorem,
and we will provide a proof.

Theorem 5.3. [1, p.168] For n ≥ 1,

Dn = n!

(
1− 1

1!
+

1

2!
− . . .+ (−1)n

1

n!

)
.

Proof. Let S be the set of all possible permutations of the set {1, 2, . . . , n}, and let si, where
i ∈ {1, 2, . . . , n}, be the set of all permutations such that i falls in the ith position. Then,

|Dn| = |S \ (s1 ∪ s2 ∪ . . . ∪ sn) | = |sc1 ∩ sc2 ∩ . . . ∩ scn| .

From the principle of inclusion and exclusion (Theorem 5.2), we see that

|Dn| =
∑

I⊆{1,2,...,n}

(−1)|I||
⋂
i∈I

si| . (8)

This may seem a bit dense, but may be thought of in a very intuitive way.

Starting with the set S, we notice that to find Dn we must remove all permutations where any
element of {1, 2, . . . , n} is in its “natural” position. In other words, we will subtract the sizes of all
of the si’s. Note that |S| = n! and that if i is in its proper position, the other elements of the set
have (n− 1)! ways of being arranged. So, |S| − |s1| − |s2| − . . .− |sn| = n!−

(
n
1

)
(n− 1)! .

However, we have now subtracted some permutations several times. For instance, consider a permu-
tation in which the 1st and the 5th elements are both in their “natural” positions. This permutation
is in both the set s1 and the set s5, so we have subtracted it from S at least two times. To rectify
this, we add the intersections of any two si’s back in.

Our new sum is: n!−
(
n
1

)
(n− 1)! +

(
n
2

)
(n− 2)! . Following similar logic, however, and noticing that

we continue to add and subtract “too much,” we eventually arrive at the sum:
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Dn = n!−
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− . . .+ (−1)n−1

(
n

n− 1

)
(1)! + (−1)n

(
n

n

)
(0)! .

The last term of this sum is simply the identity permutation, as we have chosen all n elements to be
fixed in their “natural” positions. Note that this equality also comes directly from our application
of the principle of inclusion and exclusion in Equation 8. Simplifying, we see that:

Dn = n!− n!

1!(n− 1)!
(n− 1)! +

n!

2!(n− 2)!
(n− 2)!− . . .+ (−1)n

n!

n!0!
(0)! .

And so,

Dn = n!

(
1− 1

1!
+

1

2!
− . . .+ (−1)n

1

n!

)
.

Example 5.2. Ms.Nomer is a high school math teacher. Whenever she creates a new seating chart
for her 5 honors students, she makes sure that no student remains in the desk assigned to them by
the previous seating chart. If there are only 5 desks in the classroom, in how many different ways
can she create a new seating chart?

In other words, we would like to find the number of derangements of {1, 2, 3, 4, 5}.

Viewed in the context of the principle of inclusion and exclusion and Theorem 5.3, this problem
becomes relatively straightforward:

D5 = 5!

(
1− 1

1!
+

1

2!
− 1

3!
+

1

4!
− 1

5!

)
.

Simplifying,

D5 = 5!− 5!

1!
+

5!

2!
− 5!

3!
+

5!

4!
− 5!

5!
= 120− 120 + 60− 20 + 5− 1 = 44.

Therefore, there are 44 different ways to create a new seating chart for Ms.Nomer’s 5 students so
that no student remains in the same desk.

5.3.1 Probability

Brualdi [1] goes on to note that because e−1 =
∑∞

n=0
(−1)n

n! ,
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e−1 =
Dn

n!
+ (−1)n+1 1

(n+ 1)!
+ (−1)n+2 1

(n+ 2)!
+ . . .

Recall that:

Theorem 5.4. [2, p.225] If S is the sum of the convergent alternating series
∑∞

k=0 (−1)kak, and
sn is the nth partial sum of the series, then |S − sn| ≤ an+1 for each positive integer n.

In the context of derangements, we see that |e−1 − Dn
n! | ≤

1
(n+1)! . For the first few values of n,

the right-hand side of the inequality is equal to 1
2 = 0.5, 1

6 = 0.16, 1
24 = 0.0416, 1

120 = 0.0083,
1

720 = 0.00138. Clearly, the error quickly becomes negligible.

Since Dn
n! is exactly the probability of choosing a derangement from the set of all permutations of

{1, 2, . . . , n}, we see that, for large enough n, this probability is essentially equal to 1
e ≈ 0.3679.

Example 5.3. A professor is handing homework assignments back to his 30 students. If he does
not look at the names on the papers, but hands them back at random, what is the probability that
no student will receive his or her own paper?

Essentially, we are asking what the probability is that we will create a derangement of a set of 30
objects. From our discussion above, we know that this probability is approximately equal to 1

e .
Thus, there is about a 37 percent chance that no student will receive his or her own paper.

6 Number Theory

In addition to having combinatorial applications, there is a number theoretic concept of Möbius
inversion. Though its form is slightly altered, we will see that the version of the theorem found in
number theory is parallel to our original statement of the Möbius inversion formula (see Theorem
4.1). Recall from Theorem 3.3 that, in the context of divisors of an integer, µ(a, b) depends only
on the quotient b

a . So, we may understand the Möbius function evaluated at a single integer:

µ(a, b) = µ( ba). We will use this notation for the remainder of our discussion.

6.1 The Möbius Inversion Formula

We will make use of the following definition in our subsequent statement of the theorem:

Definition 6.1. A number-theoretic function is a function whose domain is the set of positive
integers.
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LeVeque [5] provides the following theorem. Note that it is merely a form of Theorem 4.1. We will
include LeVeque’s proof, but it may clearly be proven as a simple corollary of Theorem 4.1.

Theorem 6.1. [5, p.128] If f is any number-theoretic function and

F (n) =
∑
d|n

f(d) ,

then
f(n) =

∑
d|n

F (d)µ(
n

d
) =

∑
d|n

F (
n

d
)µ(d) =

∑
d1d2=n

µ(d1)F (d2) .

Proof. Suppose that f is any number-theoretic function and

F (n) =
∑
d|n

f(d) .

Then, if d = d1 and n
d = d2, d1d2 = n and

∑
d|n

F (
n

d
)µ(d) =

∑
d1d2=n

µ(d1)F (d2) .

From our definition of F (n), we see that:

∑
d1d2=n

µ(d1)F (d2) =
∑

d1d2=n

µ(d1)
∑
d|d2

f(d) .

Since d|d2 is equivalent to d| nd1 , we see that the following is true:

∑
d1d2=n

µ(d1)
∑
d|d2

f(d) =
∑
d1d|n

µ(d1)f(d) =
∑
d|n

f(d)
∑
d1|nd

µ(d1) .

The second and third properties of the Möbius function µ (see Definition 3.1) state that:

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

So,

∑
d|n

f(d)
∑
d1|nd

µ(d1) = f(n)
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since the only nonzero term of
∑

d1|nd
µ(d1) occurs when d = n.

6.2 Results

Möbius inversion in the context of number theory leads to several interesting results. Before we
examine one such result, we need the following definition:

Definition 6.2. The Euler φ-function evaluated at an integer m (written φ(m)) is the number of
positive integers a ≤ m which are relatively prime to m.

Recall that two integers are relatively prime if they have no common divisors. We will also make
use of the following theorem:

Theorem 6.2. [5, p.56] For n > 0, ∑
d|n

φ(d) = n .

LeVeque [5] asserts the following:

Theorem 6.3.

φ(n) = n
∑
d|n

µ(d)

d
.

Proof. Let F (n) = n for n ∈ Z. Then, from Theorem 6.2, we have:∑
d|n

φ(d) = n = F (n) .

Applying Theorem 6.1, it is clear that:

φ(n) =
∑
d|n

F (
n

d
)µ(d) =

∑
d|n

n

d
µ(d) = n

∑
d|n

µ(d)

d
.

LeVeque [5] notes that the usual explicit formula for φ(n), n
∏
p|n

(
1− 1

p

)
, may also be used to

derive Theorem 6.3. However, Theorem 6.2 and the Möbius inversion formula give us a rather
elegant alternative.

LeVeque [5] goes on to provide several exercises for his readers. We will walk through solutions to
two such exercises as examples in order to further illustrate the relevance of the Möbius inversion
formula.
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Example 6.1. In this example, we will show that
∑

d2|n µ(d) = |µ(n)|.

Let n be a positive integer. We have two cases: either n is divisible by some square greater than 1,
or it is not.

In the first case, |µ(n)| = 0, by Theorem 3.3.

We may write n = n2
1n2, where n2 is square-free (that is, no square greater than 1 divides n2).

Suppose d2 divides n for some integer d. We may write d2 uniquely as a product of primes,
d2 = pm1

1 pm2
2 · · · p

mk
k , where each of the mi’s is even. Then pmi

i divides n for each 1 ≤ i ≤ k.

Let 1 ≤ i ≤ k, and suppose pmi
i does not divide n2

1. Then pmi−1
i must divide n2

1, since n2 is only
divisible by, at most, pi. So, the power on pi in the prime decomposition of n2

1 is odd. However, this
contradicts the fact that n2

1 is a square, and so must have even powers on all of its prime divisors.
Thus, what we assumed is false, and pmi

i divides n2
1. So, d2|n2

1. Clearly, the converse is also true:
if d2|n2

1, then d2|n. Then, we see that the following equality holds, where n1 and n2 are defined as
above:

∑
d2|n

µ(d) =
∑
d2|n2

1

µ(d) .

Note that d2|n2
1 if and only if d|n1, and so:

∑
d2|n2

1

µ(d) =
∑
d|n1

µ(d) .

But, by the third property of the Möbius function, for n1 > 1,

∑
d|n1

µ(d) = 0.

If n1 = 1, then we have moved on to the instance in which n is square-free. There are no d2’s,
where d > 1, that divide n, and so it is true that |µ(n)| = 1, and

∑
d2|n

µ(d) = µ(1) = 1.

In either case, we find that

∑
d2|n

µ(d) = |µ(n)| .
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Example 6.2. This example focuses on an application of the Möbius inversion formula to classical
algebra. We will begin with several definitions to bring our reader up to speed.

Definition 6.3. A complex number z = cos(α) + i sin(α) = eiα is called an nth root of unity if
zn − 1 = 0, and is a primitive nth root of unity if, in addition, zk − 1 6= 0 for 1 ≤ k < n.

Definition 6.4. The nth cyclotomic polynomial, Φn(x), is the monic polynomial of which the zeros
are the distinct primitive nth roots of unity.

Let n > 1 and ζn = e2πi/n.

We note that ζn is a primitive nth root of unity. To see that this is true, note that
(
e2πi/n

)n− 1 =

e2πi−1 = 1−1 = 0, but that for 1 ≤ k < n,
(
e2πi/n

)k−1 = cos
(

2πk
n

)
+i sin

(
2πk
n

)
−1 = (α− 1)+βi,

where α 6= 1. So, ζkn − 1 6= 0.

Consider, now, ζjn, where 1 ≤ j ≤ n and j and n are relatively prime (denoted by (j, n) = 1). We
claim that the ζjns are exactly the distinct primitive nth roots of unity. We will begin by showing
that a given ζjn is an nth root of unity:

(
ζjn
)n − 1 =

(
e2πij/n

)n
− 1 = e2πij − 1 = cos(2πj) + i sin(2πj)− 1 = 1− 1 = 0.

To see that ζjn is a primitive nth root of unity, let 1 ≤ k < n, and consider:

(
ζjn
)k − 1 =

(
e2πij/n

)k
− 1 = e2πijk/n − 1 = cos

(
2πjk

n

)
+ i sin

(
2πjk

n

)
− 1.

To show that the above sum is not equal to zero, we need only show that cos
(

2πjk
n

)
6= 1. To do

so, it is sufficient to show that jk
n is not an integer. By way of contradiction, suppose that this

quotient is, indeed, an integer. Then, n|jk. Since n and j are relatively prime, it must be the case
that n|k. However, this contradicts the fact that k < n. Thus, what we assumed is false, and jk

n is

not an integer. Then, ζjn is a primitive nth root of unity.

Next, we must show that the ζjn’s are distinct. Suppose j and m are distinct integers between 1

and n, and that each is relatively prime to n. Then, ζjn = e2πij/n = cos
(

2πj
n

)
+ i sin

(
2πj
n

)
and

ζmn = e2πim/n = cos
(

2πm
n

)
+ i sin

(
2πm
n

)
.

Looking only at the real parts of these two complex numbers, it is clear that cos
(

2πj
n

)
6= cos

(
2πm
n

)
,

since 2π
n and 2πm

n lie in the same period of the sine function (namely, they are both in the interval[
2π
n , 2π

]
). Then, ζjn 6= ζmn , and we have established uniqueness.

Lastly, to see that these are all of the primitive nth roots of unity, suppose t > n or (t, n) 6= 1.
In the first case, ζtn = ζnnζ

n−t
n = ζn−tn (recall that ζn is an nth root of unity). Then, we may
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restrict our attention to t’s such that (t, n) 6= 1 but 1 ≤ t ≤ n. Suppose (t, n) = b > 1. Then,(
ζtn
)n/b − 1 = e2πit/b − 1. Since t

b is an integer, e2πit/b − 1 = 0. But n
b < n and so, by Definition

6.3, ζtn is not a primitive root of unity.

We have shown that the ζjn’s are exactly the distinct primitive nth roots of unity. By Definition
6.4, we see that:

Φn(x) =
∏

1≤j≤n, (j,n)=1

(x− ζjn) .

Next, we would like to show that xn − 1 =
∏
d|n Φd(x). We know, from the fundamental theorem

of algebra, that xn − 1 may be uniquely factored as a product of (x− zt)’s, where the zt’s are the
distinct nth roots of unity. So, if we can show that

∏
d|n Φd(x) is exactly this product, we are done.

We just showed that

Φd(x) =
∏

1≤j≤d, (j,d)=1

(x− ζjd) ,

where ζd = e2πi/d. So,

∏
d|n

Φd(x) =
∏
d|n

∏
(1≤j≤d, (j,d)=1)

(x− ζjd) . (9)

We must show that the ζjd’s are exactly the n distinct nth roots of unity.

First, we will show that if (x − ζjd) is a divisor of the product on the right in Equation 9, then ζjd
is an nth root of unity.

Suppose (x−ζjd) is a divisor of the product in Equation 9. Then, d|n, and ζjd = e2πij/d is a primitive

dth root of unity, from our earlier findings. So, it is clear that 1 =
(
e2πij/d

)d
=
(
e2πij/d

)d(n/d)
=(

e2πij/d
)n

, and so ζjd is, by definition, an nth root of unity.

Next, we must show that all of the nth roots of unity show up in the product, and that each
“(x− zt)” occurs only once.

Consider zt, an arbitrary nth root of unity. We have two cases: either zt is a primitive nth root of
unity, or it is not.

In the first case, since n|n, we know that the product
∏

1≤j≤n, (j,n)=1 (x− ζjn) divides the right

hand side of Equation 9, where the ζjn’s are exactly the primitive nth roots of unity (see our earlier
discussion). So, (x− zt) clearly divides our product.

In the second case, there exists 1 ≤ k < n such that (zkt − 1) = 0. Choose the minimum such k.
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Then, zt is a primitive kth root of unity. We claim that k divides n, and will prove our assertion by
way of contradiction: suppose k does not divide n. Then, 1 = znt = zmkt zst = zst , where m is some
positive integer and 1 ≤ s < k. However, this contradicts the fact that our chosen k is the smallest
integer such that zt is a kth root of unity. Then, what we assumed is false, and k must divide n.
Then, (x− zt) is a divisor of the right-hand side of Equation 9 since k|n and zt is a primitive kth
root of unity. From these two cases, we see that all nth roots of unity show up in Equation 9.

All that is left to show, then, is that “(x− zt)” occurs only once for each distinct nth root zt. As
we saw earlier, each of the ζjd’s is distinct for a given d. So, suppose that we have zt = ζj1d1 = ζj2d2
for d1, d2|n, d1 6= d2, 1 ≤ j1 ≤ d1, 1 ≤ j2 ≤ d2, (j1, d1) = 1 and (j2, d2) = 1.

Then, z is a primitive d1st root of unity, and is also a primitive d2nd root of unity. Without loss
of generality, suppose d1 < d2. Then, zd1 − 1 = 0, which contradicts the fact that z is a primitive
d2nd root of unity. Then, what we assumed is false and d1 = d2. For each distinct nth root of unity
zt, “(x− zt)” occurs only once in the product of Equation 9. Thus, we have shown that

∏
d|n Φd(x)

is exactly the product of the distinct (x− zt)’s, where the zt’s are the n distinct nth roots of unity.
Thus,

xn − 1 =
∏
d|n

Φd(x) . (10)

We may apply the Möbius inversion formula (see Theorem 6.1) to Equation 10. Let F (n) =
log(xn − 1) and let f(d) = log (Φd(x)), and note that

log(xn − 1) = log

∏
d|n

Φd(x)

 =
∑
d|n

log (Φd(x))

implies, by the Möbius inversion formula, that

log (Φn(x)) =
∑
d|n

log(xd − 1)µ(
n

d
) =

∑
d|n

log(xn/d − 1)µ(d) .

Simplifying and rewriting using properties of logarithms,

log (Φn(x)) = log
∏
d|n

(xn/d − 1)µ(d) .

So,

(Φn(x)) =
∏
d|n

(xn/d − 1)µ(d) .
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Note that the product on the right-hand side is the product of polynomials with integer coefficients.
Thus, Φn(x) is a polynomial with integer coefficients. In other words, Φn(x) ∈ Z[x].

7 Conclusion

We have moved from the basic concept of partially ordered sets up through compatible matrices and
the Möbius function, arriving at long last at the principle of Möbius inversion and several resulting
concepts in combinatorics, number theory, and classical algebra. Our discussion of compatible
matrices was really only relevant in reference to the proofs of the existence and uniqueness of the
Möbius function, and that of the Möbius inversion formula. While the Möbius function and the
Möbius inversion formula are interesting in and of themselves, we have seen them used primarily
as a stepping stones in proofs of other results. We see this, for example, in a nontraditional proof
of the combinatorially significant principle of inclusion and exclusion.

Möbius inversion lies in the intersection of several branches of mathematics. Arguing for its inherent
beauty is an irrelevant endeavor, as the reader’s apparent interest in the subject has propelled them
as far as this point, but do take a moment to ponder the satisfaction to be found in such a broadly
applicable result. In more than a semester’s work of thirty-six pages, this paper could go on
to examine further implications of the Möbius inversion formula. Most unfortunately, we must,
instead, halt our exploration at this point. However, the end of our narrative should not signal an
end to the reader’s curiosity: go forth and invert!
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