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Abstract

In his influential title Infinite Abelian Groups, Irving Kaplansky posed

two general questions designed to test classifications of abelian groups. This

work answers the questions for a subclass of abelian p-groups that are entirely

characterized by their socles (the subgroups with 0 and all elements of order p).

The socle is generalized as a valuated vector space and much of this work is

dedicated to classifying this generalization in terms of Ulm invariants. For

these groups, the questions can thus be translated in two steps: first into the

terms of socles and then into the terms of Ulm invariants. The first step is

made by Fuchs and Irwin in [1]. This work makes the second step, building

up the results and classifications while assuming only working knowledge of

introductory algebra. In culmination, this work answers Kaplansky’s test

questions and gives an example to which the results apply.
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1. Introduction

Irving Kaplansky states the goal of studying abelian groups as: “we seek to classify

all abelian groups, or to give a complete set of invariants for abelian groups, or to

give necessary and sufficient conditions for two abelian groups to be isomorphic” [2].

In the finite case, this is already done. We know that every finite abelian group

may be decomposed uniquely as a sum of cyclic groups of prime-power order. How-

ever, this does not extend to a general abelian group, for which there are no such

structure theorems.

If we restrict the class of abelian groups (which are called “groups” from now on)

we are working to understand, there are prospects for structure theorems. These

are steps toward the goal Kaplansky described, as long as the structure theorem is

effective as a tool of understanding the group it classifies.

When is a theorem effective? Consider the finite case: the decomposition al-

lows questions about the finite groups to be asked and answered with lucidity. A

structure theorem does not have to be so powerful, though. It could be unwieldy

and full of so many invariants and conditions that to apply it would bog down

understanding.

Kaplansky proposes two questions that are designed to test a structure theorem’s

effectiveness, for groups G and H:

1. If G is isomorphic to a direct summand of H, and H is isomorphic to a direct

summand of G, are G and H necessarily isomorphic?

2. If G⊕G and H ⊕H are isomorphic, are G and H isomorphic?

This paper answers these questions for a specific class of abelian groups, which

we will build an intuition for as we progress. For the reader familiar with this field,

the groups are separable pω+1-projective groups with complete cofree subsocles, i.e.

G is such a separable pω+1-projective group if there exists a complete P ⊆ G[p]

such that G[p]/P is free. If the previous sentence was unintelligible, have no fear.

This paper assumes only working knowledge at an introductory algebra level, and

each new term in the sentence will find definition in the proceeding pages.

Before giving a full overview, to aid the reader new to the subject, we briefly

discuss in the following section some fundamental notions of abelian group theory.

We use notation from Contemporary Abstract Algebra by Joseph Gallian [3] and

reference Kaplansky from [2]. All groups are be expressed with additive notation.
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1.1. Torsion Groups and p-Groups

A torsion group is a group such that every element has finite order. The extreme

opposite to torsion groups are torsion-free groups, groups in which every element

but 0 has infinite order. The theory of abelian groups is vast and well developed, but

generally follows three paths: The study of torsion groups, the study of torsion-free

groups and the study of groups that are the combination of torsion and torsion-free

groups.

This work focuses on torsion groups. A p-group, or primary group, is a group

such that every element has order a power of an arbitrary, but fixed, prime p. Finite

groups are torsion groups and as p-groups play a crucial role in their classification

(the Fundamental Theorem of Finite Abelian Groups [3]), they are fundamental to

the class of groups we seek to understand.

This is seen in the following theorem that is a generalization of the existence

part of the finite classification theorem:

Theorem 1 ([2] Theorem 1). Any torsion group is a direct sum of primary groups.

The distinction between the direct sum and direct product is discussed in Sec-

tion 4, but at this point, it is enough to recognize that primary groups are funda-

mental in the study of torsion groups. Torsion marks our first general restriction in

terms of the groups we are trying to classify, for this is implicit in any p-group and

is assumed for all groups henceforth.

Let A be a p-group. There are some fundamental constructions that should be

discussed. If k < ω, or equivalently k ∈ N if 0 ∈ N, then consider the following:

pkA := {pka : a ∈ A} and A[pk] := {a ∈ A : pka = 0}

Recall that pka is just a added to itself pk times, so pka 6= 0 iff the order of a

is greater than pk. Inversely, we have A[pk] containing all elements of A with order

less than or equal to pk.

For this section, let |a| for a ∈ A denote the height of a, which is the largest k

such that pk divides a in A. Define A(k) := {a ∈ A : |a| ≥ k}, all elements of A with

height greater than or equal to k. Note that A(k) = pkA. The notation is necessary

because if A is a subgroup of some p-group G, then A(k) means the elements of A

with height in G at least k. In this case, we would have that A(k) = A ∩ pkG.

The subgroup A[p] is called the socle of A; it contains 0 and all elements of

order p. This entity is crucial to our classification, as is the following sequence of
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subgroups:

A[p] ⊇ A[p](1) ⊇ A[p](2) ⊇ A[p](3) ⊇ . . .

This sequence is discussed later on. Note that A[p] is a vector space over Zp. To

clarify, we can take n ∈ Zp and note that if a ∈ A[p], then we have na ∈ A[p]. Also,

we know A[p] is inherently an abelian group under addition. The perspective that

A[p] is a vector space is fundamental to this work. It allows us to take concepts

from linear algebra and apply them to the socle of a p-group. With this in mind,

we now give an overview:

1.2. Overview

A p-group A is called pω+1-projective if it has a subgroup P ⊆ A[p] such that A/P

is a direct sum of cyclic groups.

At this point, the only necessary concept to understand about these groups is

that they are entirely characterized by their socles. This result was shown by Fuchs

and Irwin in [1] and is discussed in Section 8. Essentially, this result allows the

translation of Kaplansky’s test questions about these groups into questions about

their socles.

However, the questions cannot be answered through this result alone. First,

know that a group is separable if it has no elements of infinite height besides 0.

This work gives a classification regarding a subclass of socles of separable pω+1-

projective groups, which translates the questions again into questions mostly about

cardinal numbers. The classification is given in Section 7 and the questions are

answered in Section 8.

The restriction of separability allows us to capitalize on the perspective that the

socle is a vector space and develop significant results using methods related to those

of topology.

We give our classification in terms of a generalization of the socle, the valuated

vector space. Thus, Section 2 to Section 6 builds results around this generalization.

After answering the questions, we give a relevant example of a group to which our

results apply in Section 9, alongside motivating the further study of these groups.

We conclude in Section 10.

We thus begin with the valuated vector space.
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2. Value and Valuated Vector Spaces

Let F be a field and V be a vector space over F . Define ∞ by the property that,

if α is an ordinal, then α <∞.

A function | · | from a vector space V to the finite ordinal numbers (and ∞) is

a valuation if,

1. |0| =∞.

2. If a ∈ F with a 6= 0 and v ∈ V , then |av| = |v|.

3. If v, w ∈ V , then |v + w| ≥ min(|v|, |w|).

A vector space together with a valuation is called a valuated vector space, and

for v ∈ V , we call |v| the value of v. The use of the same notation for height reflects

that the height induces a valuation on the socle of a p-group, i.e. for a p-group A,

the value of a ∈ A[p] as treated in A[p] is given by the height of a in A. One can

intuitively think of a value as a magnitude, taking elements close to zero to small

numbers and elements far from zero to larger numbers.

The socle is a valuated vector space over Zp, so we implicitly assume that F =

Zp.

Lemma 2. For every ordinal α, the following is a subspace of V :

V (α) := {v ∈ V : |v| ≥ α}

Proof. Certainly 0 is in V (α), for by definition it has value larger than α. So,

let a ∈ F with a 6= 0 and v ∈ V (α). By the second property of a valuation,

|av| = |v| ≥ α, so av ∈ V (α).

Let w ∈ V (α). The third property implies |v + w| ≥ min{|v|, |w|} ≥ α. So, we

have v + w ∈ V (α).

This lemma confirms that the sequence of subgroups of Section 1.1 is valid.

Next, a useful lemma regarding arithmetic and valuation.

Lemma 3. If v, w ∈ V and |v| 6= |w|, then |v + w| = min{|v|, |w|}.

Proof. Without loss of generality, let |v| > |w|. We know by the third property of

a valuation that |v + w| ≥ |w|. Also, see that:

|w| = |(v + w) + (−v)| ≥ min{|v + w|, | − v|} = min{|v + w|, |v|} = |v + w|,
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where the second property of a valuation was used on | − v|, and the last equality

follows as |v| > |w|, so it could not be that |w| ≥ |v|. Therefore, we have |v + w| =
|w|.

Using this above technique with the second property of a valuation, we know

that if |v| 6= |w|, then |v − w| = |v + w| = |w − v|. This is used later on.

Lemma 4. If α is an ordinal and |w| < α, then every element in the coset w+V (α)

has the same value.

Proof. Let w + v ∈ w + V (α). Since |v| > |w|, Lemma 3 implies |w + v| = |w|, a

value not dependent on v.

This lemma hints that one can define a natural value for the factor space V/V (α),

and therefore that V/V (α) will be a valuated vector space. The following section

proves this.

3. Metrics and Separable Valuated Vector Spaces

To the ends of establishing V/V (α) as a valuated vector space, we now start to

incorporate a natural metric.

Recall that a metric on a set X is a function d : X ×X → [0,∞) such that for

all x, y, z ∈ X,

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

Intuitively, a metric measures distance between elements in X, where the last con-

dition represents the familiar triangle inequality.

From now on, it is implicit (except in formal statements) that our valuated

vector spaces are separable, meaning that their only element of infinite value is 0.

In other words, such a vector space V has V (ω) = 0. This allows us to define a

metric using the valuation.

We briefly mention that what follows explicitly applies only to separable p-

groups, ones with no nonzero elements of infinite height. However, much of this
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work is very relevant in the non-separable case, as discussed in [1]. We return to

this later.

Continuing, this metric is:

d(v, w) :=

0 if v = w

1/|v − w| if v 6= w.

Over a separable V , the values d takes are always finite. Recalling the intuitive

understanding of a valuation, this metric is quite natural.

Lemma 5. The function d is a metric on V .

Proof. Let u, v, w ∈ V . First, we check that d(v, w) = d(w, v). If v = w, then they

are both 0. When v 6= w, let c = v − w 6= 0. Since −1 6= 0 ∈ F , we have that

|v − w| = |c| = | − c| = |w − v|.
Second, the triangle inequality must be checked. See that,

1

|u− w|
=

1

|(u− v) + (v − w)|
≤ 1

min(|u− v|, |v − w|)
≤ 1

|u− v|
+

1

|v − w|
.

If some of u, v or w are equal and zeros are substituted into the equation above

appropriately, it is seen that the last inequality always holds, implying the triangle

inequality in all cases.

Using this metric, we can talk about limits of sequences using the usual ε-δ

definition. Often it is more convenient to rephrase the convergence criteria in terms

of value.

A closed subspace is a subspace that is closed under limits of sequences. The

culmination of this section proves that these subspaces produce valuated factor

spaces. Notably, we have the following result.

Lemma 6. The subspace V (α) is a closed subspace of V .

Proof. Let {vk} ⊆ V (α) and let lim
k→∞

vk = w. We must show that |w| ≥ α. Since

vk converges to w, we can find an N such that

d(vN , w) <
1

α
,

Or,

|w − vN | > α.
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Next, we note that |w| = |w − vN + vN | ≥ min(|w − vN |, |vN |) ≥ α. So, we find

that w ∈ V (α).

We need to establish a value using these closed subspaces. To that end, we use

the following lemmas:

Lemma 7. Let S ⊆ V be a subspace of V . Then S is closed if and only if for all

w ∈ V , w + S has an element of maximum value.

Proof. First, the forward direction. If w ∈ S, then we may choose w − w = 0 ∈ S,

which by definition has value greater than any other element of V + S. If w 6∈ S,

assume for contradiction that w + S does not have an element of maximum value.

This implies that for all n < ω, there exists a sn ∈ S such that |w−sn| > n. Inverting

this inequality, we see that d(w, sn) < 1/n. Taking the limit as n→∞ implies that

{sn} converges to w, so by the closure of S, w ∈ S, which is a contradiction.

Therefore, there always exists an element of maximum value in w + S.

Now, the reverse direction. Let {vk} be a sequence in S that converges to w.

We want to show that w ∈ S under the assumption that w − m is the element

of maximum value in w + S, for −m ∈ S. We know that −{vk} ⊆ S, so that

|w − vk| ≤ |w − m|. Inverting, we have d(w, vk) ≥ d(w,m). Since we know that

vk converges to w, we can take the limit of this inequality as k → ∞ and see that

d(w,m) = 0, implying that w = m and w ∈ S.

We say that the element w ∈ V is proper with respect to S if it is an element of

maximum value in V/S.

Lemma 8. If S ⊆ V is a closed subspace, then w ∈ V is proper with respect to S

if and only if for every s ∈ S, we have |w + s| = min(|w|, |s|).

Proof. The forward direction has two cases. Let w be proper with respect to S. For

the first case, if |w| 6= |s|, then Lemma 3 already implies the result. For the second

case, if |w| = |s|, then we examine the known relation |w+ s| ≥ min(|w|, |s|) = |w|.
Since w is proper with respect to S, we know that |w| is an upper bound on the

value of every element in w + S, and w + s ∈ w + S. Therefore, |w| ≥ |w + s| and

so |w + s| = |w|.
For the reverse direction, assume for contradiction that there exists an s ∈ S

such that |w + s| > |w|, that is, w is not proper with respect to S. Then, by

assumption |w+ s| = min(|w|, |s|) > |w|. Whichever this minimum evaluates to, we

have a contradiction, and therefore w is proper with respect to S.
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We now implement these results to make a valuated vector space from a closed

subspace. Let S be a closed subspace of V and let w + S ∈ V/S where w is proper

with respect to S. Define a value on V/S by

|w + S| := |w|.

Theorem 9. With the above value, for a closed S ⊆ V , the set of cosets V/S is a

separable valuated vector space.

Proof. For a ∈ F and v, w ∈ V , we know that V/S is a vector space under operations

(w + S) + (v + S) = (w + v) + S and a(v + S) = av + S, due to the vector space

properties of V .

Since S is closed, each element of V/S has a well-defined value by Lemma 7.

No nonzero elements are of infinite value, for if they were, then by definition of the

value on V/S, the corresponding nonzero element in V would have infinite value.

Therefore V/S is separable.

Finally, we must determine whether the above definition of |w+S| is a valuation.

Certainly, since S is the zero element in V/S, i.e. |S| = |0 + S| = |0| =∞. Next, if

0 6= α ∈ F , then

|α(v + S)| = |αv + S| = |αv| = |v| = |v + S|.

And finally, let v, w ∈ V . In terms of v + S and w + S, we may assume that

each v and w is proper with respect to S. Therefore, we have

|(v+S) + (w+S)| = |(v+w) +S| ≥ |v+w| ≥ min(|v|, |w|) = min(|v+S|, |w+S|).

The first inequality follows from Lemma 8. All of the requirements are met, so V/S

is a separable valuated vector space.

These results serve as a basis as we build up language around valuated vector

spaces. A main takeaway from this section is the following corollary:

Corollary 10. For a separable valuated vector space V , we have that V (α)/V (α+1)

is a separable valuated vector space with valuation

|v + V (α+ 1)| = |v| = α.

Proof. We know V (α + 1) is a closed subspace of V (α), so this result is apparent
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when combining Lemma 6 and Theorem 9.

Such factor spaces will turn out to be summands of a separable valuated vector

space V , and will lend themselves to a very useful decomposition theorem. Recall

that a subgroup G ⊆ H is a summand of H if there exists a B such that H =

G ⊕ B = G × B. The distinction between the direct sum—“⊕”—and the direct

product—“×”—only manifests itself in the infinite case, as discussed in the following

section.

4. Direct Product and Direct Sum

We now build up the notion of direct products and direct sums from an index set

I, finite or infinite. This is done so we may give results regarding the structure

of p-groups and separable valuated vector spaces, and then use a powerful decom-

position to understand this structure better. In Section 4.1 we discuss p-groups,

and then transition in Section 4.2 to separable valuated vector spaces, proving this

decomposition.

4.1. p-Groups

For each i ∈ I, let there be a corresponding p-group Ai. Then A :=
∏

i∈I Ai, which

is the collection of I-tuples, is called the direct product of {Ai}. This structure is a

group under component-wise addition.

Theorem 11. The direct product A =
∏

i∈I Ai is a torsion group if and only if

there is a finite subset J ⊆ I and a k < ω such that pkAi = 0 for all i ∈ I \ J .

Proof. In the forward direction, we shall prove the contrapostive. Assume that for

all k < ω, there exists an infinite Jk ⊆ I such that

Jk = {i ∈ I | pkAi 6= 0}.

Let jk ∈ Jk, and say that xk ∈ Ajk with order greater than k. Do the same for

xk+1 and note that we may always select jk+1 6= jk since Jk+1 is infinite. Define

x := (xk)k<ω and see that x ∈ A with unbounded order, implying that A is not a

torsion group. We therefore have the forward direction.

In the reverse direction, we let (xi)i∈I ∈ A. Since each Aj is a p-group for j ∈ J ,

we may take the maximum order of {xj} since J is finite. Suppose the maximum
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order is ph. Then pk or ph is an upper bound on the order of (xi)i∈I , and either

way we have that A is a torsion group.

This theorem serves to give intuition as to the form of direct products that are

considered.

Let v := (ai)i∈I ∈ A. We denote the support of v by:

supp(v) := {i ∈ I : ai 6= 0}.

Certainly, we know that if v, w ∈ A, then

supp(v + w) ⊆ supp(v) ∪ supp(w).

Therefore we can define
⊕

i∈I Ai ⊆
∏

i∈I Ai to be the direct sum, the elements of

A with finite support.

Note that
⊕

i∈I Ai is a torsion subgroup of A, for each element in it has only

finitely many nonzero coordinates. The maximum of the order of an element is

defined on this finite set, which would in turn be the order of the element in the

direct sum.

Familiarly, this is actually the external direct sum. If H is a group and each Ai

is a subgroup of H, then there is a natural homomorphism from
⊕

i∈I Ai → H,

φ((ai)i∈I) =
∑
i∈I

ai.

This is defined as the sum map. See that
∑

i∈I ai =
∑

i∈supp(I) ai, so that this sum

is finite. If this map is bijective, then we say H is the internal direct sum of {Ai}.
If φ is injective, then the Ai are called linearly independent.

Lemma 12. The set of groups {Ai} is linearly independent if and only if whenever

ai1 ∈ Ai1 , . . . , aim ∈ Aim and ai1 + . . .+ aim = 0, then ai1 = . . . = aim = 0.

Proof. If {Ai} is linearly independent, then we know that φ((ai)i∈I) = 0 implies

that (ai)i∈I = 0 in
⊕

i∈I Ai, i.e. it is the zero vector.

In the reverse direction, we know that the kernel of the sum map applied to⊕
i∈I Ai is zero. This implies that the sum map is injective, and the set of groups

are linearly independent.

We see in this lemma how related these constructs are to vector spaces.
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4.2. Separable Valuated Vector Spaces

We now translate these concepts to use for valuated vector spaces, which will be

very useful language to have. By defining

|(vi)i∈I | := min({|vi| : i ∈ I})

We get that both
∏

i∈I Vi and
⊕

i∈I Vi are valuated vector spaces, when the Vi are

such as well.

Let W1 and W2 be valuated vector spaces, then a linear transformation φ :

W1 →W2 is valuated if |φ(x)| ≥ |x| for all x ∈W1.

A linear transformation φ : W1 → W2 is said to be an isometry if it is bijective

and |φ(x)| = |x| for all x ∈ W1. From here on, isometry between valuated vector

spaces is denoted by “ =̌ ”, while isomorphism between groups is denoted by “ ∼= ”.

Note that if φ : W1 → W2 is bijective and both φ and φ−1 are valuated, then

for any x ∈W1, we have |φ(x)| ≥ |x| and |x| = |φ−1(φ(x))| ≥ |φ(x)|, implying that

|φ(x)| = |x| and so φ is an isometry.

Example 13. For separable groups G and H, with φ : G→ H a group homomor-

phism, we have that φ restricted to the socle, φ′ : G[p]→ H[p], is a valuated linear

transformation.

Proof. We know φ(G[p]) ⊆ H[p]. If x ∈ G[p] with |x| = k, then there exists a g ∈ G
such that x = pkg. Thus φ(x) = φ(pkg) = pkφ(g), implying that |φ(x)| ≥ |x|. If

φ is an isomorphism, we have valuated homomorphisms each way, and we get an

isometry between the socles.

The sum map can be defined for a valuated vector space W , with subspaces Vi for

each i ∈ I. This map is valuated in that it is certainly a linear transform and because

if x = (vi)i∈I , then |φ(x)| = |
∑

i∈I vi| ≥ min({|vi| : i ∈ I}) = |(vi)i∈I | = |x|. The

inequality is due to the generalization of the basic properties of a value.

The valuated vector space W is the valuated direct sum of {Vi} when the sum

map is an isometry. Another way to phrase this is that
⊕

i∈I Vi is a valuated

decomposition of W .

A valuated vector space W is free if there is a basis, say {bi}i∈I , such that if

Vi := 〈bi〉, then W is the valuated direct sum of {Vi}. These valuated vector spaces

11



are crucial to this work, so we emphasize their form:

W =̌
⊕
i∈I

Vi.

We say W is homogeneous if there is an n < ω such that |w| = n for all nonzero

w ∈W .

Lemma 14. A homogeneous valuated vector space is free.

Proof. Let {bi}, indexed by i ∈ I, be a basis of a homogeneous valuated vector

space W such that every nonzero element has value n; in terms of finding a basis,

the value of the elements are irrelevant, and we are simply using a basis of a general

vector space which exists through the axiom of choice. Consider the sum map

φ :
⊕

i∈I〈bi〉 → W . By the definition of a basis, a linearly independent spanning

set, this map is bijective. Since W is homogeneous, if x ∈
⊕

i∈I〈bi〉, then |φ(x)| = n.

If x = (xi)i∈I , then |x| = min({|xi| : i ∈ I}) = n. Therefore, the sum map is an

isometry and W is free.

From Section 3, we know that the valuated vector space W (α + 1) is closed in

W (α), making W (α)/W (α+1) a valuated vector space. Certainly W (α)/W (α+1)

is also homogeneous, so by Lemma 14, it is free. We can combine this fact with

the following theorem for the decomposition of valuated vector spaces previously

alluded to.

Theorem 15. Let U be a closed subspace of the separable valuated vector space W

with W/U free. Let {bi + U} be the corresponding basis of W/U , and choose bi so

that it is proper with respect to U . Then, by the sum map,

W =̌ U ⊕

(⊕
i∈I
〈bi〉

)
.

Proof. The sum map φ is onto: If w ∈ U , then it is certainly mapped to by the sum

map. If w 6∈ U , then consider w + U . Since {bi + U} spans W/U , we know there

are ni with i ∈ I such that,

w + U =
∑
i∈I

(nibi + U)

=
∑
i∈I

(nibi) + U.
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This implies that there exist a u and a u′ in U such that,

w + u =
∑
i∈I

(nibi) + u′.

Or,

w = (u′ − u) +
∑
i∈I

(nibi).

Remember that these sums are finite as W/U is free, and from now on, it is implicit

for sums that I represents the correct finite subset. Since u′−u ∈ U , we know that

this is within the domain of the sum map, and therefore w is in its range.

Now, let us consider the injectivity of φ. Suppose that a ∈ U ⊕
(⊕

i∈I〈bi〉
)
, and

that φ(a) = 0. Let u be the element in U and nibi be the elements in 〈bi〉. Consider

that

u+
∑
i∈I

nibi = 0

u = −
∑
i∈I

nibi.

We see that
∑

i∈I nibi ∈ U , and therefore that
∑

i∈I ni(bi +U) = U . Since {bi +U}
is linearly independent, by Lemma 12 we have that ni = 0. This implies that u = 0,

and thus a = 0. By Lemma 12 again, we find that φ is injective.

Next, let x = u ⊕ (nibi)i∈I ∈ U ⊕
(⊕

i∈I〈bi〉
)
. Let w := φ(x). We must check

that φ preserves values. We know it is valuated, i.e. |x| = min(|u|, |nibi|) ≤ |w|.
Consider |w| = |u+

∑
i∈I nibi| in cases:

If |u| < min(|nibi|), then we know that |w| = |u| = |x| by Lemma 3.

If |u| ≥ min(|nibi|; i ∈ I). We start by recognizing that |w| ≤ |w + U | by the
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definition of |w + U | and then apply what we know about {bi + U},

|w| ≤ |w + U |

=

∣∣∣∣∣
(∑

i∈I
nibi

)
+ u+ U

∣∣∣∣∣
=

∣∣∣∣∣
(∑

i∈I
nibi

)
+ U

∣∣∣∣∣
=

∣∣∣∣∣
(∑

i∈I
nibi + U

)∣∣∣∣∣
= min(|nibi + U | : i ∈ I)

= min(|nibi| : i ∈ I)

= |x|

Therefore we have both directions of the inequality and |w| = |x| in general. We

conclude that the sum map is an isometry and that we have a valuated decompo-

sition.

We also have this very useful corollary:

Corollary 16. For all separable valuated vector spaces W , we have

W (n) = W (n+ 1)⊕

(⊕
i∈In

〈bni 〉

)
= W (n+ 1)⊕W (n)/W (n+ 1)

Proof. We can find {bni } with i ∈ In that span W (n)/W (n+ 1) since it is free. By

Theorem 15, this is a valuated decomposition.
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Iterating this decomposition, we can expand an arbitrary W like so:

W =̌ W (1)⊕

(⊕
i∈I0

〈b0i 〉

)

=̌ W (2)⊕

(⊕
i∈I0

〈b0i 〉 ⊕
⊕
i∈I1

〈b1i 〉

)
...

W =̌ W (m)⊕

⊕
i∈I0

〈b0i 〉 ⊕ . . .⊕
⊕

i∈Im−1

〈bm−1
i 〉


This decomposition is incredibly useful and is used throughout the remainder of

this paper.

Continuing, a valuated vector space W is bounded if there exists an m < ω such

that W (m) = 0. We have the following notable corollary:

Corollary 17. A bounded valuated vector space is free.

Proof. Let W be a valuated vector space. If W (m) = 0 for m < ω, then the above

decomposition ends at some finite point, leaving a valuated direct sum of a basis

that implies W is free. That is, a bounded valuated vector space is free.

We now turn to using this decomposition to classify valuated vector spaces.

5. Free Valuated Vector Spaces and Ulm Invariants

For a separable valuated vector space W , let us introduce some new definitions

where {bni } spans W (n)/W (n+ 1):

Bn :=
⊕
i∈In

〈bni 〉 and F :=
⊕
n<ω

Bn.

The construction F is seen as a subspace of W through the sum map: it is

clear by the decomposition of Section 4 that φ(F ) is isometric to F . We know F is

essentially a span of vectors and each element has finite support. Since each element

has finite support, it is easy to see that the sum of two elements in F is also in F ,

the zero vector is in F and any multiple of an element in F is also in F . By the

isometry, this is also true of φ(F ).
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Note that F is free. A subspace of the form F ⊆ W is called a basic subspace

of W . This leads us to a fundamental invariant of W . Define f(W,n) := |In| as the

nth Ulm invariant of W , which is the dimension of W (n)/W (n+ 1).

The Ulm invariants of a valuated vector space provide a way to determine when

certain vector spaces are isometric.

Theorem 18. If V and W are free valuated vector spaces, then they are isometric

if and only if f(V, n) = f(W,n).

Proof. In the forward direction, isometry implies that V (n) =̌ W (n), and so we

have V (n)/V (n+1) =̌ W (n)/W (n+1). Each factor group is indexable by the same

set In for each n, and therefore f(V, n) = f(W,n).

Define Bn
V := V (n)/V (n + 1) and define Bn

W similarly for W . In the reverse

direction, knowing that f(W,n) = f(V, n) implies that the same In can be used

to index each Bn
W and Bn

V . A natural isomorphism from Bn
W to Bn

V is that which

swaps the basis vectors indexed by the same i ∈ In. Since Bn
W and Bn

V are homo-

geneous valuated vector spaces of the same value, value is certainly preserved and

the isomorphism is also an isometry. Denote it by φn. Since V is free, each x ∈ V
has finite support; we have that x = (xn)n<ω for certain xn ∈ Bn

V . It is clear that

φ(x) := (φn(xn))n<ω is an isometry from V to W .

The importance of this section to our group classification is illustrated in the

following corollary:

Corollary 19. Let V be free, then V =̌
⊕

n<ω V (n)/V (n+ 1).

Proof. Immediate from Theorem 18.

Free valuated vector spaces are not the limit in terms of what Ulm invariants

can classify, as we will show.

Before departing from free valuated vector spaces, we prove a result about them

that will be useful later on.

Theorem 20. Let V be a separable valuated vector space, then V is free if and only

if it is the union of a countable chain of bounded subspaces.

Proof. Let V be free. Define Bk : V (k)/V (k + 1). Note that Bk is a homogeneous

subspace of V . Let Un :=
⊕

k<nB
k, which is isometric to a subspace of V and is

bounded. Finally, we have that Un is a subspace of Un+1, and V =̌
⋃

n<ω Un.

Next, the reverse direction. Assume that V =̌
⋃

n<ω Un, with Un bounded

subspaces of V . Since Un is bounded, we know it is free by Corollary 17. In addition
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to this, the subspace Un−1 is closed in Un: we know that Un = Un−1 ⊕ Bn−1 and

it is clear that summands of a free valuated vector space are closed. Also, the

separable valuated vector space Un/Un−1 is bounded, so it is free as well. By

Theorem 15, we find that Un =̌ Un−1⊕Un/Un−1, so we choose bases Xn of Un such

that Xn−1 ⊆ Xn and such that Xn forms the basis of a valuated decomposition of

Un. Define X :=
⋃

n<ωXn.

We show that V =̌
⊕

b∈X〈b〉: certainly the sum map is injective, as X was

designed as independent. Furthermore, any element in V must be in some Un, and

is therefore within the span of those vectors in X under the sum map. The value

of that element is preserved in the sum map because of the selection of the basis

vectors in Xn. Therefore, we conclude that V is free.

Notably, we have the following corollary:

Corollary 21. A subspace of a free valuated vector space is free.

Proof. Let S ⊆ V be a subspace of free valuated vector space V . By Theorem 20,

we know that there exists {Un}, a countable chain of bounded subspaces such that

V is their union. Consider {S ∩ Un}, which is also a countable chain of bounded

subspaces, and its union is S. We conclude that S is free.

This corollary finds use in Section 7. Now, we build from our results on free

valuated vector spaces.

6. Complete Valuated Vector Spaces and Ulm Invariants

We start to expand on the results of Section 5 with a definition: a dense subspace

D ⊆ W is such if for every w ∈ W and ε > 0, there exists an x ∈ D such that

d(w, x) < ε. Remember that since W is separable, so is D.

Example 22. A basic subspace F is a dense subspace.

Proof. Given any element w ∈W and any k > 0, we show that we may always find

an x ∈ F such that, equivalent to the restriction on distance, we have |w + x| ≥ k.

Since the vector spaces we are concerned with are separable, we can let |w| = n.

By Theorem 15, we know that W = W (k)⊕W/W (k). So, we have that w = w′−x
for some w′ ∈ W (k) and −x ∈ W/W (k). Note that x may be considered as in F

since W/W (k) is isometric to a subspace of F . We therefore have that |w + x| =

|w′| ≥ k.
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Valuated vector spaces and their dense subspaces are related through their Ulm

invariants, as the following lemma will help show.

Lemma 23. Let D be a dense subspace of separable valuated vector space W . For

all n < ω, we have D/D(n) ∼= W/W (n).

Proof. The natural map is d+D(n)→ d+W (n). Since this map clearly preserves the

group operation, we shall prove injectivity and surjectivity to show the isomorphism.

To the end of injectivity, suppose that d + W (n) = d′ + W (n). This implies

that d − d′ ∈ W (n). Since D(n) = D ∩W (n), and d − d′ ∈ D, we must have that

d′ +D(n) = d′ + (d− d′) +D(n) = d+D(n).

Now, to show that the map is surjective, first consider w+W (n) ∈W/W (n). We

know that since D is dense in W , there exists a d ∈ D such that n < |d− w|. This

implies that d−w ∈W (n), leading us to see that w+W (n) = w+(d−w)+W (n) =

d+W (n). Therefore, d+D(n) would map to w +W (n).

Theorem 24. Let D be a dense subspace of separable valuated vector space W ,

then f(D,n) = f(W,n).

Proof. Lemma 23 can be applied to show D(n)/D(n+ 1) =̌ W (n)/W (n+ 1):

We require that D(n) is dense in W (n), then the same argument of Lemma 23

would work under a different valuation, that of V with n subtracted from the values

of all nonzero elements. This would imply an isomorphism that is also an isometry,

for all elements have the same value.

We now show D(n) is dense in W (n). If w ∈ W (n) and k > 0, then we know

there is a d ∈ D such that n, k ≤ n + k < |w + d|. If |d| < n, we would have

|w+ d| = |d| and a contradiction. This implies that d ∈ D(n) with k < |w+ d|, and

hence D(n) is dense in W (n).

This result indicates that any separable valuated vector space has the same Ulm

invariants as one of its basic subspaces. The equality of Ulm invariants between

any valuated vector space would then naturally imply that their basic subspaces are

isometric by the discussion of Section 5. This isometry is fundamental to our work.

We will extend this isometry to classify other valuated vector spaces. Since dense

subspaces are crucial in this effort, we dedicate the following section to developing

basic results around them.
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6.1. Basic Properties Regarding Dense Subspaces

This section lists basic results around dense subspaces that supplement the following

section.

Theorem 25. Let D be a dense subspace of W and V be another separable valuated

vector space. If g : W → V is a valuated homomorphism with D ⊆ ker(g), then

W = ker(g).

Proof. Let w ∈W , and xk ∈ D for all k < ω such that k < |w−xk|. Then we know

that

k < |w − xk| ≤ |g(w − xk)| = |g(w)− g(xk)| = |g(w)|.

This implies that |g(w)| =∞ and that g(w) = 0.

Corollary 26. Let D be a dense subspace of W and V be another separable valuated

vector space. If g1, g2 : W → V are valuated homomorphisms with g1(x) = g2(x)

for all x ∈ D, then g1(w) = g2(w) for all w ∈W .

Proof. Consider g(w) := g1(w)− g2(w), which is valuated in that

|g(w)| = |g1(w)− g2(w)| ≥ min(|g1(w)|, |g2(w)|) ≥ |w|.

We know that D ⊆ ker(g), so by Theorem 25, we have W = ker(g). This implies

that g1(w) = g2(w) for all w ∈W .

Lemma 27. Let W and V be separable valuated vector spaces with g : W → V

valuated. If {xn}n<ω is a sequence in W , then

lim
n→∞

xn = L implies lim
n→∞

g(xn) = g(L)

Proof. Let k > 0. We know there exists an N < ω such that k < |xn − L| for all

n ≥ N . Since g is valuated, we have that

k < |xn − L| ≤ |g(xn − L)| = |g(xn)− g(L)|.

This proves the implication, as the inequality holds for all n ≥ N .

Lemma 28. Let W and V be separable valuated vector spaces with g : W → V

valuated. If {xn}n<ω is a Cauchy sequence in W , then {g(xn)} is a Cauchy sequence

in V .
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Proof. Proving this is identical to proving Theorem 27, only that L→ xm.

6.2. Extending the Isometry to Complete Valuated Vector Spaces

We seek to classify complete separable valuated vector spaces, one inside which

every Cauchy sequence converges. As will be shown, such valuated vector spaces

look like
∏

n<ω B
n for homogeneous Bn. Utilizing the accumulated results, this

section extends the isometry of basic subspaces of complete valuated vector spaces

with equal Ulm invariants to the complete valuated vector spaces themselves.

To this end, we start by considering a dense subspace D of a valuated vector

space W and a complete valuated vector space C. Let there be a g : D → C that

is valuated. We will extend g to all of W .

First note that we can define a function h : W → C such that,

h(w) = lim
n→∞

g(xn),

where {xn} is the sequence in D with limn→∞ xn = w. This function makes sense

because we know that {xn} converges, so we know it is Cauchy. By Lemma 28, we

know that {g(xn)} is a Cauchy sequence in C, which we know converges.

We must also check that two different sequences that converge to the same w

are mapped to the same element of C, i.e. that the function is well defined. Let

{xn} and {x′n} be such sequences. Then we know that

0 = h(0) = h(w − w) = lim
n→∞

g(xn)− g(x′n) = lim
n→∞

g(xn)− lim
n→∞

g(x′n).

The last equality follows in that we know the limits exist separately, and thus we

see that the two are mapped to the same element in C.

We know that h is an extension of g. If x ∈ D with {xn} converging to x, then

g(x) = lim
n→∞

g(xn) = h(x)

by Lemma 27.

We can surmise that h is a vector space homomorphism: the familiar proof

demonstrates that the limit of the sum is the sum of the limits, as long as the limits

exist separately. Also, we know that h(0) = g(0) = 0.

In addition to this, we show that h is valuated as long as g is valuated, and
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preserves values if g preserves values. Let w ∈W , and see that for valuated g,

|h(w)| = | lim
n→∞

g(xn)|

= lim
n→∞

|g(xn)|

≥ lim
n→∞

|xn|

= |w|.

Note that the value of the limit is the limit of the respective values. If g preserves

value, then the above inequality becomes equality, and so h also preserves value.

Summarizing to this point: if g : D → C is valuated, we have extended it to a

valuated homomorphism h from W to C.

Consider if we had two valid h1 and h2 that satisfied the above. Since h1(x) =

g(x) = h2(x) for all x ∈ D, by Corollary 26, we then know that h1(w) = h2(w) for

all w ∈W . Therefore we know that h is unique, the only valuated extension of g.

When is h an isometry? Certainly isometry requires that g preserves values.

If g preserves values, then it is also injective: consider if g(a) = g(b), then ∞ =

|g(a) − g(b)| = |g(a − b)| = |a − b|, which implies a = b. We have the same result

for h.

To have surjectivity, we need to be able to form an inverse to h. We can add to

our assumptions about the codomain what we are assuming about the domain, and

vice versa. To this effect, if g(D) is dense in C and W is also complete, we should

be able to extend g−1 to an h−1 : C →W , which would demonstrate isometry.

Explicitly, the extension is h−1(c) := limn→∞ g−1(x′n), where {x′n} is the se-

quence in g(D) converging to c ∈ C. If c ∈ C, then h−1(c) ∈ W , so there is a

sequence in D that converges to h−1(c). Then, it must be that h ◦ h−1(c) = c, so

that h is isometric with inverse h−1.

Since we know that h is unique, in the case of isometry we can view it as simply

the identity mapping between the two isometric spaces.

The main takeaway from this discussion is that we can extend the isometry

between the dense subspaces of complete spaces to the complete spaces themselves.

6.3. Classifying Complete Valuated Vector Spaces by Ulm

Invariants

We now apply the results of Section 6.2 to understand more about the structure of

valuated vector spaces.

21



For each n < ω, let Bn be defined as a homogeneous (value n) valuated vector

space. Consider the subspace

F :=
⊕
n<ω

Bn of B̄ :=
∏
n<ω

Bn.

Note that each Bn is free since it is homogenous, so F is basic in B̄. By previous

discussion, we know that F is therefore dense in both W and in B̄.

As mentioned prior, we have that B̄ is complete: if {xn} is a Cauchy sequence

in B̄, then let k > 0 and we know there exists an Nk such that k < |xn−xm| for all

n,m ≥ Nk. The value of each xn is the minimum value of the elements in its tuple.

Also, by construction of B̄, we can assume that each tuple is ordered according to

ascending value. Therefore, we know that (xn − xm)k = 0 for all n,m ≥ Nk. This

implies that (xn)k is fixed for all n ≥ Nk.

We can thus define x := {(xNk
)k}k<ω, which is an element of B̄. Then, we must

have that k < |x− xn| for n ≥ Nk, and therefore {xn} converges to x.

Since B̄ is complete, if g : F → B̄ is the natural map, then we extend the value-

preserving g to a valuated map W → B̄. Call this extension h, which must be an

isometry between W and h(W ) by the discussion of Section 6.2. Therefore, there

is always a valuated embedding of an arbitrary W in the respective B̄.

Intuitively, we can view any separable valuated vector space W as between a

basic subspace and the corresponding valuated direct product of that basic subspace.

We also have the following crucial result for complete vector spaces:

Theorem 29. Two complete, separable valuated vector spaces W and V are iso-

metric if and only if they have the same Ulm invariants.

Proof. Let FV be a basic subspace of V . Since FV is dense in V , we know it has

the same Ulm invariants as V . If φ is the corresponding isometry, we know that

φ(FV ) is both free and dense in W and therefore has the same Ulm invariants as

W . Since FV and φ(FV ) are both free and isometric, they also have the same Ulm

invariants. Therefore, we have the forward direction.

If W and V have the same Ulm invariants, then we know that FV =̌ FW .

Since each is dense in V and W respectively, and each V and W is complete, by

the discussion of Section 6.2 we can extend the natural map g : FV → W (with

g(FV ) =̌ FW ) to an isometry between V and W .

We have shown so far that equality of Ulm invariants is equivalent to isometry

for both free and complete vector spaces. Generalizing on our results a final time,
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we classify valuated vector spaces that are the direct sum of free and complete

spaces in the next section.

7. Classification of Valuated Vector Spaces with Complete Cofree

Subspaces

This section contains the culminating theorem of our work on valuated vector spaces.

A valuated vector space V has a cofree subspace P ⊆ V if V/P is free.

Note that a complete subspace of a valuated vector space is closed. Every con-

vergent sequence is also a Cauchy sequence, which by the definition of completeness,

must converge in the subspace.

Using Theorem 15, if V has a complete cofree subspace P ⊆ V , then V =̌ P⊕ V/P .

One can view these valuated vector spaces as exactly those valuated vector spaces

that are the direct sum of a free subspace and a complete subspace. Before classi-

fying them, we need some basic lemmas regarding cofree subspaces.

Lemma 30. Let V be a separable valuated vector space.

1. A subspace P ⊆ V is cofree if and only if there is a free valuated vector space

F and a valuated homomorphism φ : V → F such that P = ker (φ).

2. If both P and P ′ are cofree in V , then P̄ := P ∩ P ′ is also cofree.

Proof. 1. The forward direction is seen through the map V → V/P . In the

reverse direction, using Theorem 20, let {Un} be the chain of bounded sub-

spaces with its union being F . Say φ : V → F is the assumed valuated

homomorphism and suppose that φ̄ : V/P → F is the isomorphism produced

by modding out the kernel. Note that φ̄ is valuated: recall for v + P ∈ V/P ,

there exists a proper s ∈ v+P with maximum value and |v+P | := |s|. Since

φ(s) = φ̄(v + P ), then

|v + P | = |s| ≤ |φ(s)| = |φ̄(v + P )|,

implying φ̄ is valuated. Consequentially, since Un is bounded, then φ̄−1(Un) is

bounded. Also, since {Un} unions to F , then
⋃

n<ω φ̄
−1(Un) = V/P . Seeing

that {φ̄−1(Un)} is a chain of bounded subspaces that unions to V/P allows

us to conclude that V/P is free and P is cofree.

2. Using part 1 above, note that if φ and φ′ are the respective homomorphisms,
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then φ̄ : V → F ⊕ F ′ defined by φ̄(x) := (φ(x), φ′(x)) has kernel P̄ . This

implies that P̄ is cofree.

Now we have all the results necessary for our classification.

Theorem 31. Let V and W be separable valuated vector spaces with complete

cofree subspaces P and P ′ respectively, then V is isometric to W if and only if

f(V, n) = f(W,n) for all n < ω, and there exists an N < ω with f(P,m) = f(P ′,m)

and f(V/P,m) = f(W/P ′,m) for all m > N .

Proof. Let F := V/P and F ′ := W/P ′. In the forward direction, let V be isometric

to W by φ : V →W . This isometry implies that V (n)/V (n+1) =̌ W (n)/W (n+1),

i.e. f(V, n) = f(W,n). Consider that by φ, we have an embedding of P in W and

P ′ in V . Therefore we let P̄ := φ−1(P ′)∩P and P̄ ′ := φ(P )∩P ′. By Lemma 30.2,

we know that P̄ and P̄ ′ are cofree, i.e. with F̄ := V/P̄ and F̄ ′ := W/P̄ ′, we have

that

V =̌ P̄ ⊕ F̄ =̌ P̄ ′ ⊕ F̄ ′ =̌ W.

It is clear that P̄ =̌ P̄ ′ and F̄ =̌ F̄ ′. Note that P/P̄ ⊆ F̄ and P ′/P̄ ′ ⊆ F̄ ′. As both

are subspaces of a free vector space, they are also free by Corollary 21.

Since P̄ is closed in P and P̄ ′ is closed in P ′, we have by Theorem 15 that

P =̌ P̄ ⊕ P/P̄ and similarly for P ′. We show that for P and P ′ to be complete, it

is required that P/P̄ and P ′/P̄ ′ be bounded at some value N :

Since P/P̄ is free, it looks like P/P̄ =̌
⊕

n<ω B
n for homogeneous Bn of value

n. Thus P =̌ P̄ ⊕
⊕

n<ω B
n. For all n, let bn ∈ Bn with bn = 0 exactly when

Bn = 0. Define xn such that that its kth element is given by

xn,k =

bk, if k < n

0, otherwise,

an example being x3 = (b0, b1, b2, 0, 0, . . .).

The sequence {xn}n<ω is certainly Cauchy with each element in P , but it does

not converge in P unless it is fixed after a finite N < ω, corresponding to when

Bm = 0 for all m > N . We have the same result for P ′. Thus P/P̄ and P ′/P̄ ′

are both bounded by some N < ω, implying that P and P ′ have the same Ulm

invariants for all m > N .

Furthermore, we note that V =̌ P̄ ⊕ (P/P̄ )⊕F , implying F̄ = V/P̄ =̌ P/P̄ ⊕F .
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We can decompose F̄ ′ similarly. Recalling our isometries, we have

F̄ =̌ P/P̄ ⊕ F =̌ P ′/P̄ ′ ⊕ F ′ =̌ F̄ ′.

Due to the bounded condition, this implies that f(F,m) = f(F ′,m) for all m > N .

We have proven the forward direction.

In the reverse direction, we seek an isometry between V and W . We know

V (N + 1) =̌ P (N + 1)⊕ F (N + 1) =̌ P ′(N + 1) + F ′(N + 1) =̌ W (N + 1),

where we show the second isometry through the assumption that f(P,m) = f(P ′,m)

and f(F,m) = f(F ′,m) for all m > N :

Since P (N + 1) is closed in P it is also complete. In addition to this, we know

F (N+1) is a subspace of a free vector space, making it free. Our assumption implies

that the Ulm invariants are equal between P (N + 1) and P ′(N + 1) and between

F (N + 1) and F (N + 1), implying their respective isometries through Theorems 29

and 18.

Recall the consequence of Corollary 16 that B := V/V (N + 1) is free with

f(F, n) = f(V, n) for all n ≤ N , and that have V =̌ V (N + 1) ⊕ B. Define

B′ := W/W (N + 1). Note that f(B,n) = f(B′, n) for all n < ω by our assumption

and the fact that f(B,m) = f(B′,m) = 0 for m > N . We have that B =̌ B′.

Combining this with the fact that V (N + 1) =̌ W (N + 1), we see

V =̌ V (N + 1)⊕B =̌ W (N + 1)⊕B′ =̌ W,

giving us the isometry of the forward direction.

Using this theorem, we answer Kaplansky’s test questions for a subclass of pω+1-

projective groups in the next section.

8. Classifying Some Infinite Abelian Groups and Answering

Kaplansky’s Test Questions

Recall that a group G is called pω+1-projective if it has a subgroup P ⊆ G[p] such

that G/P is a direct sum of cyclic groups.

We assume the following result on these groups:
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Theorem 32 (Irwin, Fuchs, [1] Theorem 3). If G and H are pω+1-projective groups

whose socles are isometric, then G and H are isomorphic.

A subclass of these pω+1-projective groups are separable and have a complete

cofree subsocle, meaning that, for such a group G, there is a complete subsocle

P ⊆ G[p] such that G[p]/P is free.

Combining Theorem 32 with Theorem 31, we will turn Kaplansky’s test ques-

tions into questions about cardinal numbers. First, we need a lemma about cardinal

numbers. For convenience, let | · | for a valuated vector space denote its dimension.

Lemma 33. Let α, β and γ be cardinal numbers. Then,

1. α = α+ β + γ implies α = α+ β.

2. α+ α = β + β implies α = β,

Proof. 1. In the finite case, both β and γ are 0, and the result is clear. If some

cardinals are infinite, then we use cardinal arithmetic: κ + µ = max(κ, µ).

Our assumption implies β ≤ γ ≤ α, so α+ β + γ = α+ β.

2. This is immediate in the finite case. If some are infinite, then cardinal arith-

metic shows α+ α = α and similarly for β, and thus we have α = β.

We are now in the position to answer Kaplansky’s test questions, each in the

affirmative.

Theorem 34. Let G and H be separable pω+1–projective groups with complete

cofree subsocles. If G is isomorphic to a direct summand of H, and H is isomorphic

to a direct summand of G, then G and H are isomorphic.

Proof. By assumption, for some A and B, we have G ∼= H ⊕ A and H ∼= G ⊕ B.

This implies that G[p] =̌ H[p] ⊕ A[p], and it implies a similar isometry for H[p].

Let G[p] =̌ P ⊕ F , where P is complete and cofree, with F := G[p]/P . Likewise,

say that H[p] =̌ P ′ ⊕ F ′.
Let PA := P ∩A[p] and PH := P ∩H[p]. Consider that P =̌ P ∩H[p]⊕P ∩A[p].

We can see that

F =̌ (H[p]⊕A[p])/(PH ⊕ PA) =̌ H[p]/PH ⊕A[p]/PA.

Since FA := A[p]/PA is a subspace of F , it is free. We have the same results

regarding B, so define FB accordingly.
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We have the decompositions:

G[p] =̌ P ⊕ F =̌ P ′ ⊕ F ′ ⊕ FA

H[p] =̌ P ′ ⊕ F ′ =̌ P ⊕ F ⊕ FB

By applying Theorem 31 to one of these decompositions, we get that there

exists an N < ω such that f(P,m) = f(P ′,m) for all m > N . Using both of the

decompositions, we know that there exists an N such that

f(F,m) = f(F ′,m) + f(FA,m)

f(F ′,m) = f(F,m) + f(FB ,m),

for all m > N (we are treating N as the generic maximum of all N). Rearranging,

we see that

f(F,m) = f(F,m) + f(FA,m) + f(FB ,m)

f(F ′,m) = f(F ′,m) + f(FA,m) + f(FB ,m)

By Lemma 33.1, this implies that

f(F,m) = f(F,m) + f(FB ,m)

f(F ′,m) = f(F ′,m) + f(FA,m)

We thus have that f(F,m) = f(F ′,m) for all m > N . Finally, we also know by

Theorem 31 that

f(G[p], n) = f(H[p], n) + f(A[p], n)

f(H[p], n) = f(G[p], n) + f(B[p], n).

Applying the same argument as for F and F ′ shows that f(H[p], n) = f(G[p], n)

for all n < ω. We have the conditions that imply H[p] =̌ G[p]. Ultimately, by

Theorem 32, we conclude G ∼= H.

Theorem 35. Let G and H be separable pω+1–projective groups with complete

cofree subsocles. If G⊕G and H⊕H are isomorphic, then G and H are isomorphic.
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Proof. Immediately from the assumption, we get that

G[p]⊕G[p] =̌ H[p]⊕H[p],

and so,

f(G[p], n) + f(G[p], n) = f(H[p], n) + f(H[p], n).

Lemma 33.2 implies f(G[p], n) = f(H[p], n) for all n < ω.

Let P ⊆ G[p] be complete and cofree, with F := G[p]/P . Define P ′ and F ′

similarly for H. Consider that P ⊕ P is complete and cofree in G[p] ⊕ G[p]; it is

cofree because (G[p] ⊕ G[p])/(P ⊕ P ) =̌ F ⊕ F by the natural map. We have a

similar result for H =̌ P ′ ⊕ F ′.
Therefore, we have that

P ⊕ P ⊕ F ⊕ F =̌ P ′ ⊕ P ′ ⊕ F ′ ⊕ F ′.

By Theorem 31, for some N

f(P,m) + f(P,m) = f(P ′,m) + f(P ′,m)

for all m > N , implying that f(P,m) = f(P ′,m) by Lemma 33.2 again. We also

see that f(F,m) = f(F ′,m), and by Theorem 31, we get G[p] =̌ H[p]. Applying

Theorem 32, we get that G ∼= H.

Ultimately, our classification allowed answers to Kaplansky’s questions to be

derived quite naturally.

9. A Relevant Example

What is the scope of our results? Although we know the name of the groups

we classified: separable pω+1-projective groups with complete cofree subsocles, we

would also like to know how this subclass is situated among p-groups. Unfortunately,

fully mapping out their structure among general groups is beyond this analysis. We

shall discuss a short result that shows exactly what groups have free socles, and

then expand on this to give an example of a group with a socle that is the direct

sum of free and complete parts.

We can combine Theorem 20 with the following:

Theorem 36 (Kaplansky [2] Theorem 12). Let G be a p-group, then G is a direct
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sum of cyclic groups if and only if G[p] is the union of a chain of subgroups of

bounded height.

Connecting the equivalencies, we see that G is a direct sum of cyclic groups if

and only if G[p] is free. We therefore witness the free end of our classification’s

scope in exactly those groups that are the direct sum of groups of the form Zpn .

We also have the following relevant corollary:

Corollary 37. If H is a direct sum of cyclic groups and G is a subgroup of H,

then G is also a direct sum of cyclic groups.

Proof. By Theorem 20, H[p] is free. So too is G[p] ⊆ H[p] by Corollary 21. Thus,

we conclude that G is a direct sum of cyclic groups.

Now we can give an example. Assume that we have a complete separable val-

uated vector space C. We shall build a pω+1-projective group G such that G[p] is

isometric to C ⊕ F , where F is free.

Let B be a basic subspace of C. We can find an H that is a direct sum of cyclic

groups such that H[p] is isometric to B: we know that H has a free socle, so it is

just a matter of getting the Ulm invariants to match. In other words, this involves

enforcing that H has the same cardinality of summands of Zpn+1 as the cardinality

of f(B,n) for all n. So, if Hn is a direct sum of copies of Zpn+1 with |Hn| = f(B,n),

then we are letting H :=
⊕

n<ωHn.

Define H̄ as the torsion subgroup of
∏

n<ωHn. The torsion subgroup of a

product group is called torsion-complete. Note that H̄[p] is complete and has the

same Ulm invariants as C, so we have an isometry C =̌ H̄[p].

We now consider X :=
⊕

x∈H̄〈x〉. Note that X is a direct sum of cyclics, while

H̄ is not in general. This group is certainly much larger than H̄, with the sum map

φ : X → H̄ onto.

Let K be the kernel of φ. We will show that G := X/K[p] has the desired

property. We can find a subspace of G[p] that is intuitively a complete valuated

vector space isometric to C, namely C ′ := X[p]/K[p] ⊆ G[p]. This intuition will be

proven correct:

The subspace C ′ inherits a valuation from the height function of G. Also, we

have that φ restricted to X[p] is a surjection to H̄[p]. We know that this surjection

induces an isomorphism C ′ = X[p]/K[p] ∼= H̄[p] =̌ C. Denote the isomorphism

by ψ. To show ψ is an isometry, we must make sure that it preserves value with

respect to the heights of elements as in G and H̄.
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To this end, if y ∈ H̄[p] with |y|H̄ = k, we can find an x ∈ H̄[p] such that

pkx = y. This x is also in X as the generator of 〈x〉, and since y ∈ H̄[p], it must be

that pkx ∈ X[p]. We can thus let z := pkx+K[p] ∈ C ′. We know

ψ(z) = φ(pkx) = pkx = y.

Since φ is a surjection, we know it restricts to a valuated transform between socles

by Example 13. Since ψ is simply a restriction of φ, it is also valuated. Noting that

k ≤ |z|G, we combine all this to see that

k ≤ |z|G ≤ |ψ(z)|H̄ = |y|H̄ = k.

Since C ′ has valuation inherited from G, we have shown that |z|C′ = |z|C = k, and

may conclude that ψ is an isometry.

Through all this, we can now surmise that C ′ ⊆ G[p] is complete and isometric

to C.

Looking at G/C ′, we see that

G/C ′ = (X/K[p])/(X[p]/K[p]) ∼= X/X[p] ∼= pX.

Since pX ⊆ X and X is a direct sum of cyclic groups, so too is G/C ′ by Corollary 37.

Therefore, we surmise that G is pω+1-projective. Furthermore, we find that C ′

is cofree in G[p], and therefore F := G[p]/C ′ is free. Ultimately, we have that

G =̌ C ′ ⊕ F =̌ C ⊕ F .

To summarize, from a separable complete valuated vector space C we get a

pω+1-projective G with a complete cofree subsocle: we first built a group X that is

a direct sum of cyclics and is an expansion of the corresponding torsion-complete

realization of C: H̄ (realization in this sense means that its socle is C). Considering

the sum map from X to H̄, we took G as X mod the socle of the sum map’s kernel

K[p]. We had that X[p]/K[p] ⊆ G[p] is just C in disguise. Finally, we used C

(rather, an embedding of C in G) to show that G was pω+1-projective, and that

thus C was cofree in G[p].

One may consider the relationship between G and H̄ ⊕W , where W is a real-

ization of F . It may seem that such a group would be isomorphic to G, for its socle

is also C ⊕ F , but it can be shown that H̄ ⊕W is not even pω+1-projective, and

thus no isomorphism exists.

This concludes our brief foray into the general theory of the groups to which our
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results apply. Ideally, this example would give motivation to pursue in-depth the

study of pω+1-projectives. Recall the interpretation of arbitrary separable valuated

vector spaces as being “between” their basic subspaces and complete realizations

of their basic subspaces. It can be shown that such intuition is extended; the

separable pω+1-projective groups can be embedded in the corresponding torsion-

complete group and hence viewed as between their basic subgroup and the torsion-

complete group. This satisfactorily reinforces and demonstrates the notion that

these groups are entirely characterized by their socles.

10. Conclusion

As discussed, the study of abelian groups generally follows three paths: classifying

torsion groups, classifying torsion-free groups, and classifying groups that come

from combining torsion and torsion-free groups. Kaplansky posed two questions

that were designed to test the effectiveness of classification theorems that took a

step along one of these paths. To restate the questions, they are:

1. If G is isomorphic to a direct summand of H, and H is isomorphic to a direct

summand of G, are G and H necessarily isomorphic?

2. If G⊕G and H ⊕H are isomorphic, are G and H isomorphic?

These simple questions can generate incredibly complex answers depending on

the class of groups you ask them about. We asked them for pω+1-projective groups

with complete cofree subsocles, a subclass of torsion groups. Theorem 32 of Irwin

and Fuchs shows that these groups are characterized by their socles. To answer the

questions, we used this theorem to rephrase them in terms of socles. This rephrasing

is not enough to allow answers, so we sought to classify the socles so the questions

may be rephrased into a more workable form.

This required building up results around the separable valuated vector space, a

generalization of the socle. Sections 2 through 4 built up basic results. We then

turned to the problem of classifying separable valuated vector spaces, and used Ulm

invariants to classify free separable valuated vector spaces in Section 5. We extended

this classification to complete separable valuated vector spaces in Section 6.

The final extension to classifying the socles of these groups was made in Section 7

Theorem 31. This culminating theorem allowed us to translate Kaplansky’s test

questions again, this time into questions about cardinal numbers (the groups’ Ulm
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invariants). Section 8 answered the translated questions both in the affirmative for

the groups with which we are concerned.

Unfortunately, the general theory regarding these groups is beyond the scope

of this analysis. Section 9 gave an example and motivated the significance of the

groups to which our results apply.

The motivated reader may be left wondering where to turn next. The general

theory of these groups is discussed in [1]. This source gives results beyond that pω+1-

projective groups are characterized by their socles. It also motivates the relation of

the separable and non-separable cases, gives existence results as to when a group

exists that is a realization of a given socle and expands on the example given in this

paper, alongside other relevant discussion.

Ultimately, this work gave a hint at the vastness of abelian group theory while

making a small but firm step into its depths. We answered Kaplansky’s test ques-

tions for one subclass of groups, but there are still multitudes of others about which

these questions may be asked.
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