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Abstract. By identifying forbidden graph minors, families of graphs with a

certain property can be characterized in an additional manner. We will review

Kuratowski’s identification and proof of the forbidden topological minors of

planar graphs. In addition, Robertson and Seymour’s Graph Minor Theorem

will be examined in relation to sets of forbidden minors. By applying these

concepts to two well-studied graph properties, we will gain some insight into

the significance of these famous results.
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1. Introduction

Discussing graphs can be an arduous task due to the diverse forms they can take.

It is helpful to characterize graphs into families, or sets of graphs with a shared

property in order to narrow the scope of discussion and allow for substantive results

to be uncovered. The method of characterizing graphs discussed in this paper will

be the identification of the forbidden minors of a desired property. Graph minors

are subgraphs with an additional allowed operation: edge contraction. We will

formalize this definition in Section 2. Characterizing a graph property through its

forbidden minors is extremely useful; instead of thinking about a set of graphs that

has possibly infinite size, we can point to a set of graphs whose presence as minors

guarantee exclusion from the set of graphs with the property. Now, having a set

of forbidden minors with the same size as the original family is near useless. Thus

this method is only noteworthy if the set of forbidden minors is smaller than the

set of graphs with the desired property.

Planarity is an example of a graph property with interesting results and has

been a subject of great interest since the inception of the study of graphs. Planar

graphs are those that can be drawn in a plane with no crossing edges. The origin

of the study of planar graphs stems from multiple famous mathematical puzzles

whose solutions are made simple by utilizing graph theoretical concepts. One is the

“Utilities Problem,” first published in a book by Henry Ernest Dudeney in 1917.

The problem was described as follows: three houses need to be connected to water,

gas, and electricity sources using pipes that do not overlap. When thought of as a

graph with each utility and each house represented by nodes, the solution is simple.

As shown in Figure 1, the corresponding graph is K3,3, which is nonplanar and

thus cannot be drawn with no edges crossing. The problem is so famous that K3,3

is often nicknamed the “utility graph”.

G EW

House 2House 1 House 3

Figure 1. The Utility Problem

Another very famous problem involving planar graphs is the Four Color The-

orem. The problem is often described in terms of coloring a map: what is the

maximum number of colors needed to color all countries, with no two adjacent
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countries with the same color? In this case, each country corresponds to a node

in a graph, and two nodes are connected by an edge if the two countries share a

border. With respect to planarity, the solution translates to the maximum colors

needed to color a planar graph. It was proved in the late 19th century that any

planar graph could be colored with at most five colors. After many failed attempts

and false proofs, the Four Color Theorem was proved in the late 20th century with

the help of computers.

There was a breakthrough in characterizing all planar graphs in the late 1920s.

Kazimierz Kuratowski found that the planar graphs are only those that do not

contain the complete graphs K5 and K3,3, shown in Figure 2. We will examine the

details of this result in Section 3.

•

•

•

• •

•

•

•

•

•

•

Figure 2. Complete graphs K5 (left) and K3,3 (right).

Though very important, planarity is just one of many interesting graph prop-

erties. Does this method of identifying forbidden minors translate to other graph

properties? Neil Robertson and Paul Seymour proved that it does. With a proof

that took two decades and twenty papers, Robertson and Seymour proved that in

any infinite sequence of graphs there must be one graph that is a proper minor of

another. Named the “Graph Minor Theorem,” the proof is beyond the scope of this

paper; however, it has many significant consequences. Detailed in Section 4, the

Graph Minor Theorem implies that any graph property that is minor closed has a

finite set of forbidden minors. We knew this was true for planarity by Kuratowski’s

Theorem; that this is true for any minor closed property is remarkable, and we will

explore some additional graph properties as examples of this result.

We will begin with a walk-through of the proof of Kuratowski’s Theorem out-

lined by Douglas West in [4]. We will then generalize our focus to Robertson and

Seymour’s Graph Minor Theorem and the important results that stem from it.

Finally we will explore examples of the Graph Minor Theorem through toroidal

and outerplanar graphs, using Kuratowski’s characterization as a basis to identify

graphs in the set of forbidden minors.

2. Preliminaries

Notation and definitions will mainly be from [4] and any additional concepts will

be introduced as necessary. The graphs in this paper will all be finite, simple, and
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undirected. The set of vertices in a graph G will be represented by V (G) and the

set of edges will be E(G). As in [4], we will use the notation n(G) to represent

the size of V (G) and e(G) to represent the size of E(G). A vertex is adjacent to

another vertex if they are the endpoints of a shared edge. An edge is incident to a

vertex, and vice versa, if the vertex is an endpoint of that edge.

2.1. Additional Definitions

The following are additional definitions needed to begin discussing the topic of

graphs and minors.

Definition 2.1. A graph H is a subgraph of G if E(H) ⊆ E(G) and V (H) ⊆
V (G). All endpoints of each e ∈ E(H) must be in V (H). A subgraph H is induced

if E(H) consists of all edges in E(G) with endpoints in V (H).

Definition 2.2. A graph has connectivity k if there is a set of k vertices that

disconnects the graph and no smaller set. A graph is k−connected if the connectivity

is at least k.

If a graph has connectivity one, any vertex whose removal disconnects the graph

is called a cutpoint. We say a graph has connectivity zero if it is not connected.

Definition 2.3. A graph H is a subdivision of G if it is created by adding new

vertices on the edges of G.

Figure 3. K3 (left) and a subdivision of K3 (right).

Definition 2.4. A graph H is a topological minor of G if G contains a subdivi-

sion of H as a subgraph.

In other words, a topological minor is formed by suppressing vertices of degree

two and removing vertices and edges.

Definition 2.5. A subgraph H of G is a minor if it can be obtained by contracting

edges and removing vertices and edges.

Definition 2.6. A Kuratowski subgraph is a subgraph that is a subdivision of

K5 or K3,3.
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Definition 2.7. A graph property is minor closed if the property is preserved

through vertex deletion, edge deletion, and edge contraction. That is, if a graph has

a minor closed property P, then its minors will also have P. For example, planarity

is minor closed: any planar graph will remain planar after minor operations.

Definition 2.8. A plane graph is a drawing of a graph in a plane in which no

edges cross. A graph is planar if there exists such a drawing.

We will use PL to denote the planarity property. Additionally, in this paper, an

embedding of a graph will refer to a drawing where no edges are crossing.

2.2. Euler’s Formula

The fact that K5 and K3,3 are non planar is a well-known result that follows

from a theorem first proved by Leonhard Euler. Known as “Euler’s Formula”, this

result shows that any plane graph with n vertices, e edges, and f faces satisfies the

following equation: n − e + f = 2. As a result, any planar graph G with at least

three vertices must satisfy one of the following inequalities: (1) if G contains K3 as

a subgraph and (2) if not. The proofs of these results can be found in [4].

e(G) ≤ 3 · n(G)− 6(1)

e(G) ≤ 2 · n(G)− 4(2)

Examining K5 in the context of these results, e(K5) = 10 and n(K5) = 5, which

does not satisfy (1). Since K3,3 does not contain K3 as a subgraph, it must satisfy

(2), but with e(K3,3) = 9 and n(K3,3) = 6, it does not. Therefore K5 and K3,3

must be nonplanar.

3. Kuratowski’s Theorem

Now that the preliminary graph theory concepts have been established, we will

proceed by proving Kuratowski’s Theorem. The outline of the proof will follow

that of the proof found in [4]. By introducing the following lemmas, we will set up

a contradiction that will lead to the desired result.

Lemma 3.1. Let G be a plane graph. If F is a set of edges bounding any face,

then G has an embedding in which F bounds the infinite face.

Proof. If F is the set of edges bounding the infinite face, we have the desired em-

bedding of G. Suppose F bounds a finite face of G. We will proceed by embedding

G onto the surface of a sphere.

Consider a sphere resting on the xy plane. For each point (x, y) on the plane,

let Lxy be the line that goes through (x, y) and the top-most point of the sphere.
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The point (x, y) will be mapped to the intersection of Lxy and the surface of the

sphere. We can find the preimage of the points on the surface of the sphere by

extending a line from the top of the sphere through the desired point, and finding

the intersection with the xy plane. Note that the point at the top of the sphere with

a horizontal tangent plane, named the point at infinity, is not mapped to by this

procedure. In this case, the point at infinity will take the mapping of any non-edge

point.

Figure 4. Projection from plane onto sphere.

Using this method, we will embed G onto a sphere. This embedding preserves

planarity, since if two edges cross on the plane at a point (a, b), they will cross on

the sphere at the point mapped to by (a, b). Let F ′ be the region on the sphere

bounded by the projections of the elements of F . If we take a non-edge point x

in the face bounded by F ′ and rotate the sphere such that x becomes the point at

infinity, we can embed the graph back into the xy plane, and the point at infinity

now corresponds to the infinite face of the graph. We now have an embedding of

G such that F is the set of edges bounding the infinite face. �

Definition 3.2. A graph is minimal nonplanar if it is nonplanar and all proper

subgraphs are planar.

Definition 3.3. An S-lobe is an induced subgraph of G whose vertex set consists

of S and the vertices of some component of G− S.

For a separating set S, the S-lobes would consist of each of the disconnected

components of the graph along with the vertices and edges of S. Note that for each

separating set S of a graph G, the union of the S-lobes is the original G.

Lemma 3.4. Every minimal nonplanar graph is 2-connected.

Proof. Let G be a minimal nonplanar graph. If G were unconnected, there would

be a component of G that would be nonplanar, and thus G would not be minimal.

Therefore G must be connected.
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S

Figure 5. A separating set S and its corresponding S-lobes.

By way of contradiction suppose G has connectivity one, i.e. suppose G has a

cutpoint. Let v be a vertex whose removal disconnects G and consider the v−lobes

in G corresponding to the disconnected components. Let L be such a v−lobe and

H be G − L. By definition, L and H are both planar. We will show that when

adding L back to H to get G the resulting graph will be planar. It may be clear to

see that combining two planar graphs at a vertex will result in a planar graph, but

we will cover the two cases that complicate the process.

The first case is when v is located in the interior of the embedding of L. In

this case, adding the two components may result in some edges crossing. However,

using Lemma 3.1, we can find an embedding of the desired v−lobe with v incident

to an edge on the infinite face. Using this embedding we can add the rest of G back

to get a planar graph.

The second case to consider occurs when the embeddings of one of the subgraphs

has v located on the infinite face, but in a location relative to other vertices where

adding edges could feasibly create a nonplanar embedding. Figure 6 is an example

of such a situation. In these embeddings, the edges incident to v would create an

angle on the infinite face of 180◦ or less. Utilizing the flexibility of an embedding on

a plane, we can arrange the vertices of each subgraph to create an angle of more than

180◦, allowing for the combination of two subgraphs without intersecting edges.

v v

Figure 6. Case 2
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It follows that combining all of the v-lobes will produce G, which would be

planar. That is a contradiction, thus G must be 2-connected. �

Lemma 3.5. Suppose S = {x, y} is a separating set of G. If G is nonplanar, then

adding the edge (x, y) to some S-lobe produces a nonplanar graph.

Proof. By way of contradiction suppose adding e = (x, y) to all S-lobes produced

only planar subgraphs. Since removing edges cannot make a planar graph nonpla-

nar, all of the S-lobes must be planar as well.

We will show through induction that combining all such S-lobes will result in

a planar graph. Let H, I be the S-lobes in a graph with two S-lobes. Using

Lemma 3.1, find embeddings of H and I such that when adding e it bounds the

infinite face. Since H ∩ I = {x, y}, combining them will not cause any edges to

cross between H and I, resulting in a planar graph.

Now suppose that we can combine all S-lobes into a planar graph for all graphs

with i = 2, . . . , n−1 number of S-lobes. Let G be a graph with n S-lobes. Removing

one S-lobe, we can combine the rest of the n − 1 S-lobes to produce a planar

subgraph of the original graph. Using Lemma 3.1, we can find an embedding

that has e bounding the infinite face. We can do the same with the final S-lobe,

and combine them to produce a planar graph. Since these are all of the S-lobes,

combining them must produce the original graph, which must be planar.

It follows that combining all of the planar S-lobes in our original graph G pro-

duces a planar graph, which is a contradiction. Therefore there is some S-lobe that

produces a nonplanar graph when (x, y) is added. �

Lemma 3.6. If G is a graph with the fewest edges among all nonplanar graphs

without Kuratowski subgraphs, then G is 3-connected.

Proof. We know that G is 2-connected from Lemma 3.4. By way of contradiction

suppose that G has connectivity two and let S = {x, y} be a separating set. By

Lemma 3.5 we know that adding (x, y) to some S-lobe will produce a nonplanar

graph. Let H be such an S-lobe. The graph H + (x, y) must contain a Kuratowski

subgraph by hypothesis. Let I be another S-lobe in G. Since both x and y are in

the separating set and I is connected, there must be a path from x to y in I. As seen

in Figure 7, we can replace (x, y) in H with that path, leaving us with a Kuratowski

subgraph in H ∪ I. It follows that G contains a Kuratowski subgraph, leading to a

contradiction. Therefore, the connectivity of G must be at least three. �

The notation G·e denotes a contraction of edge e in the graph G. The resulting

graph replaces the endpoints of e with a single vertex adjacent to each of the vertices

adjacent to the original endpoints.
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Figure 7.

e →

Figure 8. Contracting an edge, e.

Lemma 3.7. Every 3-connected graph G with at least five vertices has an edge e

such that G · e is 3-connected.

Proof. We will proceed with a proof by contradiction. Let e = (x, y) be an edge

in G. The graph G · e cannot have a cutpoint; if it did then there would be a

separating set of size at most two in G. Thus if G · e is not 3-connected then it

must have a separating set S of size 2. If S did not contain the vertex produced by

contracting the edge e, then S would be a separating set for G as well. However G

is 3-connected, so S must contain the vertex produced by contracting e. Let z be

the remaining vertex in S, and call it the mate of the adjacent pair x, y. It follows

that {x, y, z} is a separating set for G.

By way of contradiction, suppose G · e has connectivity two for all edges in G.

All adjacent pairs will have a mate. Choose e = (x, y) ∈ G and their mate z such

that their removal yields a component H with the largest order. Let H ′ be an

additional component in G − {x, y, z}. Since {x, y, z} is a minimal separating set,

each of x, y, and z must have a neighbor in both H and H ′. Let u be a neighbor of

z in H ′ and let v be the mate of z, u.

The graph G − {z, u, v} is disconnected by definition. Let I be the induced

subgraph on V (H) ∪ {x, y}. It is connected, since x and y have neighbors in H.

If v ∈ H, deleting it from I would not disconnect I, since that would mean {z, v}
is a separating set of size two in G. This means that the I − v is contained in a

component of G − {z, u, v} that has more vertices than H. However, we chose H

to have the largest order of components of G, so this is a contradiction. Therefore,

there exists an edge e such that G · e is 3-connected. �
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Definition 3.8. A vertex of degree at least three is called a branch vertex.

Lemma 3.9. If G has no Kuratowski subgraph, then any graph produced by con-

tracting an edge also has no Kuratowski subgraph.

Proof. We will proceed by proving the contrapositive. Suppose the graph resulting

from contracting the edge e = (x, y) contains a Kuratowski subgraph H. Let z be

the vertex obtained by contracting e. If z 6∈ H, then H is a Kuratowski subgraph

of G. Otherwise if z ∈ H and z is not a branch vertex, we will replace z with either

x, y, or the edge (x, y). We know that z must have degree two in H since it is part

of a Kuratowski subgraph. Let a, b be the two edges incident to z. Without loss

of generality, let a be the edge incident to x in G. The edge b must be incident to

either x or y. If it is incident to x, then y would only be adjacent to x and thus

y would have degree one in G, and we can replace z with x in G to obtain our

Kuratowski subgraph. If b is adjacent to y, then replacing z with the edge (x, y)

would act as a subdivision of H present in G, which would also be a Kuratowski

subgraph.

In the case that z has degree three in H, if either of x or y was a pendant vertex,

or a vertex with degree one, then it could not be in the Kuratowski subgraph. If

either x or y are incident to at most one edge incident to z, then we can replace z

with the edge (x, y). This adds a vertex on the path containing x and y, making

the other vertex the corresponding branch vertex in the Kuratowski subgraph in G.

If there are one or more vertices that are adjacent to both x and y, we can remove

one of each pair of those edges, resulting in one of x or y having one edge with a

counterpart incident to z.

The final case is when z has degree four. Since no vertices in a subdivision of

K3,3 have degree more than three, this case must happen when H is a subdivision of

K5. Similar to the previous case, if there are edges incident to z that were incident

to both x and y we will consider only one. If all but one edge incident to z came

from one of x or y, then, then the other vertex could be suppressed in G and we

would have a Kuratowski subgraph.

Finally, if z is incident to two edges from each x and y, let u1, u2 be the branch

vertices at the ends of the paths leaving z on the edges incident to x in G, and

let v1, v2 be the corresponding branch vertices from the paths leaving z on edges

incident to y in G. By deleting the path between u1 and u2 in addition to the path

between v1 and v2, we can replace z with the edge (x, y) and obtain a subdivision of

K3,3 in G. As depicted in Figure 9, the vertices x, v1, and v2 make up one partition

and y, u1, u2 make up the other.
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v1

v2

→
xy

u1

u2

v1

v2

Figure 9. Subdivision of K3,3 in G.

We have proved that if G·e has a Kuratowski subgraph, then G has a Kuratowski

subgraph. It follows that if G has no Kuratowski subgraph then neither does

G · e. �

Definition 3.10. A convex embedding of a graph is a planar embedding in which

each face boundary is a convex polygon.

Theorem 3.11 (Tutte, 1960). If G is a 3-connected graph with no subdivision of

K5 or K3,3, then G has a convex embedding in the plane with no three vertices on

a line.

Proof. We will proceed by induction on the number of vertices, n, in G. The

base case will be when n ≤ 4. Note that all vertices in a 3-connected graph must

have degree at least three. Therefore, the only 3-connected graph on four or fewer

vertices is K4, which clearly has an embedding with the desired characteristics.

•

• •
•

Figure 10. Embedding of K4.

Now, suppose every graph with fewer than n vertices has a desired embedding.

Let G be a 3-connected graph with n vertices and no Kuratowski subgraph. Let

e = (x, y) be an edge such that H = G ·e is 3-connected, guaranteed by Lemma 3.7,

and let z be the vertex obtained by contracting e. The graph H has no Kuratowski

subgraph by Lemma 3.9, and therefore by the induction step we have a convex

embedding of H with no three vertices on a line.

The subgraph of this embedding obtained by deleting edges incident to z has a

face containing z, and since H − z is 2-connected this face must be bounded by a

cycle. The vertex z may be in the infinite face; in this case the cycle will consist of
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the edges bounding the infinite face. Let C represent this cycle. Since all neighbors

of z are in C, they must be neighbors of x, y, or both, in G.

Let x1, . . . , xk be the neighbors of x in order on C. If all neighbors of y are

located between xi and xi+1 we can replace z with x and place y at a point close

to x. Since G is 3-connected y must have at least two other neighbors in the cycle.

Placing y such that it is within the triangle created by x and two consecutive

neighbors of y in the cycle guarantees that all faces created are convex.

Now suppose the previous case does not occur, i.e. there are neighbors u and v

of y that alternate with neighbors xi, xi+1 of x, or y must be neighbors with at least

three vertices xj , xk, and xl on the cycle. In the first case, as shown in Figure 11,

there would be a subdivision of K3,3, with the two partitions being {xi, xi+1, y} and

{u, v, x}. In the second case, let xj , xk, and xl be the shared neighbors. As shown

in Figure 11, we have a subdivision of K5. Since G does not have any Kuratowski

subgraphs by hypothesis, we know that the case in the previous paragraph must

be the only case. It follows that G has a convex embedding in the plane.

�

•
•

• •

•

•

y

x
uv

xi

xi+1

Case 1

•

•

•
•

•

y

x
xj

xl

xk

Case 2

Figure 11.

We are now equipped with the results to set up a contradiction to prove Kura-

towski’s Theorem.

Theorem 3.12 (Kuratowski, 1930). A graph is planar if and only if it does not

contain a subdivision of K5 or K3,3.

Proof. Let G be a planar graph. Planarity is a minor closed property: all minors

of a planar graph will be planar. Since K5 and K3,3 are nonplanar, they must not

be topological minors of G.

Next, suppose for contradiction we have a nonplanar graph that does not contain

a Kuratowski subgraph. If there is such a graph there must be one with fewest edges,

call it G. By Lemma 3.6, G must be 3-connected. Then, by Tutte’s Theorem, G
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has a convex embedding and thus is planar. This contradicts our supposition so G

must have a Kuratowski subgraph. �

’

4. The Robertson-Seymour Theorem

In 1970, German mathematician Klaus Wagner conjectured that for any infinite

set of graphs, at least one graph must be a minor of another. He was not able

to produce a proof for this conjecture, and it remained unproven until 2004 when

Robertson and Seymour published [3]. The proof was very complex, taking a series

of 20 papers on the topic to finish. Though the proof is much too complicated

to address in this paper, we will explore important corollaries and examples. The

theorem is stated as follows:

Theorem 4.1 (The Graph Minor Theorem). In any infinite sequence of graphs

G1, G2, . . . there are indices i 6= j such that Gi is a minor of Gj .

In this form, the Graph Minor Theorem does not make characterizing forbidden

graph minors any less daunting. However, the following corollary shows that the

set of forbidden minors for a minor closed graph property is finite. This result

is very significant and narrows the scope of possibilities for forbidden minor sets

drastically.

Corollary 4.2. Let P be a graph property that is minor closed. There is a finite

set of forbidden minors, Forb(P), such that G has P if and only if it has no minor

in Forb(P).

Proof. Let S be the set of graphs without property P. Let M be the set of graphs

in S that do not have any proper minors in S. Suppose M had infinite order. Then,

by the Graph Minor Theorem, some graph in M must have a minor in M , which

brings us to a contradiction. Therefore M must have finite order. We now need to

prove that all graphs in S must have a minor in M . We will proceed by inducting

on the sum of the number of vertices and the number of edges in a graph.

Let n be the smallest integer such that a graph in S has n vertices and edges.

Note that here may be more than one graph with the minimum number, e.g. the

forbidden minors for planarity. We are not concerned with the actual graphs and

thus we can proceed with solely the count. Any graph with n vertices and edges

has no proper minor in S since any minor would have fewer vertices or edges. Now

suppose all graphs whose sum of vertices and edges is fewer than i have a minor in

M . Let G ∈ S be a graph with i vertices and edges. If G has no proper minor in

S, then G ∈ M . Otherwise, let H be a minor of G. Since it is a minor, H must
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have fewer vertices and/or edges and, by the induction hypothesis, has a minor in

M . It follows that G has a minor in M , namely the minor of H in M . �

4.1. Wagner’s Theorem

With the Graph Minor Theorem, Kuratowski’s characterization of planar graphs

has been extended to any minor closed graph property. While Kuratowski identified

forbidden topological minors, Robertson and Seymour’s theorem references graph

minors. The counterpart of Kuratowski’s Theorem referencing graph minors is

Wagner’s Theorem, published by Wagner in 1937, which is stated as follows:

Theorem 4.3 (Wagner, 1937). A graph is planar if and only if it does not contain

K5 nor K3,3 as a minor.

It is simple to see that Wagner’s Theorem is a direct result of Kuratowski’s

Theorem, since a topological minor can be obtained by normal minor operations.

The suppression of a vertex with degree two can be done by contracting one of the

edges incident to that vertex. It is also true that Kuratowski’s Theorem directly

implies Wagner’s Theorem as well, though it is a little less clear to see. This is done

by proving that if G has a minor of K3,3 then it has a topological minor of K3,3,

and if it has K5 as a minor, then it has one of K5 or K3,3 as a topological minor.

As an example observe the Petersen Graph in Figure 12. The Petersen Graph

contains K5 as a minor, and K3,3 as a topological minor. This shows that having

K5 as a minor does not necessarily guarantee the existence of K5 as a topological

minor.

Figure 12. The Petersen Graph contains K3,3 as a topological minor.

5. Forbidden Minors for Other Graph Properties

Kuratowski’s Theorem and Wagner’s Theorem are specific instances of Corol-

lary 4.2, when P denotes planarity. Due to the significance of Kuratowski’s result,

the set of forbidden minors for a given property is often called the Kuratowski

set for the property. There are many instances of minor closed graph properties

other than planarity, though finding the graphs in a set of forbidden minors for a

given property can be difficult. In the next sections we will explore elements of the

Kuratowski sets for two new graph properties.
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5.1. Outerplanar Graphs

We will proceed by identifying the Kuratowski set of a graph property that is

closely related to planarity: outerplanarity. An outerplanar graph is a graph

that can be embedded in a plane with all vertices on one face. We will denote the

property as OPL. When discussing outerplanar graphs it is often useful to identify

and keep consistent the face incident to all vertices. Since outerplanar graphs are

planar, we can utilize Lemma 3.1 to redefine outerplanar as having all vertices on

the infinite face. In the following discussion we will assume that outerplanar graphs

have all of the vertices incident to the infinite face, unless otherwise noted.

In order to guarantee a finite set of forbidden minors we need to know that OPL
is minor closed. Since planarity is minor closed, it is sufficient to show that a minor

of an outerplanar graph will have all vertices incident to one face. It is clear that

deleting edges and vertices will not change which faces are incident to each vertex:

it can only expand already adjacent faces. In the case of an edge contraction, note

that the vertices incident to the contracted edge must be incident to the infinite

face, and thus when contracted the new vertex will be incident to the infinite face as

well. Any of the minor operations on an outerplanar graph produce an outerplanar

minor. Therefore OPL is minor closed.

We may now use Corollary 4.2 to show that there is a finite set of forbidden

minors for outerplanar graphs; however, we do not yet know how large this set is,

let alone which graphs are contained within it. While the Graph Minor Theorem

guarantees that the size of the set of forbidden minors is finite, it does not provide a

method of identifying the specific graphs that make up the set. Luckily Forb(OPL)

is rather small and its elements can be identified following a few key points.

The set Forb(OPL) must consist of graphs that are minor minimal non-outerplanar,

i.e., all proper minors must be outerplanar. To get started finding the elements of

Forb(OPL) we will once again look back at Kuratowski’s Theorem. Outerplanarity

is planarity with an additional constraint, so it may be helpful to start our search

with the elements of Forb(PL): K5 and K3,3. These graphs are not outerpla-

nar, but are also not minor minimal. The minors produced by removing a vertex

from each graph are also not outerplanar. Since these graphs, K4 and K2,3, are

relatively small, it does not take much work to see that they are minor minimal

non-outerplanar.

We now have two elements of Forb(OPL): K4 and K2,3. It turns out these are

the only elements. In order to prove this we will utilize the following result. First,

a new definition:

Definition 5.1. A spanning cycle in a graph G is a path containing all vertices

that starts and ends on the same vertex.
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Figure 13. Minor Minimal Outerplanar Graphs K4 (left) and
K2,3 (right).

Proposition 5.2. The boundary of the infinite face of a 2-connected outerplane

graph is a spanning cycle.

A proof of Proposition 5.2 can be found in [4]. We will now show that Forb(OPL)

consists solely of K4 and K2,3.

Theorem 5.3. A graph is outerplanar if and only if it does not contain K4 nor

K2,3 as a minor.

Proof. Since outerplanarity is minor closed, the forward implication is clear: an

outerplanar graph may not contain K4 nor K2,3.

We will prove the reverse direction through a proof by induction, inducting on

the number of vertices, n(G). For the base case consider the graph with one vertex.

This graph is clearly outerplanar.

Now, suppose that all graphs with fewer than m vertices that do not contain

K4 nor K2,3 are outerplanar. Let G be a graph that does not contain K4 nor K2,3

and n(G) = m. If G is disconnected, each of the components of G has fewer than

m vertices and are outerplanar by the induction hypothesis. Thus all vertices are

incident to the infinite face and G is outerplanar.

If G has connectivity one, let x be a cutpoint. The x-lobes of G have fewer than

m vertices and are thus outerplanar. We can combine these lobes at x in a way

such that each x-lobe retains its outerplanarity. It follows that G is outerplanar.

In the case that G has connectivity two or more, consider two adjacent vertices

x and y. Contracting the edge (x, y) to a vertex z produces a minor of G. Since

this minor is outerplanar, by Proposition 5.2, all vertices are on a cycle. Let

c1 = z, c2, . . . , cm−1

be the vertices in the cycle in order. This minor is outerplanar by the induction

hypothesis. When reversing the contraction to obtain the original G, there are a

few cases of how the edges incident to x and y may be oriented.

In Case 1, pictured in Figure 14, an edge incident to x may cross an edge incident

to y. Formally, if x = c1 and y = cm, x is adjacent to some ci and y to some cj
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Figure 14.

where i > j. In this case we have a minor of K4 with x, y, ci and cj as the vertices

with degree three. This brings us to a contradiction.

In Case 2, y is not located on the cycle. Since G is 2-connected y must be

adjacent to another vertex v on the cycle. The vertex y cannot be adjacent to u

nor w, since y is not on the cycle. In this case we have a minor of K2,3, with x and

v as the set of size two and y along with the neighbors of x on the cycle as the set

of size three. This brings us to a contradiction as well.

Both cases lead to a contradiction. Therefore, G must be outerplanar.

�

Another interesting method of exploring forbidden minors is through exploring

embeddability in different surfaces. Finding the forbidden minors of graphs embed-

dable in the sphere is relatively simple: we can use the method utilized in Lemma 3.1

to see that they would be the same as Forb(PL). What do these forbidden minor

sets look like for embedding on surfaces with higher genera?

5.2. Toroidal Graphs

Consider the graphs embeddable on a torus, which has genus one. We will refer

such graphs as toroidal graphs, denoting the graph property with T . Due to

its unique orientation it is not unreasonable to think that the Kuratowski set for

toroidal graphs may look very different from the Kuratowski sets for planarity and

outerplanarity. In order to begin discussing Forb(T ) we must have a method of

depicting toroidal embeddings so that they are easy to visualize on a page.

We will use the method used in [4]. We will depict a torus by imagining two

cuts along its surface: a vertical cut which results in a cylindrical surface, and a

horizontal cut which results in a plane. See Figure 15 for a visual representation.

The resulting rectangular surface can be used to depict embeddings in the plane:

opposing sides represent the cuts made in the torus. In this depiction, edges and

vertices can cross along corresponding sides of the rectangle.
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Figure 15. Visualizing embeddings in a torus, in a plane.

Using this method, Figure 16 shows that we are able to embed K5 and K3,3 in a

torus. Note that edges and vertices may cross between sides with matching arrows.

<

<

∧ ∧

<

<

∧ ∧

Figure 16. K5 (left) and K3,3 (right) embedded in a torus.

Once again we run into the issue that there is no consistent way to identify each

of the graphs in the Kuratowski set for a given property. According to [5] there

are at least 16 thousand known forbidden minors for toroidal graphs. It would be

unreasonable and perhaps uninteresting to attempt to list them all in a paper like

this. With the sheer number of forbidden minors, it is much more reasonable to

explore restrictions to the graphs and trim the set accordingly. For example, there

are only four of the 16 thousand that do not have K3,3 as a minor. In addition, when

restricting the connectivity there are only 68 with connectivity two. We restrict our

search in a similar fashion and identify those forbidden minors of toroidal graphs

with connectivity less than two.

In order to proceed we will cover a few key concepts regarding embedding graphs

in surfaces of varying genera. We will be using notation and definitions from [1].

Definition 5.4. The genus of a graph G, denoted by γ(G), is the smallest genus

surface in which G can be embedded.

Since K5 and K3,3 cannot be embedded in a sphere but can be embedded in a

torus, they both have genus one. Since they are the only minor minimal nonplanar

graphs, they are the only minor minimal graphs with genus one. The graphs in

Forb(T ) must have genera at least two.

Definition 5.5. A block of G is a subgraph B of G that is maximal with respect

to the property that removing any single vertex of B does not disconnect it.
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Note that the blocks of G must be 2-connected. The following corollaries will

help identify the elements of Forb(T ) that have connectivity less than two. They

follow from Theorem 1 of [1].

Corollary 5.6. The genus of any graph is the sum of the genera of its blocks.

Corollary 5.7. The genus of a graph is the sum of the genera of its components.

These results simplify the calculation of the genus of a given graph, and help

narrow our search. We will consider the graphs in Forb(T ) with connectivity one

and those with connectivity zero separately.

Elements of Forb(T ) that have connectivity one must have at least two blocks,

since a graph with only one block would have connectivity two by definition. Re-

moving blocks of genus zero from a graph would not change the genus of the graph,

and therefore each of the blocks in our desired graphs must have a genus of at least

one.

It is important to note that we are looking for graphs of genus exactly two. A

graph with connectivity less than two and with genus three or more must have a

proper minor of genus two or more, and thus the orginal graph of genus three or

more is not minor minimal non-toroidal.

It follows that there are two blocks and both have genus one. The only minor

minimal graphs with genus one are the elements of Forb(PL). Therefore we can

conclude that if a graph G is in Forb(T ), then it must have two connected blocks,

each of which are either K5 or K3,3. It follows that the graphs in Figure 17 are the

elements of Forb(T ) with connectivity one.

Now that we have found the forbidden minors of connectivity one, we will identify

the elements in Forb(T ) that are not connected.

Suppose we a have a graph G ∈ Forb(T ) that has connectivity zero. By definition

it must have at least two disconnected components. By Corollary 5.7 the sum of

the genera of these components must be two. However, similar to the previous

case of graphs with connectivity one, any components in G with genus zero can

be removed and the genus of G will be preserved. Therefore if G is to be minor

minimal, each component must have genus at least one.

If there was a component in G with genus two or greater, then we could remove

the other components and the resulting subgraph would still have genus two, and

thus would not be embeddable in the torus. Therefore each component must have

genus one, and it follows that there must be only two disconnected components.

We know that the minor minimal graphs with genus one are K5 and K3,3, so we can

conclude that the graphs in Forb(T ) with connectivity zero have two components,

each of which are either K5 or K3,3. These graphs are shown in Figure 18.
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K3,3 and K3,3 K5 and K5

K3,3 and K5

Figure 17. Elements of Forb(T ) with connectivity one.

K3,3 and K3,3 K5 and K5

K3,3 and K5

Figure 18. Elements of Forb(T ) with connectivity zero.

When dealing with such a large set of forbidden minors it can be daunting

and extremely difficult to identify them all. However as we have shown, adding

conditions to the graphs can help tame the set and produces interesting results.



FORBIDDEN GRAPH MINORS 21

6. Conclusion

We have explored parts of of the Kuratowski sets for two minor closed graph

properties: outerplanar and toroidal. Of course, there are many other properties

that would be fascinating to explore with respect to their Kuratowski sets. Proper-

ties may be quite simple; bounding the number of edges or the number of vertices

is minor closed and would fall under the Graph Minor Theorem. Other restrictions

may be added to already established properties as well. For example, [5] defines a

way to modify any property P by finding graphs G where there exists a vertex v

such that G− v has P. Applying this to planarity, they find the Kuratowski set for

graphs that are “strongly almost planar.”

While the search for forbidden minors started with Kuratowski’s Theorem in

1930, it is still a fascinating problem that is getting attention. Robertson and

Seymour’s grand result in the Graph Minor Theorem confirmed Wagner’s suspicion

and proved that any set of forbidden minors for a minor closed property must be

finite. As in the case of toroidal graphs, the categorization ‘finite’ does not give any

indication at the size or or difficulty in finding the elements of these sets. There are

still countless graph properties with Kuratowski sets that are not yet completely

known.

In addition, [5] shows that even if a property P is not minor closed, the list of

graphs that are minor minimal P is finite. Therefore, with a property that is not

minor closed, while the Kuratowski set may not be finite, the minor minimal graphs

with P could feasibly all be found.
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