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Abstract

Beginning in the 1800s, scientists intended to study the workings of

the human brain. The concept of Artificial Intelligence developed over

many years, and thanks to more advanced computers and spacious

memories, now we can have ’Human-like’ computer programs which can

perform tasks for us. An Artificial Neural Network is one which learns

from past data, and predicts for the future. Through this project, we

not only gain a mathematical background of ANNs, but also touch base

on those dealing with images, Convolutional Neural Networks.
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Chapter 1

Introduction

Artificial Intelligence (AI) has been a new and popular topic in recent

years. People try to design algorithms for computers so that they can

accomplish tasks as close to real human beings. From Siri in Apple

devices, Alexa built in smart homes, to self-driving cars in the near fu-

ture, AI has become ubiquitous in our daily lives. In this project, we

will take a close look at Neural Networks, which is a supervised algo-

rithm belonging to a subfield of AI, called Machine Learning. Neural

networks are used to learn from data, allowing them to do predictions

on future, unseen data. Additionally, we will explore their functional-

ity, their training process and advanced applications in several fields:

health, finance, and visual recognition.

1.1 Natural vs. Artificial Neural Networks

An artificial neural network is a computer system modeled on the hu-

man brain and nervous system.
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Figure 1.1 presents how a natural neural network works:

Figure 1.1: the Workflow of Natural Neural Networks

The impulse first travels through the dendrites of the neuron,

which receive input and carry it towards a cell body. Then, the cell body

interprets the input signal and transforms it into useful information.

Finally, a single axon carries the output signal away.

However, the artificial neural networks (ANNs) cannot behave

exactly the same as the natural ones, since what happens in the cell

body is too complex to simulate. In essence, they have a similar struc-

ture to the natural ones. We use cold transistors and machines to build

up the artificial system, and replace the inexplicable cell body by math-

ematical methods and computational algorithms which are responsible

for analyzing and transforming the input.

By simulating the structure of natural ones, the artificial neu-

ral networks can recognize patterns and make decisions based on prior

knowledge stored in the network. The main emphasis is how we con-

struct the part in the artificial one which simulates the cell body in the

natural one.
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1.2 The Architecture of Artificial Neural Net-

works (ANNs)

A typical neural network has neurons, often called units or nodes. Their

amount could be from a couple dozen to even millions and they are

arranged in layers. All of the units can be classified into input units,

hidden units, and output units, which connect the layers on either side.

Figure 1.2: the Workflow of Artificial Neural Networks

In Figure 1.2, we can see that the input layer consists of in-

put units, which are responsible for receiving numerical data from out-

side that the neural network attempts to learn about. The connection

between one unit from input layer and one from hidden layer is rep-

resented by a number called a weight, which is denoted as Wi. The

weight can be either positive or negative, which corresponds to the way

actual brain cells excite or suppress others. If a unit has a higher corre-

sponding weight, then it has more influence on the output. Initially, the

weights are assigned at random and would be adjusted later through

the training process.

There are two ways information can flow through a neural net-

work. The Feed-forward Neural Network is the first and simplest type
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of ANNs. The data values go only in one direction, from the input units,

to the hidden units, and finally to the output units. An example is

shown below:

Figure 1.3: An example of a Feed-forward Neural Network

In Figure 1.3, the input layer collects the numerical variables

from outside world and carries them to the next stage. No computation

happens here.

Then, the data values arrive at the very first hidden layer, which

has activation functions inside. The activation functions are responsi-

ble for performing computations and transferring the new values to the

next hidden layer or output layer. While a feed-forward network will only

have a single input layer and a single output layer, it can have zero or

multiple hidden layers.

The output layer, which contains all output units, is responsible

for carrying away the results computed from prior hidden layers.

The other type of neural network is the Recurrent Neural Net-
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work. This kind of neural network has a loop or a cycle connecting

all of the units inside of it. The recurrent attribute allows it to exhibit

temporal dynamic behaviors.
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Chapter 2

Mathematics Behind ANNs

We start from a single neuron to have a view from a mathematical per-

spective to better understand how ANNs are constructed and how they

develop through the training process.

2.1 A Single Neuron

Figure 2.1: A single neuron of neural networks

Figure 2.1 shows a network consists of just one hidden layer

containing one neuron. The single neuron receives input from the prior
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input layer, does computations, and sends the result away. We have

two inputs here, x1 and x2 , with weights w1 and w2 respectively. The

neuron applies a function f to the dot-product of these inputs, which

is w1x1 +w2x2 + b. Besides the two numerical input values, there is one

input value 1 with weight b, called the Bias. The main function of bias

is to stand for unknown parameters or unforeseen factors.

The output Y is computed by taking the dot-product of all input

values and their associated weights and putting it into the function f .

This function is called the Activation Function.

We need activation functions because many problems take mul-

tiple influencing factors into account and yield classifications. For ex-

ample, if we encounter a binary classification problem, the results would

be either yes or no, so we need activation functions to map the results

inside this range. If we encounter a problem involving probability, then

we would wish to see our predictions from our neural network being in

the range of [0, 1]. This is what activation functions can do for us.

There are two types of activation functions: linear activation

functions and non-linear ones. The biggest limitation of linear ones is

that they cannot learn complex function mappings because they are

just polynomials of one degree. Therefore, we always need non-linear

activation functions to produce results in desired ranges and to send

them as inputs to the next layer. The following subsection will introduce

several generally used non-linear activation functions.

2.1.1 Activation Functions

An activation function takes the dot-product mentioned before as a in-

put and performs a certain computation on it. We put a certain activa-
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tion function inside of neurons of hidden layers based on the range of

the result we expect to see.

A notable property of activation functions is that they should

be differentiable, because later we need this property to train the neural

network using backpropagation optimization.

Here are some frequently used activation functions:

• Sigmoid or Logistic: takes a real-valued input and returns a out-

put in the range [0,1]:

δ(x) =
1

1 + e−x
(2.1)

Figure 2.2: Sigmoid() Activation Function

In Figure 2.2, this is an S-shaped curve and the values going

through the Sigmoid function will be squeezed in the range of [0, 1].

Since the probability of anything exists only between the range of 0 and

1, Sigmoid is a compatible transfer function for probability.

Although the Sigmoid function is easy to understand and ready

to use, we do not use it frequently because it has vanishing gradient

problem. This problem is that, in some cases, the gradient gets so close
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to zero that it does not effectively apply change to the weight. In the

worst case, this may completely stop the neural network from further

training. Second, the output of this function is not zero-centered, which

makes the gradient updates go far in different directions. Besides, the

fact that output is in the narrow range [0, 1] makes optimization harder.

In order to compensate the shortcomings, tanh () is an alternative option

because it is a stretched version of the Sigmoid function, in which its

output is zero-centered.

• tanh or hyperbolic tangent: takes real-valued input and pro-

duces the results in the range [-1, 1]:

tanh (x) =
sinh (x)

cosh (x)
=
ex − e−x

ex + e−x
(2.2)

Figure 2.3: tanh() Activation Function

The advantage is that the negative input values will be mapped

strongly negative and the zeros will be mapped near zero through this

function. Therefore, this function is useful when we would like to per-
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form a classification between two distinct classes. This function is pre-

ferred over the Sigmoid function in practice, but the gradient vanishing

problem still exists. The following ReLU function rectifies this problem

using a relatively simple formula.

• ReLU (Rectified Linear Unit): takes a real-valued input and re-

places the negative values with zero:

R(x) = max(0, x) (2.3)

Figure 2.4: ReLU() Activation Function

The ReLU() activation function is trending now in the field of

neural networks. It is used in almost all the convolutional neural net-

works or deep learning because it is a relatively simple and efficient

function which avoids and rectifies the gradient vanishing problem.

The problem of this activation function is that all the negative

values become zeros after this activation, which in turns affects the

results by not taking negative values into account.

We use different activation functions when we know what char-

acteristics of results we expect to see. Among these three activation
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functions, we usually start our training process using ReLU() because

it works as a general approximator for most data sets.

2.1.2 Multi Layer Perceptron

There are two types of feed-forward neural networks:

• Single Layer Perceptron: the simplest feed-forward neural net-

work with no hidden layers

• Multi Layer Perceptron: has one or more hidden layers which is

useful for practical applications

We will focus on the multi-layer Perceptron because it can learn

not only linear functions but also non-linear functions.

The feed-forward neural network in Figure 1.3 is an example of

the multi-layer Perceptron. If we have a data set containing features and

results, the multi-layer Perceptron will learn the relationship between

features and results from the given data set, and predict the result for

a new data point.

Generally in the input layer, we send n numerical inputs through

n units:

x = x1, x2, ..., xn|x ∈ Rn

then we randomly assign weights for them at the first place:

w = w1, w2, ..., wn

The values for weights will be adjusted later in the training process for

more accurate approximations.
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In the hidden layer, we gather all the inputs by taking the dot

product of x and w, and we call it the pre-state P:

P = w1 · x1 + w2 · x2 + ...+ wn · xn + b =

n∑
i=1

xiwi + b

We use vectors to represent them so that they can be viewed in matrix

formatting. Figure 2.5 is an example of the calculation.

Figure 2.5: Getting Dot-products in Matrix Formatting

In Figure 2.5, the input layer has 3 units and the following hid-

den layer has 4 units. We can create a matrix of 3 rows and 4 columns

and insert the values of each weight in the matrix as done above. This

matrix would be called W1. We can do a matrix multiplication here and

get a 1× 4 pre-state matrix.

In the hidden layer of Figure 2.5, we have four pre-stateNi, each

stores the dot-product of corresponding inputs and weights. These four

pre-state values are ready to go through a certain activation function

σ(). This is called the state S inside this hidden neuron:

S = σ(WiINi + bi)

There could be more hidden layers following the first hidden layer, and

the state(s) S, which store the transformed values, will be the input
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value(s) for the next layer. The matrix contains all the state values which

will encounter the next weight matrix and produce new dot-products,

and at that time, all the state values become the pre-state values of the

next stage. The initial input values will go through every hidden layer in

the neural net, repeat the same procedure mentioned above, and finally

arrive at the output layer. The output values we receive are the ultimate

state values in the very last hidden layer.

The above procedure explains how we set up our neural net.

Now the question is, how to determine the weights? How to adjust the

weights so that our neural net makes more accurate predictions? We

need to know how to train our neural net based on the information we

already have. The following subsection will introduce the error function

in neural net, which is the key to determining the weights and biases.

2.2 General Model Building

A neural network learns from patterns of data and tries to make pre-

dictions as accurately as possible. Assume that we already have a

set of p data pairs containing the variables and the results, (x(1), t(1)),

(x(2), t(2)),...,(x(p), t(p)) where x(i) is input value and t(i) is the target

value for i=1, 2, 3, ..., p. We would like to build a neural net F so

that ideally,

F (x(i)) = t(i)

However, typically we allow for error εi. Let y(i) denote the output of the

neural net so that

y(i) = F (x(i)) and t(i) = y(i) + ~εi

We know that y(i) depends on parameters, which are weights and biases,

then it turns out as an optimization problem. We need to set up a neural

20



net F that minimizes the error function, which is denoted below:

E =
1

N

p∑
i=1

||t(i) − y(i)||2

where N is the number of training patterns. If it is a two-way classifi-

cation problem, then N = 2. From this equation, we know that E is a

function of the parameters in F , and we need to determine the values

of weights that minimize the error by differentiating E.

If we focus on only one term of the sum, then

||t− y||2 = (t1 − y1)2 + (t2 − y2)2 + ...+ (tp − yp)2

because we already know that the input and output values are fixed,

and the only parameter here is the weight. We can differentiate both

sides and get
∂

∂W
(||t− y||2) = −2(t− y) · ∂y

∂W

Now we will be more specific and see how this fits in the neural

net context. From a neural net, we have the output y(i) = Wijx
(i) + b.

We see that the output depends on the weight and if we differentiate

both sides with respect to Wij using chain rule, we get

∂

∂Wij
(||t− y||2) = −2(ti − yi)xj

where xj is in the ith coordinate position.

This derivative gives us the direction to the maximum, so in order to

obtain the minimum point, we follow the opposite direction of this gra-

dient. Additionally, we would like to see this derivative as close to 0 as

possible in order to obtain the minimum of error. This algorithm follows

the Widrow-Hoff Rule(see Appendix).

After figuring out which direction to go, we still need to know

how far we go. We do not want it to move too slowly because we would

like to finish this training part in an efficient manner. On the other
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hand, we do not want it to move a step too far; we may face the problem

of not converging. Learning rate α is an important hyperparameter in

gradient descent, because it determines how far each step should go.

Unfortunately, we cannot analytically calculate a learning rate for a cer-

tain data set; we can know it only through trial and error. Typical values

for a neural network with standardized inputs (or inputs mapped to the

(0,1) interval) are less than 1 and greater than 10−6.
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Chapter 3

Training Session of ANNs

As previously stated, training a neural network means finding weights

and biases that minimize the error function. There are several methods

available to do this:

• Gradient Descent

• Newton’s Method (an indirect approach, solving for where the deriva-

tive of the error is 0).

• Conjugate Gradient (Search along the eigenvectors of the Hessian

of the error, the approach used in Matlab)

The Gradient Descent approach is mentioned in the general modeling

section, and now we focus on how to apply this method to train the neu-

ral network to be more accurate. The process of updating the weights

and reducing the error function is called the Backpropagation of Error.
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3.1 Backpropagation of Error

We start from a simple 1-1-1 neural network, which contains an input

x, two stages of weights, w1, w2, two stages of biases, b1, b2, an activation

function σ() and an output y.

x→ y = w2σ(w1x+ b1) + b2

Given a target t, the error of this neural net is

E(w1, w2, b1, b2) =
1

2
(t− y)2 =

1

2
(t− (w2σ(w1x+ b1) + b2))2

We want to minimize the error, so we move in the opposite direction of

the gradient. Through the training process, we would like to update

weights/biases in order to achieve a better error. Suppose we let u de-

note a generic parameter (either a weight or a bias). Using the gradient

descent, u is updated by:

unew = uold − α
∂E

∂u
= uold + α∆u

where α is called the learning rate, and the change in u is computed via

the chain rule on the error. Notice that we incorporated the negative

sign into ∆u, because the derivative of the (t − y) term will always be

negative t− y. In particular,

∆u = −∂E
∂y
· ∂y
∂u

= −(t− y) · −∂y
∂u

= (t− y)
∂y

∂u

Recall the pre-state P and state S mentioned in the prior section, we

know that in this case P = w1x + b1 and S = σ(P ). Now let us compute

these partial derivatives for all the different parameters:

y = w2S + b2 :

∂y
∂w2

= S ∂y
∂b2

= 1

∆w2 = (t− y)S ∆b2 = (t− y)
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And for the other parameters,

y = w2σ(P ) + b2 :

∂y
∂w1

= w2σ
′(P ) · x ∂y

∂b1
= w2σ

′(P )

∆w1 = (t− y)w2σ
′(P ) · x ∆b1 = (t− y)w2σ

′(P )

From the example of a 1-1-1 neural net, we can generalize this

to a three layer neural network in the form of n−k−m with the activation

function σ. Although we could define a different σ for every neuron, we

typically use the same activation function for all the neurons in a single

layer. Once that is done, we have to find matrices W1,W2 (and more, if

we use more layers) and the bias vectors b1,b2.

Ideally, we would have much more data than that in order to

get good estimates. In any case, the key idea is that once we have the

derivative of the sum of squares error with respect to the weights, we

can adjust the weights accordingly through the training process. In

practice, the algorithm for reducing the error function is already stored

in the neural network, so we only need to set up a neural network using

a software (e.g. Matlab) and we can see the training process happens

automatically.

Here is an example training session in Matlab:

P=−1:0.1:1;

T=sin ( pi∗P)+0.1∗randn ( size (P ) ) ;

net=feedforwardnet (10 ) ; %10 nodes in hidden layer

net=train ( net , P , T ) %train the network

y=sim ( net ,P ) ; %get the output of the net

plot (P ,T ,P , y , ’ o ’ ) %plot the data and the net output

t t=linspace (−1 ,1) %new domain for the plot

yy=sim ( net , t t ) ; %get the output from the net
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plot (P ,T , tt , yy , ’ k− ’ ) %plot together . . .

This training session creates a 1x21 matrix P containing values in the

range [0,1] and a 1x21 target matrix T to train the neural net. Using

Matlab, we get the plot for the data and the net output:

Figure 3.1: the Data and the Net Output Plot

To see it in a more clear way, we re-scale it and get:

Figure 3.2: Re-scaled Plot for the training session

Figures 3.1 and 3.2 give visual representations of the actual output

values(black line) and the target values(blue line). We conclude that the

neural network does not create exactly the same results as the targets,

but it acts as a general approximator.
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We do not pursue a perfect matching in a neural net because

we do not want to encounter an over-fitting problem, which allows the

neural network to generalize better to unseen data. In order to get rela-

tively accurate predictions, we need to consider separating the data set

into several subsets used for different functionalities.

3.2 Data-sets Split

When training a neural network, we would split the data set we get into

three subsets: the training data set, the validation data set, and the test

data set in order to pursue a balanced point so that the neural net does

not have an over-fitting problem and obtains a relatively high prediction

rate.

Figure 3.3: A visualization of the Split

• Training Data Set: The sample of data used to train the neural

net.

• Validation Data Set: The sample of data used to provide an un-

biased evaluation of a neural net fit on the training data-set while

tuning the hyper-parameters1.

• Test Data Set: The sample of data used to provide an unbiased

evaluation of a final version of neural net fit on the training data-

set.
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We use the training data set to train the weights and biases in

our neural net. The neural net learns from this data set.

The validation set is used to evaluate a neural net, but this is for

the frequent evaluation. We use the validation set results and update

higher level hyper-parameters. Therefore, the validation set in a way

affects a model, but indirectly.

The test data set is used when the neural net is completely

trained. It contains carefully sampled data that spans the various

classes which the model would face when used in the real world.

By utilizing these three data sets, we know how to avoid the

over-fitting problem because there would be a point before that in which

the performance of the training goes down while those of the validation

and test sets go up.

1. the variables which determine the network structure(E.g. Number of Hidden Units)

and the variables which determine how the network is trained(E.g. Learning Rate). They

are set before training.
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Chapter 4

Applications of ANNs

Artificial Neural Networks are utilized as prediction tools in many fields.

At this point, we will go through two examples, one in Health and an-

other one in Finance. ANNs are really powerful tools to do predictions

because they repeatedly train themselves to reach a proper prediction

point, unlike those traditional statistical tools which are only applied

once and no adjustment happens during the modeling process.

4.1 An Application in Health using Matlab

We use the built-in pattern recognition application in Matlab to train a

neural network for a breast cancer data set from the University of Cal-

ifornia Irvine(UCI). This neural network classifies cancers as either be-

nign or malignant depending on the characteristics of sample biopsies.

The input is a 9 × 699 matrix defining nine attributes of 699 biopsies,

and the target data set is a 2× 699 matrix where each column indicates

a correct category with one in either benign or malignant. The nine
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attributes are Clump thickness, Uniformity of cell size, Uniformity of

cell shape, Marginal Adhesion, Single epithelial cell size, Bare nucleoli,

Bland chomatin, Normal nucleoli, and Mitoses.

4.1.1 The Implications behind the Performance

The following figure shows the best validation performance point:

Figure 4.1: Performance of the neural network for the breast cancer

dataset

We do a performance check to avoid the over-fitting problem

and we can see in Figure 4.1 that the performance of the training set

goes down, which is the main reason we do not want to continue our

training.

4.1.2 Visualization of the results: Confusion Matrix

A confusion matrix is a very useful visualization tool built in Matlab

because it is a figure that is used to describe the performance of a clas-
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sification model (or "classifier") on a set of test data for which the true

values are known. From confusion matrices, we can have a clear view

of how many false-positive and true-negative results exist in the neural

network.

The following figure shows four confusion matrices:

Figure 4.2: Confusion matrices produced by neural network pattern

recognition

In the training confusion matrix, we know that the neural net

puts 313 people in the right position - benign group, and puts 2 people

in the wrong group when they should be in the benign group. The

correct rate is 99.4%. It also makes right predictions for 164 people in

the malignant group and wrong predictions for 10 people in the benign
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group, while in fact they should be in the malignant group. The correct

rate is 94.3%. We interpret the confusion matrices for the validation set

and test set, and we can conclude that this neural network experiences

relatively accurate training and has a good performance with an overall

correct rate of 97.6%.

4.2 Using ANNs to Manage Credit Risk

A credit risk is the risk of default on a debt that may arise from a bor-

rower failing to make required payments. Analysts conduct an assess-

ment called Credit Risk Analysis before deciding whether to sign a

financial contract with people, so they can identify the obligors and

quantify the amount to repay their borrowing well in advance. Compa-

nies need to make prediction about whether a person would pay his/her

bill on time by examining different factors in order to plan things ahead.

4.2.1 Methods used in Credit Risk Analysis

There are two ways for credit risk modeling:

1. Data Mining or Statistical Learning Approach

2. Natural Computing and Mathematical Modeling

The key metrics in credit risk modeling are credit rating (probability of

default), exposure at default, and loss given default.

When analysts calculate the risk ratings, which are classifica-

tion and regression tree problems that either identify a customer as

"risky" or "non-risky", they tend to use classical statistical modeling to
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predict the classes based on past data. However, nowadays artificial

neural networks become an option to deal with the classification prob-

lem, because they are more flexible and capable of modeling complex

non-linear problems.

Analysts find that most of the applicants are non-defaulting in

credit assessment, and only a small number of them are defaulters. The

relatively small sample size of bad credit people in the application pro-

cess indicates there would be more people in the good category than in

the bad category, which is extremely imbalanced. This imbalance re-

sults in performance degradation, which makes the predictive modeling

more challenging. However, an artificial neural network which leverages

clustering and merging can achieve balanced data, so that it can better

decide whether an applicant should be granted a loan or not. Several

methods can be used to balance the input data, and a frequently used

one, k-means, is included in the Appendix.

Although Neural Networks are more powerful than traditional

models, we may encounter problems if we choose a wrong data set. If

some unrelated variables are involved, the performance of neural net-

works would show no improvement compared to traditional tools. In

the next section we will go through an example demonstrating how im-

portant data pre-processing and selection are, and what would be the

performance of neural networks if we get irrelevant variables involved

in the neural net.

4.2.2 Should this Loan be Approved or Denied?

The example we would like to examine is “Should This Loan be Approved

or Denied?”: A Large Data set with Class Assignment Guidelines(Li et

al.,2018). In this article, the authors intend to "assume the role of loan
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officer at a bank and are asked to approve or deny a loan by assessing

its risk of default using logistic regression"(Li et al.,2018).

Logistic regression is a statistical method to do predictive analy-

sis, which is equivalent to the neural network with no hidden node(Zhang

et al. 1999). Based on the data set provided, we will set up a neural

network to see its performance and compare it to the traditional logistic

approach.

The study gives us a holistic view of how to do predictive analy-

sis, but several methods used in the study need further considerations.

First, the study uses a large and rich data set which contains 2102

observations from the U.S. Small Business Administration(SBA). There

are 27 variables from SBA, and it chooses five predictors:

1. New(=1 if NewExist=2 (New Business), =0 if NewExist=1 (Existing

Business))

2. RealEstate(=1 if loan is backed by real estate, =0 otherwise)

3. DisbursementGross(in Dollars)

4. Portion(Proportion of gross amount guaranteed by SBA)

5. Recession(=1 if loan is active during Great Recession, =0 other-

wise)

The problem is that this study chooses predictors through a discus-

sion instead of a serious analysis based on formal methods: "..., we

provide the students with the “National SBA” dataset, a background of

the SBA, and the assignment with its learning objectives. Since eco-

nomic models should be based on sound economic theory, we engage

students in a discussion which requires them to identify which explana-

tory variables they think would be good indicators or predictors of the
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potential risk of a loan: likelihood of default (higher risk) versus paid in

full (lower risk)"(Section 4.1, Li et al.,2018). This is a biased approach,

because it directly eliminates the chance to include some actually im-

portant explanatory variables, and the selection at this point influences

later analysis. As stated in this study, the predictive analysis involving

logistic regression finally results in 67.8% accuracy, which is shown in

Figure 4.3.

Figure 4.3: Logistic Model Information

If we take a close look at the chosen predictors, we will see

that three out of five variables are categorical, which means that they

are either 0 or 1. Because the selection of predictors is biased, and

the relationship between them does not go through examination, it is

reasonable to doubt that the model would do better if choosing better

variables. However, at this moment, we would like to see whether neural

networks would do better while keeping the same input data set.

Now, we can set up a neural network for this problem involv-

ing the same five variables and see the performance using Matlab. In-

put is a 2102 × 5 matrix, representing static data: 2102 samples of 5

elements(predictors), and the target is a 2102 × 1 matrix, representing
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static data: 2102 samples of 1 element(decisions:proved or not). The

confusion matrices for this data set is presented below:

Figure 4.4: Confusion Matrices for Credit Analysis

The overall accuracy does not differ much from that of the lo-

gistic regression prediction.

This example gives us some insights about the core determi-

nant of the accuracy of a neural network. Data selection is the most

difficult and controversial part prior to the model. Before passing the

data into the neural network, we need to limit a data set size, thus ac-

celerating the training time. For example, typically in data selection we

first obtain little improvement of the accuracy if we remove some data,

but the accuracy will drop if we continue to remove more. There are

many methods available for us to do the data selection, and if we would

like to set up our own neural network in the future, the data selection

is the crucial part we need to put much more emphasis on.
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Chapter 5

Convolutional Neural

Network

In deep learning, a convolutional neural network is a class of deep neu-

ral networks, most commonly applied to analyzing visual imagery. Re-

call that in previous sections, the artificial neural networks accept nu-

merical inputs. Now the convolutional ones can process images, be-

cause all digital images are represented by pixels, which are numerical

in nature.

If we are dealing with a black and white image, we can see that

certain pixels are totally white, while some are gray and black. White

pixels are represented with the value 0 and black ones are represented

with a value of 255. For color images, the pixels are evaluated in three

channels: red, green and blue(commonly known as RGB).

We can evaluate every color image in these three color densities

and here is a visualization of a parrot picture:
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Figure 5.1: A RGB Channels Separation

In contrast, a gray image has only two dimensions, which is a

little bit easier to handle.

Now the question is, what we can do using CNNs? The ma-

jor functionality is object recognition. There are three types of them:

Image Classification, Object Detection, and Instance Segmentation.

In Image Classification, the input to the problem is an image

and the required output is simply a prediction of the class that the

image belongs to.

Object Detection and Instance Segmentation aremore advanced

tasks. The input is still the same, but the output is more specific. In

Object Detection, the required output consists of bounding boxes sur-

rounding the detected objects; In Instance Segmentation, the output is

a pixel grouping that corresponds to each class.

We will focus on the image classification to see how CNNs work.
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5.1 Building Blocks of CNNs

In Image Classification, we will face a challenge that the appearance

of objects is dynamic. There are infinite number of ways objects can

appear in an image. This makes it difficult for traditional image classi-

fication techniques because storing an infinite number of pictures in a

computer is still difficult to achieve.

However, we do not need to prepare images with different char-

acteristics at all. Humans differentiate objects into different categories

based on certain features. A toddler can easily differentiate cats and

dogs once she has seen just few of them. Instinctively, people look for

features; and yes, we can also teach a computer to look for those certain

features within the entire image. The key lies in convolution.

There are two concepts we need to understand, filtering and

convolution. We will explain them through an example.

5.1.1 Filtering and Convolution

Suppose we have a 9 × 9 image as our input, and we need to identify

the image as an X or an O. There are numerous ways to write them,

but they have totally different characteristics. We know that Os tend to

have flat horizontal edges, while Xs tend to have diagonal lines.

A common shared characteristic of an object is called a filter,

which is responsible for identifying the object.

As in Figure 5.2, the filter is of size 3 × 3, and the presence of

this characteristic gives us a big hint on the class of the image. If an

image contains a horizontal edge, then the image is probably an O.
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Figure 5.2: A filter of O

For Xs, the filter would be a 3 × 3 figure containing diagonal

lines:

Figure 5.3: A filter of X

After defining the filters, we need to search for them in the input

images. We simply perform a search taking the 3× 3 filter and sliding it

through every single pixel in the image to find a match. The mathemat-

ical function performed by the filter is the element-wise multiplication

of the sliding window with the filter.

For simplicity, we assume pixel values are 0 or 1, instead of the

real intensity values in the range of [0,255]. From Figure 5.4, we can see

that the filtered value is 2 for this window. Then we slide this window
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Figure 5.4: Filtering Operation on the top left-hand corner

toward the right to check the next 3 × 3 section in the image. We can

see the filtered value for next section is 0.

Figure 5.5: Filtering Operation on the next section

The process of sliding the window through the whole image and

calculating the filtered value is known as convolution. Generally, the

neural net performs convolution layer before all the layers in the artifi-

cial net. Filtering and convolution provide us with information of areas

which contain the characteristics features. This equips our neural net

to be able to do dynamic object recognition just like a human being.

Note that there are two main hyperparameters in a convolu-

tional layer: the filter size and the number of filters. In the example we

just used one filter, but we can increase the number of filters to find

more characteristics. The next layer just after the convolutional layer is

max pooling layer.
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5.1.2 Max Pooling

This layer is responsible for reducing model complexity and avoiding

over-fitting by reducing the number of weights after each convolutional

layer.

Figure 5.6: An Example of Max pooling

In Figure 4.6, we have an 4 × 4 input matrix and a 2 × 2 max

pooling layer. Max pooling simply looks at each 2 × 2 region of the in-

put, and retains the maximum number of that region. Therefore, the

dimensionality is reduced. This is a very effective approach especially

when we encounter a huge amount of input data.

5.1.3 CNN Model Building

Now, we need to put all things together and construct a complete Con-

volutional Neural Network(CNN).

When a CNN receives input images, it will first target the char-

acteristics and reduce the complexity, which would be done by the con-

volutional layer and max pooling layer. This pair of layers would be

repeated twice, and their main purpose is to identify characteristic fea-
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tures. The next two fully connected layers are responsible for learning

how to make predictions, just like multi layer Perceptrons mentioned in

prior sections.

Figure 5.7: Basic Structure of CNNs

Essentially, the whole process is automatic, because the early

layers learn and identify features on their own, and the later layers are

self-trained to do predictions. The implication is significant. Instead of

handcrafting features for the machine learning algorithms, as we did in

two earlier ANN examples, we are simply providing all the data to the

CNN as it is. There is no data selection needed. Everything happens

automatically and we get the results in different classes.

5.2 Image Classification Using CNNs

Now that we understand the theory behind CNNs, we can set up a con-

volutional network using Python to classify cats and dogs. This image

dataset is provided by Microsoft, which contains 12499 images in each

class. Due to the massive amount of images, it may take a long time

to classify by hand. However, through a CNN, the images would be put

into two classes in just 10 minutes. There is one important package

named Keras in Python. We will use several built-in functions in Keras
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to set up our CNN. The functions are listed in the following code:

from keras .models import Sequential

from keras . layers import Conv2D,MaxPooling2D

from keras . layers import Dropout , Flatten ,Dense

from keras . preprocessing . image import ImageDataGenerator

model = Sequential ( )

5.2.1 Setting up Hyper-parameters

Before adding any convolutional layers, we need to set some hyper-

parameters:

1. Convolutional layer filter size: Most modern CNNs use a filter

size of 3× 3.

2. Number of filters: it is a number we can customize, but more

filters would take more time to process, while a low number of

filters would result in low accuracy.

3. Max pooling size: a common max pooling size is 2× 2.

4. Batch size: the number of training samples to use in each mini

batch during gradient descent. A large batch size results in more

accurate training, but longer training time and memory usage.

5. Epochs: howmany times the training data goes through themodel.

We have the following hyper-parameters set up for the dogs and

cats data set:

FILTER_SIZE=3 %a general f i l t e r size

NUM_FILTER=32 %set as 32, a good balance between

speed and performance
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INPUT_SIZE=32 %set as 32, good for speeding up the

training

MAXPOOL_SIZE=2 %usually 2X2

BATCH_SIZE=16 %set as 16

EPOCHS=10 %each training set w i l l be passed to

the model 10 times

5.2.2 Setting up Layers

Now we can add our first convolutional layer and max pooling layer, with

32 filters, each of size 3× 3:

model .add (Conv2D(NUM_FILTERS, ( FILTER_SIZE , FILTER_SIZE ) ,

input_shape = ( INPUT_SIZE , INPUT_SIZE , 3) ,

act ivation = ’ relu ’ ) )

model .add (MaxPooling2D ( pool_size =(MAXPOOL_SIZE, MAXPOOL_SIZE ) ) )

The Conv2D function sets up the convolutional layer for us, and the

activation function used is the most commonly used one, ReLU(). The

MaxPooling2D function is responsible for reducing the complexity. We

will repeat to add these two layers again after them.

Before we move to the fully connected layers, we need to flatten

its input, so that the multidimensional input values could be trans-

ferred into single dimensional values. We achieve this by running the

following code:

model .add ( Flatten ( ) )

We can now add two fully connected layers and run the CNN:

model .add (Dense ( units = 128, activation = ’ relu ’ ) )
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model .add (Dropout ( 0 . 5 ) ) %reduce over f i t t ing by randomly

sett ing 50% of the input to 0

model .add (Dense ( units = 1, activation = ’ sigmoid ’ ) )

model . compile ( optimizer = ’adam’ ,

loss = ’ binary_crossentropy ’ ,

metrics = [ ’ accuracy ’ ] )

We are using ReLU() again in the first fully connected layer, and Sig-

moid() in the second one because this is a binary classification prob-

lem. In the compiling stage, we are using the ’adam’ optimizer, which is

a generalization of the stochastic gradient descent (SGD) algorithm(see

Appendix). This is widely used to train CNNs.

5.2.3 Result Analysis

Once the training is complete, we get a 0.8054 accuracy, and the output

in the terminal is shown below: It is clear that the loss drops while the

Figure 5.8: Results from Ten Epochs

accuracy increases with each epoch. It is impressive that the CNN gains
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a relatively high accuracy through this training process with just a few

lines of code.

5.2.4 Images Predictions Analysis

We can classify the images according to three categories:

• Strongly right predictions: themodel predicted these images cor-

rectly, and the output value is > 0.8 or < 0.2

• Strongly wrong predictions: the model predicted these images

wrongly, and the output value is > 0.8 or < 0.2

• Weakly wrong predictions: the model predicted these images

wrongly, and the output value is between 0.4 and 0.6

Figure 5.9 shows nine randomly selected images from the strongly right

group:

Figure 5.9: Selected images that have strong predictions and are correct

These are almost classic images of cats and dogs, and it seems
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that the CNN captures the unique features of each group correctly. Cats

have pointy ears and dogs have black eyes, which allow our CNN to easily

classify them.

Figure 5.10 shows nine randomly selected images from strongly

wrong group:

Figure 5.10: Selected images that have strong predictions but are wrong

A few commonalities exist among these strongly wrong predic-

tions. Certain dogs do resemble cats with their pointy ears. Perhaps

our CNN put too much emphasis on this ear feature and classified them

as cats. Some objects are not even facing the camera, which makes the

CNN unable to find certain characteristics or misunderstand some un-

related features.

In Figure 5.11, there are several vague pictures showing up.

These images are difficult to identify at the first place even as human

beings because some are very dark, and some involve other objects. Our

CNN probably fails due to the missing shared features in these images.
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Figure 5.11: Selected images that have weak predictions, and are wrong

This model could be generalized to do more advanced classifi-

cation problems. Although the accuracy is not perfect, it still provides

a lot of convenience for us if we have awaiting images ready for classifi-

cation.
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Chapter 6

Further Topics and

Potential Future

We have discussed many aspects of neural networks, and the main pur-

pose of this ’human-like’ computer program is to improve the efficiency

when we solve problems with massive amount of data. People gain ex-

perience from the past over many years, while the neural networks learn

from the past and predict for the future in a short time. It is also impor-

tant to know their strengths and weaknesses, so we could know when

to apply them and how they could be improved to further help us deal

with problems.

6.1 Key Strength of Neural Networks

• Performance on problems with large data sets:

There are numerous problems in the real world which require us to

take multiple variables into account, and neural networks are good
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at handling these types of problems. The algorithms are already

set inside the neural networks, so that they are ready for massive

amount of data, andmore data bring inmore accurate training and

higher performance. In contrast, more data does not improve the

performance of those traditional machine learning approaches.

• Feature Engineering:

Neural networks are also good at capturing correct features, which

is called feature engineering. The incredible part is that neural

networks can figure out what are the important features which

need to be taken into consideration, without any help or guidance

from human beings.

• Applicability:

One important property of neural networks is that they have the

power of flexibility. Once established, they can be applied to al-

most anything, helping people to differentiate data into classes in

a small amount of time. Therefore, if we have a neural network

that can learn to recognize patterns, it could feasibly recognize

patterns in almost any domain.

6.2 Key Weaknesses of Neural Networks

• Data requirements:

At the beginning stage, all neural networks need to go though a

learning period where they start to recognize patterns and refine

themselves. However, the data selection is a main problem for

starters. There is still a massive data requirement before those

algorithms can start to be effective. We need to have enough time

to include all the required data, otherwise the performance of the

neural networks will be limited.
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• Expensiveness:

The neural networks require us to have enough memory space to

store all the data and strong GPU and CPU beyond the scope of

a normal system. Individuals may be unable to build their own

neural network due to this limitation, and currently in practice,

neural nets are widely used in those tech companies which can

afford the expense of implementing neural networks.

• Opaqueness and blindness:

Once we set up neural networks, it is hard for us to further develop

them. Because the data are passed through a complicated system,

from outside we do not know exactly what they encounter in the

system. Additionally, it is not transparent about the performance

of the built in algorithms. There is still a long way to go if we would

like to know how we get the answers and how we can improve the

performance of a neural network.

• Long-term potential:

We know that a neural network is a more advanced machine learn-

ing program because its data processing ability is close to the auto-

matic level. However, in practice the limitation is the hardware; we

still have not had the ideal computer, which stores infinite amount

of data with a high speed of processing time. The future of ANNs

depends on the future of our technology, which still awaits unrav-

eling.

6.3 What’s in the future?

The ANN model is already applied to several fields right now. The voice

system of Alexa, which is a smart-home device from Amazon and the

direction feature of Google Maps are examples of applications. Neural
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networks, and the theory behind them are called deep learning. and

they are currently changing our lives. They will even become more im-

portant in the future. They can be augmented with some operations

borrowed from classical approaches to make predictions in an efficient

way, so that people can benefit from this convenience by doing less work.

Additionally, we may explore more about how to invert through a neu-

ral network to better understand its architecture, since right now we

are facing a problem called ’Black-box’, that is, we do not really know

how to trace back from the results a neural network produces. Once we

figure out how to trace back from the results, we can adjust algorithms

accordingly to increase both their efficiency and their accuracy.
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Chapter 7

Appendix

7.1 Widrow-Hoff Rule

This is introduced by Bernard Widrow andMarcian Hoff. It is also called

Least Mean Square(LMS) method, to minimize the error over all training

patterns.

This rule is based on the gradient-descent approach, which

continues forever. It updates the weights by the following formula:

∆wi = αxiei

where ∆wi is the weight change for ith pattern, α is the learning rate,

xi is the input, and ei is the error(i.e. the difference between the actual

value and the desired value).Note that the above rule is for a single

output only, and the weight is updated in either of the two cases below:

Case 1: t 6= y, then

wnew = wold + ∆w
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Case 2: t = y, then no change in weight.

7.2 Clustering Algorithm: k-means

When we have a training set, we have already known the classifica-

tions happened in the past, which are extremely imbalanced results.

We would like to pre-process the dataset in order to eliminate the imbal-

ance, so we use the clustering algorithm k-means to cluster the majority

category into k subgroups, and merge the k subgroups of the majority

category data and minority category data respectively into k balanced

subgroups in order to have a diverse set. A visualization of k-means

algorithm is shown in Figure 7.1:

Figure 7.1: K-means Algorithm to Pre-process Data

K-means clustering is an unsupervised approach, which is used

when we have unlabeled data(i.e., data without defined groups). This

algorithm starts with k classes, which are pre-determined by us. Given

k center points, we call them

c1, c2, c3, ..., ck

and we have data points

x1, x2, x3, ..., xj

We have three steps to find the clusters:
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1. Sort the data: for a certain data point x,if ||x− ci|| ≤ ||x− ck|| for all

k, then x belongs to cluster i.

2. Recompute the center i: given x1, ..., xp in cluster i,

ci =
1

p

p∑
i=1

xi

3. Repeat step 1 and step 2.

An important concept involved here is the Distribution Error: if x1, ..., xp
belong to cluster i,

Err =
1

p

∞∑
n=1

||x− ci||

The iteration of this algorithm stops when the distribution error does

not decrease anymore.

7.2.1 Choosing K

The algorithm k-means finds clusters for a particular pre-chosen k. In

order to find this number, we need to run this algorithm for a range

of k values and compare the results. What we will get is an accurate

estimate, because there is no method to determine the exact value of k.

One commonly used way to find k is using the mean distance

between data points and their clustered centroid to compare results

across different values of k. Mean distance to the centroid as a function

of k is plotted and the "elbow point," where the rate of decrease sharply

shifts, can be used to roughly determine k. This approach is similar to

that of avoiding over-fitting problem in neural networks.

Figure 7.2 is an example of elbow point. We can see that the

performance stops to changes at k = 4.
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Figure 7.2: How to find the value for k?

Additional information on k-means could be found here:https:

//www.datascience.com/blog/k-means-clustering
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