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Abstract

We will be looking at two special infinite plane symmetry groups
namely frieze and crystallographic (wallpaper) groups. Within each of
these groups we aim to describe what patterns we can form, in particular
what qualifications determine which of the 7 frieze or 17 wallpaper groups
a given pattern is apart of. For the frieze groups, we will also look at the
construction of each pattern, their isomorphism classes, and why there
are only 7 of them.

0 Introduction

Frieze patterns are an interesting set of groups as their name originated from
the architectural term of a frieze or a broad decorative band. This description
is not far from the frieze patterns we see in group theory, where our formal
definition of a frieze group is a plane symmetry group whose translations are
isomorphic to Z. Our definition for wallpaper symmetry is very similar, but in
these groups the translations are isomorphic to Z⊕Z. We will recall a symmetry
group is the set of all isometries in Rn that carry a set of points G to itself (this
group operation is function composition), and an isometry is a function from
Rn to Rn which preserves distance. As we look further into the patterns we can
form, we will also be classifying each group into their isomorphism classes using
a property defined as the semidirect product. For semidirect products we will
make use of homomorphisms and their properties as well as automorphisms of a
group G (Aut(G)). We will also be looking at the normalizer of a subgroup H in
G, defined with the following notation, NG(H) = {g ∈ G|gHg−1 = H. For most
of the groups we will be looking at, the property of our group G = H ×K where
H and K are subgroups of G will not typically be satisfied. The reason we will
be unable to use the internal direct product is due to the condition hk = kh for
all h and k not being met, i.e. we will be constructing non-abelian groups. The
main group we will be constructing is the dihedral group.

Originally used in Greek architecture [1], the frieze is the section of a struc-
ture between the support beams and the top of the structure (usually a roof).
The patterns started off as simply patterns of lines repeated all the way around
the building, with each set of lines spaced a particular distance away from the
previous one. Later on the patterns became more intricate involving moldings
or painting in each of the spaces where the lines used to be, but it would still be
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the same image repeated all the way around the structure. Since the original
development of a frieze in Greek architecture, the term has branched out to
mean any long horizontal band used for decorative purposes, this could be on
pottery, interiors or exteriors of walls, and many other objects.

A frieze is no longer commonly seen in architecture, but instead it is put
in places we might not usually notice. Take lanyards for example; they clearly
have transitional symmetries, and depending on the figure there is a wide range
of symmetries that can be involved. We will be taking a close look at all of the
possible symmetries to create patterns on horizontal strips such as a lanyard
and then introducing patterns on two dimensions.

1 Semidirect Product

In order for us to classify our symmetry groups we need to establish a defini-
tion of a semidirect product. Recall the internal direct product of two normal
subgroups H and K where H ∩K = {e}, and G = HK is written as H ×K. Our
goal with establishing the semidirect product is to generalize the direct product
definition to apply to H and K where only one need be normal in G. Suppose
we have a group G such that H E G, K ≤ G, and H ∩ K = {e}. Since H and
K are subgroups of G then we know HK will also be a subgroup in G, where
each element hk ∈ HK is uniquely defined i.e. there is a bijection between HK

and the the ordered pairs (h, k) [2]. We will also note their product of any two
elements is defined as follows:

(h1k1)(h2k2) = h1k1h2k2

= h1k1h2(k−1
1 k1)k2

= h1(k1h2k
−1
1 )k1k2

= h3k3.

Since H is normal we know k1h2k
−1
1 is an element of H thus allowing us to

conclude the last line of our product. This example is based on the assumption
that we already have a group G such that H,K ≤ G with H EG and H ∩K = 1.
We want to extend this concept to starting with the abstract groups of H and
K, using them to construct our G. In order to start this construction, we need
to have multiplication in G defined in terms of multiplication in H and K. From
above we see our k3 value is obtained through multiplication in K, the problem
we encounter is with the element k1h2k

−1
1 , which we will define in terms of H

and K instead of referencing G. If we look at our term k1h2k
−1
1 , we see K is

acting on H by conjugation which we will define as:

k · h = khk−1.

The action defined above gives us a homomorphism φ : K 7→ Aut(H) thus show-
ing multiplication in HK solely depends on the multiplication in K, multiplica-
tion in H, and our function φ. Using the investigation above we use Theorem
10 in chapter 5 from [2].

Theorem 1.1. Let H and K be groups and let φ be a homomorphism from K

to Aut(H). Let “·” denote the (left) action of K on H determined by φ. Let G
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be the set of ordered pairs (h, k) with h ∈ H and k ∈ K and define the following
multiplication on G:

(h1, k1)(h2, k2) = (h1φ(k1)(h2), k1k2) = (h1k1 · h2, k1k2).

This multiplication which we have defined makes G a group and naturally
allows us to conclude |G| = |H||K|.

We also know the sets {(h, 1)|h ∈ H} and {(1, k)|k ∈ K} are subgroups of G
given the way we have defined G, in addition we know these sets are isomorphic
to H and K i.e.:

H ∼= {(h, 1)|h ∈ H} and K ∼= {(1, k)|k ∈ K}.

From these isomorphisms of H and K in G we see H E G, H ∩K = 1, and
for all h ∈ H and k ∈ K we have khk−1 = k · h = φ(k)(h).

Before we start our proof we will first note a few important properties of
our homomorphism φ. The first couple properties we notice given the definition
of our homomorphism φ are φ(k)(1) = 1 as we are strictly mapping k to the
identity, and similarly we see φ(1)(h) = h as the identity element of K maps to
the identity Aut(H). The last property of our homomorphism is a basic rule of
homomorphisms that composition of our φ translates to multiplication in K, i.e.
φ(k1)(φ(k2)(h)) = φ(k1k2)(h).

Proof. In order to show G is a group under the multiplication we defined, we will
verify the associative law, and show the existence of the identity and inverses.
For associativity we see for all (h1, k1), (h2, k2), and (h3, k3) in G:(

(h1, k1)(h2, k2)
)

(h3, k3) = (h1φ(k1)(h2), k1k2)(h3, k3)

= (h1φ(k1)(h2)φ(k1k2)(h3), k1k2k3)

= (h1φ(k1)(h2)φ(k1)(φ(k2)(h3)), k1k2k3)

= (h1φ(k1)(h2φ(k2)h3), k1k2k3)

= (h1, k1)(h2φ(k2)(h3), k2k3)

= (h1, k1)
(

(h2, k2)(h3, k3)
)
.

Since H and K are groups then we know our 1 element is in both H and K.
In addition G is defined as all possible ordered pairs (h, k) where h and k are in
H and K respectively, so we know (1,1) must be an element of G. Now we will
verify this is the identity of G:

(h, k)(1, 1) = (hφ(k)(1), k1)

= (h1, k)

= (h, k).

For inverses we will suppose (h, k)−1 = (φ(k−1)(h−1), k−1), and to verify this we
will look at the following:

(h, k)(φ(k−1)(h−1), k−1) = (hφ(k)(φ(k−1)(h−1)), kk−1)

= (hφ(kk−1)(h−1), 1)

= (hφ(1)(h−1), 1)

= (hh−1, 1)

= (1, 1).
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Now we must verify H E G, H ∩ K = 1, and for all h ∈ H and k ∈ K we
have k · h = khk−1 = φ(k)(h), this will simplify the rest of our proof by giving
us the notation of k · h = φ(k)(h). First we will define H̃ and K̃ as follows
H̃ = {(h, 1)|h ∈ H} and K̃ = {(1, k)|k ∈ K}, now we see the following properties
of H̃ and K̃:

(h1, 1)(h2, 1) = (h1φ(1)(h2), 1)

= (h1h2, 1)

(1, k1)(1, k2) = (1φ(k1)(1), k1k2)

= (1, k1k2).

This proves H̃ and K̃ are also isomorphic to H and K respectively, as well as
verifying they are indeed subgroups of G. Since we see that H̃ ∩ K̃ = 1, then
since we have our isomorphism from above, it is implied that H ∩K = 1. Now
in order to verify khk−1 = k · h we will look at the following:

(1, k)(h, 1)(1, k−1) = (φ(k)(h), k)(1, k−1)

= (φ(k)(h)φ(k)(1), kk−1)

= (φ(k)(h), 1)

= (k · h, 1).

This verifies by isomorphism that khk−1 = φ(k)(h) = k · h.
By our definition of multiplication in G we see K ≤ NG(H), and by definition

H ≤ NG(H). Since G = HK we see NG(H) = G which implies H is normal in
G. �

Definition 1.1. The group G described in Theorem 1.1 is called the semidirect
product of H and K with respect to φ and is denoted by H oφ K (when there is
no confusion we will simply write H oK).

A simple example of the semidirect product at work is in D4, which is defined
in the following Cayley table:

1 ρ ρ2 ρ3 F ρF ρ2F ρ3F

1 1 ρ ρ2 ρ3 F ρF ρ2F ρ3F

ρ ρ ρ2 ρ3 1 ρF ρ2F ρ3F F

ρ2 ρ2 ρ3 1 ρ ρ2F ρ3F F ρF

ρ3 ρ3 1 ρ ρ2 ρ3F F ρF ρ2F

F F ρ3F ρ2F ρF 1 ρ3 ρ2 ρ

ρF ρF F ρ3F ρ2F ρ 1 ρ3 ρ2

ρ2F ρ2F ρF F ρ3F ρ2 ρ 1 ρ3

ρ3F ρ3F ρ2F ρF F ρ3 ρ2 ρ 1

Suppose we look at the groups H = {1, ρ, ρ2, ρ3} and K = {1, F}, the first
thing we want to figure out what the group Aut(H) looks like. We notice from
the Cayley table these operations are cyclic, in particular both ρ and ρ3 are
generators of H. From here we can conclude any automorphism must take 1 and
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ρ2 to themselves as they are the only elements with order 1 and 2 respectively.
Thus our only two options for the automorphisms of H are when we map ρ and
ρ3 to themselves (ρ→ ρ) and when we map each of them to inversion (ρ→ ρ−1).
Thus we can define our φ function between K and Aut(H) as 1 → (ρ → ρ) and
F → (ρ → ρ−1). By this definition of φ we see it is a homomorphism, and thus
our criteria for Theorem 1.1 is met so we can find our group G = H oφ K:

G = HK

= {1(1), 1(F ), ρ(1), ρ(F ), ρ2(1), ρ2(F ), ρ3(1), ρ3(F )}
= {1, F, ρ, ρF, ρ2, ρ2F, ρ3, ρ3F}.

This shows how the semidirect product can be used to generate non-abelian
groups such as D4.

Our example above looks at the semidirect product of two groups, H and
K, where our H is a cyclic group (isomorphic to Z if infinite or Zn if order is
n) and our K is isomorphic to Z2. We will now make a generalization from this
result by first noticing our φ function maps the non-identity element of K to
the automorphism of inversion on H. We see from our example where H ∼= Z4

(n=4) and K ∼= Z2 that H oK = D4 = Dn, this will always be true unless H ∼= Z,
in which case we will have H o K = D∞. It is important to recognize at this
point that the infinite dihedral group we will be referring to is constructed with
H ∼= Z as opposed to H ∼= R. This difference in the size of our H subgroup
impacts the size of our dihedral group as one is countably infinite (Z) and the
other is uncountably infinite (R).

2 Motions on Plane Symmetries

Before we get into classifying different groups of plane symmetries, we must
describe the isometries that make up these groups. The five motions we need
to define are translations, rotations, glide reflections, horizontal reflections, and
vertical reflections. Compositions of these motions dictates how any pattern will
look, depending on the motions there will be constructions which are equivalent
to another. Each of the frieze and wallpaper groups will consist of translations
composed with any other motion. What separates frieze from wallpaper groups,
as mentioned before, is the fact that the group of translations is isomorphic to Z
for frieze groups and Z⊕Z for wallpaper. One of the features about each of the
frieze and wallpaper groups is the construction of a group with certain motions
naturally fulfills other motions. An example of this is comes up when we look at
a group formed with both vertical and horizontal reflections. In this group we
will notice rotations are automatically fulfilled, thus we do not reference them
in our groups construction. We will look deeper at this idea when we show why
there are only 7 possible frieze patterns with all these motions.

2.1 Translations

A translation is a linear shift of some figure along the plane. As indicated
before, the translations of our two plane symmetries are of infinite order. For
frieze groups there is simply one type of translation, t, that translates a figure on
some linear path, but for wallpaper groups there are two different translations,
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t which translates horizontally and t′ which translates vertically. For each of
the frieze and wallpaper groups, we will refer to the set of all translations as T .

2.2 Rotations

When we refer to a rotation symmetry we will only include non-trivial rotations
around a particular point, i.e. we will only talk about rotations, r, such that
0 < r < 360◦. For frieze groups, our only possible rotation will be a rotation
of 180◦ as our translations are only on a single linear path. Wallpaper groups
have a lot more diversity in the rotational symmetries, which is the key reason
there are more wallpaper patterns than frieze patterns. Since there are more
possibilities of rotations in wallpaper groups, our r will refer to the smallest
angle of rotation in any particular pattern.

2.3 Vertical Reflection

If we were to have a vertical line at any point on our image and when we flip all
the points from whatever side they are on to the other then we have vertically
flipped our figure. If this action preserves distance and symmetry, then there
is a vertical reflection symmetry. In each groups construction we will denote a
vertical reflection with v.

2.4 Horizontal Reflection

Similar to a vertical reflection if we were to flip all the points from the top
to the bottom of a horizontal line and vice verse, then we have horizontally
flipped our image. If this action preserves distance and symmetry, then there is
a horizontal reflection symmetry. In each group construction we will denote a
horizontal reflection with h.

2.5 Glide Reflection

For glide reflections we have a combination of a translation and a horizontal
reflection. The motion takes a figure and shifts it half of a translation and
then flips the figure across a horizontal axis. In our group constructions we will
denote a glide reflection with g. As a side note, if we have a reflection on the
same axis as a glide reflection, we will refer to the glide reflection as a trivial one
as it is simply a composition of the reflection with a translation. For simplicity
sake, we will only acknowledge nontrivial glide reflections in all constructions
going forward.

2.6 Motions in Action

To see how to perform the motions of a given group element we will look at
a quick, slightly complex example, Suppose we look at a frieze pattern which
has both horizontal and vertical reflection, we will see this is our seventh frieze
pattern later on. An element of this group will simply be any composition of
t, v, or h, suppose we look at x = tvt−1hv, it is important to note since these
group elements are compositions of isometries then we will work from right to
left when looking at the actual movement of our figure. We will now show this
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complex composition can be simplified into a cleaner expression to make it easier
to comprehend at first glance.

RR

RR

RR

RR

RR

RR

RR

RR

v

RR

RR

RR

RR

RR

RR

RR

RR

h

RR

RR

RR

RR

RR

RR

RR

RR

t−1

RR

RR

RR

RR

RR

RR

RR

RR

v

RR

RR

RR

RR

RR

RR

RR

RR

t

RR

RR

RR

RR

RR

RR

RR

RR

Thus we see our x value simplifies to x = tvt−1hv = t2h

3 Normality of Translations

In order to easily apply the semidirect product to see isomorphism classes for
each of the frieze patterns, we will shows translations are a normal subgroup of
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every pattern. Suppose we look at the following:

mtnm−1

where m is any of the five motions and tn is any translation. If we were to
extend our term out, we see this is the same as (mtm−1)n, so what we really
need to show is that mtm−1 is always a translation. It is also important to note
that our argument will be the same for each of the abelian (glide reflections
and horizontal reflections) and non-abelian (vertical reflections and rotations)
motions. We will present our theorem here and present a justification as we see
each motion composed with only translations to see the normality of translations
with each motion.

Theorem 3.1. For all motions (m) and a translation (t):

mtm−1 ∈ T.

Proof. Case 1: In our first case our m will be a translation, thus we will
be looking at tntt−n1 , which is simply the product of three translations. Since
translations are a group this will be another translation.

Case 2: Our next possibility is when m is a rotation, which in the case of
our frieze groups we see that r = r−1 as r = π. Now we will show by applying
the composition rtr to a group with a rotational symmetry that this will be a
translation.

RR

RR

RR

RR

RR

RR

r

RR

RR

RR

RR

RR

RR

t

RR

RR

RR

RR

RR

RR

r

RR

RR

RR

RR

RR

RR
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As illustrated by the diagram above, the element rtr will result in an inverse
translation (t−1) i.e. an element of T .

Case 3: The third possibility for our m is a vertical reflection , v. Vertical
reflections are another motion we see in our generation is non-abelian, and it
follows in the same way as above that vtv will be t−1, implying vtv is an element
of T .

Case 4: In our fourth possibility we will look the case where m is a horizontal
reflection. We notice h2 = 1 which implies h = h−1. Horizontal reflections and
translations commute, so we observe that

hth−1 = hth = h2t = t.

Thus hth is an element of T . The following diagram will demonstrate this claim
further.

R

R

R

R

R

R

R

R

h

R

R

R

R

R

R

R

R

t

R

R

R

R

R

R

R

R

h

R

R

R

R

R

R

R

R

Case 5: For our final case we will look at when m is a glide reflection. In
this case it follows directly from the same argument as our horizontal reflection
as it is also commutes with translations, so what we have is:

gtg−1 = gg−1t = t.

This is our final motion, so we have now verified that indeed for any motion m

we have mtm−1 ∈ T . �
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4 Classification and Construction of Frieze Groups

For the examples of each pattern that follows we will be using figures composed
of R’s, as the letter has no inner symmetry. The lack of symmetry allows us to
simply orient multiple R’s to create whatever symmetry we desire. For example,
we can create a vertical reflection symmetry by orienting two R’s back to back as

RR [3]. We will also be applying our semidirect product to classify each pattern
into an isomorphism class. We noted before that our translations will be a
normal subgroup of each frieze pattern. This fact will allow us to conclude the
group of translations will always be the H group we mentioned in our discussion
of the semidirect product. Since our group of translations is isomorphic to Z by
definition, then we also know our H is a cyclic group. When we mod out our
translations we will be left with a remaining subgroup of Z2 as our K in nearly
every group, and the distinguishing factor in each group isomorphism class is
the φ function we use between our K and Aut(H).

4.1 Pattern 1

Our first frieze group pattern is one with no symmetry aside from translations.
As stated before, every group pattern will contain transformations, and this
motion alone is shown below with its generation.

R R R R

t−1 e t t2

〈t〉

This frieze group is isomorphic to Z as it consists of solely translations which
by definition are isomorphic to Z.

4.2 Pattern 2

The second frieze pattern will be constructed with translations and glide re-
flections. Even though glide reflections emulate translations, as g2 = t we still
recognize the groups as being generated from the two motions together. Below
is an example of the pattern as well as the generation of the pattern.

R R R R

R R R

g−2 e g2 g4

g−1 g g3

〈t, g|g2 = t; tg = gt〉

By our definition of a glide reflection, it is fairly straight forward to see there
is a bijection between the glide reflections and translations, namely φ(gn) = tn,
thus pattern 2 is isomorphic to Z.
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4.3 Pattern 3

Our next frieze pattern consists of translations with only vertical reflections as
the other possible motion. An example of our group pattern as well as the
generator are below:

RR RR RR RR

t−1v t−1 v e tv t t2v t2

〈t, v|v2 = 1; tv = vt−1〉

We see above in our generation that this pattern is not abelian, thus it cannot
be isomorphic to Z. Now we will start by looking at what we get when we mod
out our translations as our H group, this gives us H = T ∼= Z and K = {1, v}.
Since H is normal we know there exists a homomorphism φ from K to Aut(H)

and since our G group is non-abelian we know the φ function will not be the
trivial one sending both elements of K to the identity automorphism. We will
now define φ as our inversion mapping we described in section 2, which implies
for all h in H the following holds:

vhv−1 = h−1.

As we noted in our example of the semidirect product, we have H = Z and
K = Z2, with our φ mapping to inversion, so we see H oφ K = D∞. From here
we can now conclude this pattern is isomorphic to D∞.

4.4 Pattern 4

Our fourth pattern is generated with rotations and translations with an example
below:

R R R R

R R R R

t−2 t−1 e t

t−1r r tr t2r

〈t, r|r2 = 1; rt = t−1r〉

Similarly to our previous pattern we will once again mod out the translations
as our H group giving us H = T ∼= Z and K = {1, r}. Since this group is also
non-commutative we will once again have our φ map to inversion. It follows
from these conditions that this pattern is also isomorphic to D∞.

4.5 Pattern 5

Our next pattern is the first one generated with multiple motions aside from
translations. We will generate this group with vertical reflections, rotations, and
translations, and we will also notice that vertical reflections are automatically
formed from this group. The generations and example is below:
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RR RR

RR

g−1r e gr g2

r g

〈t, g, r|g2 = t; r2 = 1; tg = gt; rt = t−1r〉

Since we saw in pattern 2 the group of glide reflections is isomorphic to T

then will mod out the glide reflections as our H group leaving us with K = {1, r}.
From here we will make the same conclusion as a φ function as we did in pattern
4, and it follows that our semidirect product will result in a G group of D∞. This
implies we will once again have a pattern which is isomorphic to D∞.

4.6 Pattern 6

The sixth pattern consists of horizontal reflections and translations. The fol-
lowing is an example with the generation as well:

R R R R

t−1 e t t2

R R R R

t−1h h th t2h

〈t, h|h2 = 1;ht = th〉

As we have seen before we will once again have H = T and K = {1, h}, but
this time we notice that our group in abelian, so we will actually have each
element of K map to the identity automorphism. This is a trivial semidirect
product as the mapping results in the same G group as we would have if we
took the direct product. Thus since we have one element in our group that is
of order 2 we have the following isomorphism class:

H oφ K = Z⊕ Z2.

4.7 Pattern 7

Our final frieze pattern consists of horizontal and vertical reflections with trans-
lations. Similar to pattern 5 this pattern also automatically fulfills another
motion namely rotations. An example of the pattern and its generation follow
below:

RR RR RR

t−1v v tvt−1 e t

RR RR RR

t−1vh vh tvht−1h h th
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〈t, h, v|v2 = 1;h2 = 1; tv = vt−1;ht = th;hv = vh〉

This group is slightly different from each of the groups before as we will now
mod out our direct product of Z⊕Z2 we get from our translations and horizontal
reflections as our H group. This means we have a slightly new automorphism
in our H group. Since the inverse of any element in Z2 is itself we know there
is only one automorphism in Z2 and we still have our normal automorphisms in
Z, so our automorphisms on H are as follows:{

(x, y)→ (x, y)

(x, y)→ (x−1, y).

We will also notice again our vertical reflections (K = Z2) are non-commutative
so our φ function will unsurprisingly map to inversion. We can now construct
our semidirect product which gives us:

G = H oφ K = Z⊕ Z2 oφ Z2 = D∞ ⊕ Z2.

This shows the isomorphism class for our last pattern is D∞ ⊕ Z2.

5 Why Only 7 Frieze Patterns

By definition of a frieze pattern we know translations are involved in each group.
We also know every motion g, v, r, and h composed with translations is repre-
sented by patterns 2, 3, 4, and 6 respectively. First we will note our remaining
two groups are pattern 5 and 7 which are constructed by 〈t, g, r〉 and 〈t, h, v〉
respectively. From here we know there are only four remaining possibilities for
compositions since we noted before that h and g will not be in the same con-
struction as this results in a trivial glide reflection. The possible constructions
are the following: 〈t, g, v〉, 〈t, v, r〉, 〈t, h, r〉, and 〈t, h, v, r〉. We will show these
constructions are isomorphic to the seven groups we have already shown con-
structions for. In order to prove the isomorphisms we will show the unaccounted
for motions can be constructed through compositions of motions in the 7 groups
we already have. Suppose we look at the following element of 〈t, g, v〉: x = gv
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RR

RR

RR

v

RR

RR

RR

RR

g

RR

RR

RR

RR

What we see from the example above is that since r = gv, then our group
〈t, g, v〉 is isomorphic to 〈t, g, r〉 which is our fifth frieze pattern. In the same
way as before we can see g = rv which implies another isomorphism of 〈t, v, r〉 ∼=
〈t, g, r〉. We will use the same argument of showing each motion can be written as
a composition of different motions to show isomorphic generators. The element
we will notice from 〈t, h, r〉 is x = t−1hr, this is seen to simply be a vertical
reflection, this implies 〈t, h, r〉 ∼= 〈t, h, v〉. If we switch around some of the motions
from the element we looked at we see r = htv which implies that in the group
〈t, h, v, r〉 the r element is trivial thus it need not be in our group construction.
This shows our final possibility of a group represented by 〈t, h, v, r〉 is isomorphic
to 〈t, h, v〉.

This allows us to conclude that our seven frieze patterns we mentioned above
represent every possible generation of a frieze group. The groups which are not
directly written in our pattern generations are isomorphic to a given pattern
through composition of the missing motion using the ones in our generator. It
is truly a fascinating result that the number of possible generations of these
patterns is a number as unintuitive as 7. This just shows how interesting the
world of mathematics is. We might expect to see a pattern as we continue
increasing our dimension, but as we will see in the next section, two dimensional
plane symmetries have 17 patterns, while three dimensions increases to a massive
230 patterns. Based on the knowledge of available patterns for groups up to
three dimensions, there is clearly no pattern to the sequence of {7, 17, 230}, and
it is hard to imagine more dimensions would result in a pattern being revealed.

6 Introduction to Wallpaper Groups

As an extension of frieze patterns we can add another dimension to come up
with another group formally called ”crystallographic” groups, but are frequently
referred to as ”wallpaper” groups. We will again recall the definition of a wall-
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paper group is a plane symmetry group whose translations are isomorphic to
Z ⊕ Z. The motions on wallpaper groups are slightly different than the frieze
group motions. Instead of simply having vertical and horizontal reflection axes,
there are multiple different possibilities depending on the orientation of the fig-
ure. In addition to having translations in multiple directions as well as many
possible reflection axes our glide reflections are not only restricted to a horizon-
tal reflection axis, they can go along any axis as long as it is not a reflection
axis as these are still trivial glide reflections. Finally, as we stated before, the
rotational symmetries on wallpaper groups are not limited to only a rotation
of 180◦, rather there is much more flexibility providing many different group
structure and ultimately influencing the possibilities of different reflection axes
as well.

6.1 Only 5 Rotations

When visualizing a rotational symmetry in our plane, we know we have figure
being translated in two distinct directions, so where the symmetry must first
occur is in our figure being translated. From here we can think of general
geometric shapes to draw around our figure to test the rotational symmetry. The
shapes would have to be regular polygons as they have the group of rotations
as a subgroup to their symmetries. Now we can begin to look at the different
possible rotational symmetries on wallpaper groups as they are usually identified
by their rotational symmetry. It is also important to note they are identified by
the lowest degree of rotational symmetry for a given group.

There are only 5 possible rotational symmetries: 60◦, 90◦, 120◦, 180◦, or no
rotational symmetry. To determine why these are the only rotations we will first
find the regular polygons with internal angles which divide 360, as they will be
the possible rotationally symmetrical angles. There are only two capabilities of
rotations not represented by these polygons and they are fairly intuitive ones.
The first is one in which there is no rotational symmetry, as we cannot have a
regular polygon with internal angles of 0 or 360. The other way we can have
rotational symmetry not representable with the internal angles is one of 180
as this would result in no angle the edge would just be continuing in a linear
direction. Thus we will start looking at the internal angles of regular polygons
which we know can be represented with the following formula:

θ =
n− 2

n
(180).

Since we know the angle will have to divide 360 and our n has to be a minimum
of 3, then we can very quickly find out what possible angles there are. First
we will note n = 3 is our first possible n and it results in an angle of 60, which
divides 360, thus a rotational symmetry of 60 is possible. Now we will notice the
only other angles that divide 360 that are greater than 60 are: 72, 90, and 120.
Now we will look at a table of the first 5 n values and their resulting interior
angles:
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n angle

3 60

4 90

5 108

6 120

7 128 4

7

Using these values, we know the angle with keep growing and approach 180,
thus we see the only n values which result in a number that divides 360 are
3,4, and 6. Thus we can conclude only 5 rotational symmetries exist: 60◦, 90◦,
120◦, 180◦, or no rotational symmetry. Now that we have set the classifica-
tions of rotational symmetries, we will proceed to look at the reflections and
glide reflections within each of these classes as they are the only other possible
motions.

7 Description of 17 Wallpaper Groups

We will now use our knowledge about the possible rotations in wallpaper groups
and look at the other motions we can apply to each of these classes. The notation
of each group is also important to be aware of, as the names tell us about the
structure of a group. In each pattern name, the first number (if there is one)
refers to the degree of the rotational symmetry. In some cases the degree is not
mentioned, as either there is no rotational symmetry or the other symmetries
naturally fulfill a rotational symmetry of 180◦, so the description is trivial. The p
used to start almost every pattern is fairly unimportant, it is simply a standard
letter to start group names with. There are two groups which start with a c

instead of a p, and this is important as they contain a non-trivial glide reflection
in their construction. The final two letters we see are m and g. With g they
very nicely abbreviate what they represent which is a glide reflection axis, and
if multiple g’s are used there are multiple different axes. For m it does not
naturally follow what motion it would be, but the represent a plain reflection
axis. Similarly to g if there are multiple m’s, then there are multiple different
reflection axes. We will note an important fact that the number of m’s and
g’s do not always directly correspond to the number of respective axes when
dealing with the groups of rotational order greater than 2. We will now do a
brief investigation into each class of rotational symmetry and break down each
of the groups within their respective class.

7.1 No Rotational Symmetry

When we start to think about reflection axes we can see from simple geometry
that two different directions of reflection axes results in having some sort of
rotational symmetry as well. Since the groups we are considering here have no
rotational symmetry we will first start by asking if there is a reflection axis. If
there is no reflection axis then we will see if there is a glide reflection, if there
is them we call our group pg if not it is simply called p1. If there is reflection
axis then we will also ask about whether this is a non-trivial glide reflection, if
so we have the group cm, if not we have pm which is our final group with no
rotations.
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7.2 180◦ Rotational Symmetry

With 180◦ rotational symmetry we can have reflections in multiple directions but
since there is a rotational symmetry of 180◦ we can conclude from a geometric
sense that they must be perpendicular. Similarly we will start by asking whether
or not there are any reflection axes. If not, we go to glide reflections and the
group with glide reflections is called pgg as there will be two glide reflection
axes, and if not then we are left with our simplest group in this class called p2.
Moving back to the groups with reflection axes we will now ask whether there
are reflections in two directions, if not then we have a group with a reflection
axis and a perpendicular glide reflection axis which we call pmg. If we do have
reflection axes in two directions then the next question we ask is whether the
rotation centers are on axes of reflection, if so we are left the group pmm if not
we have the last group with rotational symmetry of 180◦ which is cmm.

7.3 120◦ Rotational Symmetry

As we have done in each of the previous classifications we start by asking if there
are reflection axes, and with this rotational symmetry it is simpler to imagine
symmetries within a regular triangle. With a regular triangle there only three
possible reflection axes, and if we imagine the center of this triangle also having
symmetry then we realize each of the reflection axes will hold symmetry if one
does. So with this knowledge when we think about having reflections, if we
do not then there cannot be glide reflections which means we are left with the
group of p3 which only has rotational symmetry. If there are reflection axes,
then we figure out whether each of the rotational vertices are on a reflection
axis or not. When the vertices are all on reflection axes then we have our group
p3m1, and if not then we have the final group in this classification of p31m.

7.4 90◦ Rotational Symmetry

Once again we will ask whether or not the pattern we are considering has reflec-
tion axes and similarly to the previous group of classifications, if there are not
reflections, then we are left with our basic group of p4 which only has rotational
symmetry. Of the groups with reflection axes, there are only two, one with
which has reflection axes in 4 directions and the other only contains reflections
in 2 directions. The group with 4 reflection axes is called p4m and the other is
referred to as p4g as our reflection axes are usually two glide reflection axes and
even if they are not we can think of them as two trivial glide reflection axes.

7.5 60◦ Rotational Symmetry

The high order of rotation for this group limits the ability for other symmetries,
in particular we only have two groups here, the typical group which only has
rotations (p6) and a group with reflections (p6m). This is the extent of the
wallpaper description we will do as the classification into isomorphism classes is
much more complex than in our frieze groups. This is in large part to the high
orders of rotations we have with increasing the dimensions. The big problem
which separates the wallpaper groups from frieze is that when we mod out
translations we are left which a much more complex group than just Z2 in most
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cases. This problem prevents us from simply applying the semidirect product
between our two subgroups.
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(a) cm (b) pm (c) pg

(d) p1 (e) pmm (f) cmm

(g) pmg (h) pgg (i) p2
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(a) p3m1 (b) p31m (c) p3

(d) p4m (e) p4g (f) p4

(g) p6m (h) p6
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8 Conclusion

After looking at both frieze and wallpaper patterns, there are clearly some
unique applications to the images available to form. Once we are privy of the
various figures, it is hard to not notice them wherever you go. There is much
more work to be done in the classification side of wallpaper groups, in particular
finding the isomorphism classes of each pattern. Since we will not be left with
simply a Z2 group when we mod out translations, then we are not able to apply
a φ function for a semidirect product as we did with frieze groups as there are
still only two automorphisms on our translations. In order to further classify
the wallpaper groups we will need a better knowledge of constructions of large
(infinite) non-abelian groups. The semidirect product only gives us one type of
construction for non-abelian groups, but it is not perfect as it is not applicable
to all groups. Even though we do not have specific groups to refer to the
patterns as, there are still concrete descriptions that give us a very particular
and unique set of 17 possible patterns. This is one of the beauties of math
though, examination of new fascinating ideas drives us to look further and find
a way to a solution.
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