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Abstract

The primary objective of this paper is to discuss advanced tests of convergence for
infinite series. Commonly used tests for convergence that are taught to students in
early calculus classes, including the Comparison, Root, and Ratio Tests are not suffi-
cient in giving results for more complicated infinite series. These frequently used tests
are discussed in the paper, along with examples of infinite series that have interesting
properties, in order to effectively examine the more advanced Kummer’s and Raabe’s
Tests. We demonstrate some applications of these more generalized tests through ex-
amples where simpler tests fail to yield results. While the main focus of this project is
on advanced tests for convergence, we also illustrate connections between the different
tests.

Introduction

The study of infinite series began when Archimedes used the first summation of
an infinite series to find the area underneath an arc of a parabola. Long after Archimedes
wrote the first summation, some of the most famous mathematicians of all time have worked
on infinite series, including Gauss, Einstein, Euler, the Bernoulli brothers, and many more.
Throughout the centuries, the study of infinite series has led to the proofs of some absolutely
astounding results. For example, in 1734, Leonhard Euler proved that the infinite sum of
the inverse of squares is equal to π2

6 . This result was amazing not just because it is an
example of how adding up infinitely many numbers can give a single, numerical result but
also because the result involves a seemingly unrelated constant, π. This key observation is
one of many that demonstrate the complexity and beauty that lies in the world of infinite
series.

We begin by proving the commonly used Root and Ratio Tests. It is critical to
understand the origins and implications of these tests, especially the Ratio Test, as it is
the basis for one of our more complex tests. We also briefly mention the “strength” of a
convergence test, and prove the relationship between the Root and Ratio Tests as well as
demonstrate this idea of “strength”.

An important piece of understanding infinite series is recognizing the connection
between sequences and series. We address this connection through some examples of infinite
series that have interesting properties. These examples include proofs that show convergence
or divergence in a variety of ways, including using the Cauchy Criterion for sequences and
“telescoping sums”. In addition, we use our previous knowledge on p-series and geometric
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series to make comparisons in order to solve problems. As a resource for understanding
these properties of sequences and specific types of series, any background knowledge that we
need and all definitions excluding the advanced tests definitions can be found in most Real
Analysis textbooks such as Real Analysis: A First Course by Russell A. Gordon. Plus, any
additional information on the commonly used tests for convergence can be found in most
calculus books.

After we have reviewed some common aspects of infinite series, we move on to
our more advanced tests of convergence, named after Ernst Eduard Kummer (1810-1893)
and Joseph Ludwig Raabe (1801-1859). Kummer was a German mathematician and Raabe
was a Swiss mathematician, both of whom did work on infinite series at about the same
time in the mid-1800s. Raabe’s Test actually preceded Kummer’s Test; the latter is just
a generalized version of the former. We prove both of these tests as well apply them to
some examples and make a connection to one of our better-known tests. We then finish
our examination of these advanced tests with examples that employ both an advanced test
and other strategies previously mentioned in the first section of the paper in order to tie
together all of the main themes of the project.

1 Review and Preliminaries

As previously mentioned, we start with the two convergence tests that are the
most common and easy to understand. While these tests and possibly even their proofs
may be familiar, it is important to truly understand these tests and where they come from
because they are the basis for some of the more advanced tests.

Theorem 1 (Ratio Test). Let
∞∑
n=1

an be an infinite series of nonzero terms and let

L = lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣,
where it is assumed that the limit exists. Then

(i) if 0 ≤ L < 1, then the series
∞∑
n=1

an converges;

(ii) if 1 < L ≤ ∞, then the series
∞∑
n=1

an diverges;

(iii) if L = 1, then the test is inconclusive and the series may either converge or diverge.

Proof. We begin by considering the case where L < 1. Let r be a number such that

L < r < 1. Because L = lim
n→∞

∣∣∣an+1

an

∣∣∣ and L < r, it follows that there exists an integer N

such that ∣∣∣∣∣an+1

an

∣∣∣∣∣ < r ⇔ |an+1| < |an|r
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for all n ≥ N . Now, if we let n be equal to N , N + 1, N + 2, and so on, we find that

|aN+1| < |aN |r
|aN+2| < |aN+1|r < |aN |r2

|aN+3| < |aN+2|r < |aN+1|r2 < |aN |r3

...

and, in general,
|aN+k| < |aN |rk

for all positive integers k. The series
∞∑
k=1

|aN |rk is a geometric series with common ratio r

and because |r| < 1, the series
∞∑
k=1

|aN |rk must converge. Thus, by the Comparison Test,

the series
∞∑

k=N+1

|an| must also converge, it follows that
∞∑
n=1
|an| converges.

Now, consider the case where L > 1. Because L = lim
n→∞

∣∣∣an+1

an

∣∣∣ and L > 1, there exists

some positive integer K such that ∣∣∣∣∣an+1

an

∣∣∣∣∣ > 1

for all n ≥ K. This implies that

|an+1| > |an| > |aK | > 0

for all n ≥ K. This tells us that lim
n→∞

an 6= 0, and we conclude that the series diverges. �

Theorem 2 (Root Test). Let
∞∑
n=1

an be an infinite series of real numbers and let

ρ = lim
n→∞

n
√
|an|

when the limit exists. Then

(i) if 0 ≤ ρ < 1, then the series
∞∑
n=1

an converges;

(ii) if 1 < ρ ≤ ∞, then the series
∞∑
n=1

an diverges;

(iii) if ρ = 1, then the test is inconclusive and
∞∑
n=1

an may either converge or diverge.

Proof. We first consider the case when ρ < 1. Let r be a number such that ρ < r < 1.
Then there exists some positive integer N1 such that n

√
|an| < r for all n ≥ N1. Raising

both sides of the equation to the nth power gives us |an| < rn for all n ≥ N1. Thus, because
∞∑
n=1

rn is a convergent geometric series, it follows that
∞∑
n=1
|an| converges by the Comparison

Test.
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Now suppose that ρ > 1 and let r be a number such that 1 < r < ρ. Using similar
reasoning, we can see that there exists some positive integer N2 such that for all n ≥ N2, we
have n

√
|an| > r. Raising both sides to the nth power gives us |an| > rn > 1 for all n ≥ N2.

Because
∞∑
n=1

rn is a divergent geometric series, we find that the series
∞∑
n=1
|an| diverges by

the Comparison Test. �

As a preliminary, we consider the “strength” of convergence tests as part of our
discussion of the different types of tests. When referring to the “strength” of a test, we
are referring to its ability to yield a result. For one convergence test to be “stronger” than
another, the stronger test giving a result implies that the weaker test also yields a result.
It must also be true that there exists a case where the stronger convergence test works but
the weaker test does not.

Theorem 3. The Root Test is “stronger” than the Ratio Test.

Proof. Without loss of generality, let an > 0 for all positive integers n. Essentially, what

we want to prove is that if lim
n→∞

(
an+1

an

)
exists, then lim

n→∞
n
√
an also exists and is equal. This

implies that if we are able to use the Ratio Test for a series, then the Root Test works as
well.

Let L = lim
n→∞

(
an+1

an

)
where 0 < L < ∞ and let ε > 0. Then there exists some

integer N such that

L− ε < an+1

an
< L+ ε

for all n ≥ N . It follows that

(L− ε)an < an+1 < (L+ ε)an

(L− ε)2an < (L− ε)an+1 < an+2 < (L+ ε)an+1 < (L− ε)2an
...

(L− ε)ian < an+i < (L+ ε)ian.

Then for n ≥ N we have

(L− ε)n · aN
(L− ε)N

< an < (L+ ε)n · aN
(L+ ε)N

and hence
L− ε < n

√
an < L+ ε

If the limit L exists, then because ε > 0 was arbitrary we can conclude that lim
n→∞

n
√
an = L.

Therefore, we have shown that the Root Test is at least as strong as the Ratio Test.
We claim that the Root Test is stronger than the Ratio Test and we prove this

by giving an example. To demonstrate this, we will show that there exist series such that
the Root Test indicates whether the series converges or diverges but the Ratio Test is
inconclusive.
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Example. Consider the series
∞∑
n=1

an where

an =

{
1
2n if n is even,
1

2n+1 if n is odd.

It follows that the ratio of consecutive terms will either be 1 or 1
4 , thus lim

n→∞
an+1

an
does not

exist. However, applying the Root Test gives us

lim
n→∞

n
√
an = lim

n→∞

1
n
√

2n
=

1

2
and lim

n→∞
n
√
an = lim

n→∞

1
n
√

2n+1
=

1

2
.

Therefore, the series converges by the Root Test while the Ratio Test is inconclusive and
thus we have shown that the Root Test is stronger than the Ratio Test. �

2 Sequences and Series

The purpose of the results and examples in this section are to illustrate some
interesting findings related to series and their sequences of partial sums. One important
result that will come up often is that if the sequence of partial sums of an infinite series of
positive terms is bounded, then the series converges. (Gordon, Theorem 6.4). Therefore, if
a sequence of partial sums is not Cauchy, then the corresponding series does not converge.

Our first set of results and examples considers a convergent infinite series and its
sequence of partial sums. We demonstrate the use of sequences of partial sums to prove
convergence as well as our previous knowledge on the well known geometric and p-series.

Theorem 4. Let
∞∑
k=1

ak be a convergent series of positive terms and let tn =
∞∑
k=n

ak for each

positive integer n. The series
∞∑
k=1

ak
tk

diverges but the series
∞∑
k=1

ak√
tk

converges.

Proof. We begin by noting that {tn} is a strictly decreasing sequence that converges to 0.
Therefore, given any positive integer m, there exists a positive integer n > 2m such that
tn <

tm+1

2 . Then we have

n∑
k=m+1

ak
tk
>

n∑
k=m+1

ak
tm+1

=
1

tm+1

n∑
k=m+1

(tk−tk+1) >
1

tm+1

n−1∑
k=m+1

(tk−tk+1) =
tm+1 − tn
tm+1

>
1

2
.

Hence, the sequence of partial sums for the series
∞∑
k=1

ak
tk

is not a Cauchy sequence. It follows

that
∞∑
k=1

ak
tk

diverges.

To show that the series
∞∑
k=1

ak√
tk

converges, we first note that

ak = tk − tk+1 =
(√
tk +

√
tk+1

) (√
tk −

√
tk+1

)
< 2
√
tk
(√
tk −

√
tk+1

)
5



and thus
ak√
tk
< 2

(√
tk −

√
tk+1

)
for all positive integers k. Using “telescoping sums”, we have

n∑
k=1

ak√
k
<

n∑
k=1

2
(√
tk −

√
tk+1

)
= 2

(√
t1 −

√
tn+1

)
< 2
√
t1.

Thus, the sequence of partial sums for the series
∞∑
k=1

ak√
tk

is bounded and therefore converges.

We conclude that the series
∞∑
k=1

ak√
tk

converges. �

Example. To illustrate what we have just shown, we consider both of these series for
ak = 2−k and also for ak = (k2 + k)−1.

When ak = 1
2k

, the series
∞∑
k=1

ak is a geometric series so we find that tk = 2
2k

. This

gives us

ak
tk

=
1

2k
· 2k

2
=

1

2
and

ak√
tk

=
1

2k
·
√

2k√
2

=
1√
2

(
1√
2

)k

Thus the series
∞∑
k=1

ak
tk

=
∞∑
k=1

1
2 clearly diverges while the series

∞∑
k=1

ak
tk

=
∞∑
k=1

1√
2

(
1√
2

)k
is a

geometric series with r = 1√
2
< 1, hence the series converges.

When ak = (k2 + k)−1, the equation for tk is a “telescoping sum” so we have

tk =
∞∑
i=k

1

i(i+ 1)
=
∞∑
i=k

(
1

i
− 1

i+ 1
) =

1

k
.

It follows that
ak
tk

=
1

k2 + k
· k =

1

k + 1

for all k. Since
∞∑
k=1

1
k+1 diverges, the series

∞∑
k=1

ak
tk

diverges. Then considering the series

∞∑
k=1

ak√
tk

, we have

ak√
tk

=

√
k

k2 + k
=

1√
k(k + 1)

<
1

k
3
2

for all k. We know that
∞∑
k=1

1

k
3
2

is a convergent p-series since 3
2 > 1. Hence, as expected,

the series
∞∑
k=1

ak√
tk

converges.
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Now we look at the case where the series
∞∑
n=1

ak is divergent. Note the similarity

to the results we have just shown.

Theorem 5. Let
∞∑
k=1

ak be a divergent series of positive terms and let {sn} be the sequence

of partial sums of this series. The series
∞∑
k=1

ak
sk

diverges but the series
∞∑
k=1

ak
s2k

converges.

Proof. By the definition of sn, we see that an+1 = sn+1−sn, and because the series
∞∑
k=1

ak is

divergent the sequence {sn} is increasing and unbounded. Hence, given any positive integer
m there exists an integer n > 2m such that sn > 2sm. Thus we have

n∑
k=m+1

ak
sk

=
am+1

sm+1
+ · · ·+ an

sn
>
am+1 + · · ·+ an

sn
=
sn − sm
sn

= 1− sm
sn

> 1− 1

2
=

1

2

Therefore, the sequence of partial sums is not Cauchy and hence the series
∞∑
k=1

ak
sk

diverges.

To show that the series
∞∑
k=1

ak
s2k

converges, we use similar reasoning as in previous

problems. Noting that that the sum
n∑
k=2

(
1

sk−1
− 1

sk

)
telescopes to 1

s1
− 1

sn
we have

n∑
k=1

ak
s2k

<

n∑
k=1

ak
sksk−1

=

n∑
k=1

sk − sk−1
sksk−1

=

n∑
k=1

1

sk−1
− 1

sk
=

1

s1
− 1

sn

for all k > 1. Hence, the sequence of partial sums is bounded so the series
∞∑
k=1

ak
s2k

converges.

�

Example. Again to display the implications of this result, we consider both series for
convergence when ak = 1 and ak =

√
k + 1−

√
k.

When ak = 1, the equation for sk is simply sk = k. We then have

∞∑
k=1

ak
sk

=

∞∑
k=1

1

k
and

∞∑
k=1

ak
s2k

=

∞∑
k=1

1

k2
,

where
∞∑
k=1

1
k is a divergent series and

∞∑
k=1

1
k2

is a convergent series.

Because
n∑
k=1

(√
k + 1−

√
k
)

is a “telescoping sum”, the equation for sk is

sk =

k∑
i=1

(√
i+ 1−

√
i
)

=
√
k + 1− 1.
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It follows that

ak
sk

=

√
k + 1−

√
k√

k + 1− 1

>

√
k + 1−

√
k√

k + 1

=
1

(k + 1) +
√
k
√
k + 1

>
1

(k + 1) +
√
k + 1

√
k + 1

=
1

2(k + 1)

for all k ≥ 1. Therefore, since
∞∑
k=1

1
2k+2 diverges, the series

∞∑
k=1

√
k+1−

√
k√

k+1−1 diverges by the

Comparison Test.

Next, we note that

ak
s2k

=

√
k + 1−

√
k

(
√
k + 1− 1)2

<

√
k + 1−

√
k(

k
2

) ·
√
k + 1 +

√
k

√
k + 1 +

√
k

=
1(

k
2

)(√
k + 1 +

√
k
) < 1(

k
2

)(
2
√
k
) =

1

k
3
2

.

We know that the infinite series
∞∑
k=1

1

k
3
2

converges because it is a p-series where p = 3
2 . Thus,

by the Comparison Test, the series
∞∑
k=1

√
k+1−

√
k

(
√
k+1−1)2 must also converge.

The last result in this section also demonstrates the relationship between sequences
and series but instead of starting with a series and using its sequence of partial sums in our
proof, we begin with a sequence and make the connection to the corresponding series of the
terms of the sequence.

Theorem 6. Suppose the sequence {
√
k · ak} converges to a positive number. Then the

series
∞∑
k=1

ak
k converges while the series

∞∑
k=1

ak diverges.

Proof. Because {
√
k · ak} is a convergent sequence, this implies that it is also bounded.

Thus, there exists some number M such that |
√
k · ak| ≤ M for all k ≥ 1. Dividing both

sides of the inequality by k
3
2 yields the result∣∣∣∣akk

∣∣∣∣ ≤ M

k
3
2

for all k ≥ 1. Since
∞∑
k=1

M

k
3
2

is a convergent p-series, it follows that
∞∑
k=1

ak
k converges by the

Comparison Test.
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Since the sequence {
√
k · ak} converges to a positive number, we know that it is

eventually bounded below by some positive number α. This means that there exists some
integer K such that

0 < α ≤
√
k · ak

for all k ≥ K. Dividing both sides by
√
k yields the result

α√
k
≤ ak

for all k ≥ K. Then, we know that
∞∑
k=1

α√
k

diverges and thus the series
∞∑
k=K

ak diverges by

the Comparison Test. Hence, the series
∞∑
k=1

ak also diverges. �

3 More Advanced Tests

Now that we have covered some interesting properties of certain series, we examine
some more advanced tests for convergence. While we can see that the techniques we have
used thus far are useful and can yield intriguing results, the tests and strategies we have
just displayed do not always determine convergence and divergence for a series. In fact, it
happens often that the tests we mentioned give us no information. To illustrate this, we
consider a generic p-series and apply the Ratio and Root Tests:

Let an = 1
np and note that

lim
n→∞

(
an+1

an

)
= lim

n→∞

(
n

n+ 1

)p
= 1

and

lim
n→∞

n
√
an lim

n→∞
n

√
1

np
= lim

n→∞
(n−p)

1
n = lim

n→∞

(
n
√
n
)−p

= 1.

We know that a p-series diverges when p ≤ 1 and converges when p > 1. Therefore, we
cannot determine whether the series converges or diverges, because both the Ratio and Root
Test gives us 1 no matter what p is. In general, these tests fail when they give a result of 1
because these tests compare the series to a geometric series with r equal to the result of the
test. When r = 1, the terms of a geometric series are constant. Even though the geometric
series would diverge in this, case as a comparison we get no information on whether the
terms of the series are going off to infinity or converging.

As we can see, the Root and Ratio Test are often not helpful in deciphering the
convergence of an infinite series. In the case of the p-series we can often use the Comparison
Test, but when we want to examine more complicated series using the Comparison Test can
get tricky. This is why we need more advanced tests like the ones that follow.

Theorem 7 (Kummer’s Test). Let
∞∑
n=1

an be a series of positive terms and let {Bn} be a

be a sequence of positive constants. Let

L = lim
n→∞

[
Bn

an
an+1

−Bn+1

]
,
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where it is assumed that the limit exists.

(i) If L > 0, then the series
∞∑
n=1

an converges.

(ii) If L < 0 and
∞∑
n=1

1
Bn

diverges, then the series
∞∑
n=1

an diverges.

Proof. We begin by considering the case where L > 0. Choose a number r such that
0 < r < L. Then there must exist some integer N > 0 such that

Bn
an
an+1

−Bn+1 > r ⇔ Bn an −Bn+1 an+1 > r an+1

for all n ≥ N . Given any positive integer m, we have

BN aN −BN+1 aN+1 > r aN+1

BN+1 aN+1 −BN+2 aN+2 > r aN+2

BN+2 aN+2 −BN+3 aN+3 > r aN+3

...

BN+m−1 aN+m−1 −BN+m aN+m > r aN+m

And then by adding these inequalities together, we get cancellations of all of the terms on
the left side of the inequality except for the first and last. Thus we have

BN aN −BN+m aN+m > r (aN+1 + · · ·+ aN+m) = r (SN+m − SN ),

where Sn is the partial sum for
N+m∑
k=N+1

ak. It follows that

rSN+m < r SN +BN aN −BN+m aN+m < r SN +BN aN .

Let C be the constant (r SN+BN aN )
r . The above inequality tells us that Sn < C for all n ≥ N .

Thus, the sequence of partial sums {Sn} of the series
∞∑
n=1

an is bounded and therefore the

series converges.

Now consider the case where L < 0. This means that there exists an integer N > 0
such that Bn

an
an+1

−Bn+1 ≤ 0 for all n ≥ N . Rearranging this inequality gives us

Bn an ≤ Bn+1 an+1

for all n ≥ N which then implies that

BN aN ≤ Bn an
for all n ≥ N . Letting BN aN be a constant C, we have

an ≥
C

Bn

for n ≥ N and, because
∞∑
n=1

1
Bn

diverges, the series
∞∑
n=1

an diverges by the Comparison Test.

�
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Remark. Using Kummer’s Test, if we let the sequence {Bn} = {1}, then we get

L = lim
n→∞

[
an
an+1

− 1

]
.

If lim
n→∞

(
an
an+1

)
> 1, then it follows that L is positive and thus the series converges by

Kummer’s Test. This also tells us that the ratio lim
n→∞

(an+1

an

)
< 1, and thus the series

converges by the Ratio Test. Similarly, if lim
n→∞

(
an
an+1

)
< 1 then L is negative and the series

diverges by Kummer’s Test. From this we can see that the ratio lim
n→∞

(an+1

an

)
> 1 so we

conclude that the series also diverges by the Ratio Test. Therefore, we can conclude that
the Ratio Test is simply Kummer’s Test associated with the sequence {Bn} = {1}

Kummer’s Test is inconclusive when L = 0, but when this happens it is possible to
refine the sequence {Bn} to give a result, which is why the case when L = 0 is not included
in the definition of the test. But because there is no specific strategy for choosing {Bn},
this can become a tedious and time-consuming task in order to find a sequence that yields
a result when used in Kummer’s Test. This is where Raabe’s Test comes in. Raabe’s Test
is simply a specific case of Kummer’s Test where we let Bn = n, therefore we do not have
to go through the process of trying to find a suitable Bn.

Theorem 8 (Raabe’s Test). Let
∞∑
n=1

an be a series with positive terms and assume that

ρ = lim
n→∞

n

(
an
an+1

− 1

)
exists. Then

(i) if ρ > 1, then the series
∞∑
n=1

an converges.

(ii) if ρ < 1, then the series
∞∑
n=1

an diverges.

(iii) if ρ = 1, then
∞∑
n=1

an may either converges or diverge and the test is inconclusive.

Proof. Items (i) and (ii) are consequences of Kummer’s Test. To demonstrate this, let
Bn = n and compute

L = lim
n→∞

(
n

an
an+1

− (n+ 1)

)

= lim
n→∞

(
n

(
an
an+1

− 1

)
− 1

)
= ρ− 1

If ρ > 1, then L > 0 and the series
∞∑
n=1

an converges by Kummer’s Test. Similarly, if ρ < 1,

then L < 0 and note that
∞∑
n=1

1
n diverges, thus the series

∞∑
n=1

an diverges by Kummer’s Test.

If the result of Raabe’s Test is ρ = 1, then the test is inconclusive. �
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Remark. Applying Raabe’s Test to the series
∞∑
n=1

1
np gives us

ρ = lim
n→∞

n

(
(n+ 1)p

np
− 1

)
= lim

n→∞

(
n
(n+ 1

n

)p
− n

)

= lim
n→∞

(
1 + 1

n

)p
− 1

1
n

= p

Thus, if ρ > 1, then the series converges by Raabe’s Test. This implies that p > 1 which
indicates that the series is a convergent p-series. On the other hand, if ρ < 1 then we know
the series diverges by Raabe’s Test, and this implies that p < 1 and therefore the series is
a divergent p-series. This demonstrates that Raabe’s Test tests a series for convergence by
comparing the series to the p-series where p = ρ.

Corollary 1 (Of Raabe’s Test). In general, when ρ > 0, the sequence {an} converges to 0.

Proof. When ρ > 0, there must exist some integer M such that

n

(
an
an+1

− 1

)
> 0

for all n ≥M . It follows that an > an+1 for all n ≥M . This tells us that {an} is eventually
decreasing, therefore {an} converges to some number L.
To show that L = 0, we use proof by contradiction and assume that L > 0. Similar to our
above reasoning, because ρ > 0 there exists some integer N and a number ε > 0 such that

n

(
an
an+1

− 1

)
> ε

for all n ≥ N . From this, we see that

an
an+1

− 1 >
ε

n
=⇒ an − an+1 >

ε

n
an+1 >

εL

n

Now, “telescoping” this difference gives us

an − am = (an − an+1) + (an+1 − an+2) + · · ·+ (am−1 − am)

> εL

(
1

n
+

1

n+ 1
+ · · ·+ 1

m− 1

)
whenever m > n ≥ N . Since the sequence of partial sums for the harmonic series diverges
and we know that {an} converges, we have reached a contradiction. Therefore, the sequence
{an} converges to 0. �

12



As previously mentioned, Raabe’s Test chronilogically preceded Kummer’s Test,
so instead of considering Raabe’s Test to be a refinement of Kummer’s Test, we could also
consider Kummer’s Test to be a generalized version of Raabe’s Test. The examples that
follow require Raabe’s Test to solve as the Root Test would be difficult to calculate because
there are no powers of n, the Ratio Test fails, and the unique usage of the double factorial
makes the Comparison Test difficult to use.

4 Applications of More Advanced Tests

The double factorial of an integer n denoted by n!! is the product of all the integers from
1 up to and including n that have the same parity as n. For example, 9!! = 9·7·5·3·1 = 945.

Example. Test the series
∞∑
n=1

(2n−1)!!
(2n)!! ·

1
2n+1 for convergence.

Let an represent the terms of the series. Since

lim
n→∞

an+1

an
= lim

n→∞

(
(2n+ 1)!!

(2n+ 2)!!(2n+ 3)
· (2n)!!(2n+ 1)

(2n− 1)!!

)

= lim
n→∞

((
2n+ 1

2n+ 2

)(
2n+ 1

2n+ 3

))
= 1

the Ratio Test fails and we turn to Raabe’s Test. We find that

lim
n→∞

n

(
an
an+1

− 1

)
= lim

n→∞
n

(
(2n− 1)!!(2n+ 2)!!(2n+ 3)

(2n+ 1)!!(2n)!!(2n+ 1)
− 1

)

= lim
n→∞

n

(
(2n+ 2)(2n+ 3)

(2n+ 1)(2n+ 1)
− 1

)

= lim
n→∞

n

(
4n2 + 10n+ 6

4n2 + 4n+ 1
− 1

)

= lim
n→∞

n

(
6n+ 5

4n2 + 4n+ 1

)

= lim
n→∞

(
6n2 + 5n

4n2 + 4n+ 1

)
=

3

2
,

which shows that the series converges by Raabe’s Test.

Example. Test the series
∞∑
n=1

(2n−1)!!
(2n)!! ·

4n+3
2n+2 for convergence.

13



Let an represent the terms of the series. Using the Ratio Test gives us

lim
n→∞

an+1

an
= lim

n→∞

(
(2n+ 1)!!(4n+ 7)

(2n+ 2)(2n+ 4)
· (2n)!!(2n+ 2)

(2n− 1)!!(4n+ 3)

)

= lim
n→∞

((
2n+ 1

2n+ 2

)(
4n+ 7

4n+ 3

)(
2n+ 2

2n+ 4

))
= 1

so again we turn to Raabe’s Test. We then have

lim
n→∞

n

(
an
an+1

− 1

)
= lim

n→∞
n

(
(2n− 1)!!(4n+ 3)

(2n)!!(2n+ 2)
· (2n+ 2)!!(2n+ 4)

(2n+ 1)!!(4n+ 7)
− 1

)

= lim
n→∞

n

((
2n+ 2

2n+ 1

)(
4n+ 3

4n+ 7)

)(
2n+ 4

2n+ 2

)
− 1

)

= lim
n→∞

n

(
8n2 + 22n+ 12

8n2 + 18n+ 7
− 1

)

= lim
n→∞

(
4n2 + 5n

8n2 + 18n+ 7

)
=

1

2
.

Thus the series diverges by Raabe’s Test.

While it does not have a name, the following version of Kummer’s Test, where
we let Bn = n lnn, is similar to Raabe’s and is helpful when Raabe’s Test fails as in the
example that follows.

Theorem 9. Let
∞∑
n=1

an be a series with positive terms and assume that

δ = lim
n→∞

lnn

[
n
( an
an+1

− 1
)
− 1

]

exists. Then,

(i) if δ > 1, then the series
∞∑
n=1

an converges.

(ii) if δ < 1, then the series
∞∑
n=1

an diverges.

(iii) if δ = 1, then
∞∑
n=1

an may either converge or diverge and the test is inconclusive.
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Proof. To begin, we refer to Kummer’s Test and let Bn = n lnn. Note that the series
∞∑
n=1

1
n lnn diverges. Then we have

L = lim
n→∞

[
n lnn

an
an+1

− (n+ 1) ln (n+ 1)

]

= lim
n→∞

[
n lnn

an
an+1

− (n+ 1) lnn− (n+ 1) ln

(
1 +

1

n

)]

= lim
n→∞

[
lnn

(
n

an
an+1

− (n+ 1)

)
− (n+ 1) ln

(
1 +

1

n

)]

= lim
n→∞

[
lnn

[
n

(
an
an+1

− 1

)
− 1

]
− n ln

(
1 +

1

n

)
− ln

(
1 +

1

n

)]

= lim
n→∞

[
lnn

[
n

(
an
an+1

− 1

)
− 1

]
− ln

(
1 +

1

n

)n
− ln

(
1 +

1

n

)]

Since lim
n→∞

(
1 + 1

n

)n
= e, it follows that lim

n→∞
ln
(

1 + 1
n

)n
= 1 and lim

n→∞
ln
(

1 + 1
n

)
= 0.

Thus we can see that L = δ − 1. This tells us that if δ > 1 then L > 0 and the series
converges by Kummer’s Test. Similarly, if δ < 1, then L < 0 and the series diverges. If
δ = 1 this means that L = 0 and the test is inconclusive, therefore a refinement of Kummer’s
Test is necessary to get a result.

Example. Test the series
∞∑
n=1

[
(2n−1)!!
(2n)!!

]p
for convergence.

Let an represent the terms of the series. The Ratio Test gives us

lim
n→∞

an+1

an
= lim

n→∞

[
(2n+ 1)!!(2n)!!

(2n− 1)!!(2n+ 2)!!

]p
= lim

n→∞

(
(2n+ 1)

(2n+ 2)

)p
= 1

Once again, we turn to Raabe’s Test and we find that

lim
n→∞

n

(
an
an+1

− 1

)
= lim

n→∞
n

((
2n+ 2

2n+ 1

)p
− 1

)
.

Letting x = 1
2n+1 , it follows that n = 1−x

2x and thus because x approaches 0 as n approaches
infinity we have

lim
n→∞

n

((
2n+ 2

2n+ 1

)p
− 1

)
= lim

x→0

(
1− x

2x
·
(

(1 + x)p − 1
))

= lim
x→0

(
1− x

2
· (1 + x)p − 1

x

)
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Using the product rule for limits, because both limits exist we can divide up the limit of
the product into the product of the limits of each fraction. Then we have

lim
x→0

(
1− x

2

)
· lim
x→0

(
(1 + x)p − 1

x

)
=

1

2
· p =

p

2
.

Therefore we can see that if p > 2, the series converges and the series diverges when p < 2.
However, when p = 2 both the Ratio Test and Raabe’s Test fail. We use the previously
stated refinement of Raabe’s Test which gives us

lim
n→∞

lnn

[
n

(
an
an+1

− 1

)
− 1

]
= lim

n→∞
lnn

[
n

[(
2n+ 2

2n+ 1

)2

− 1

]
− 1

]

= lim
n→∞

lnn

[
n

(
4n2 + 8n+ 4

4n2 + 4n+ 1
− 1

)
− 1

]

= lim
n→∞

lnn

[
n

(
4n+ 3

4n2 + 4n+ 1

)
− 1

]

= lim
n→∞

lnn

[
4n2 + 3n

4n2 + 4n+ 1
− 1

]

= lim
n→∞

lnn

[
−n− 1

4n2 + 4n+ 1

]

and because lim
n→∞

lnn
[ −n−1
4n2+4n+1

]
= 0 < 1, the series diverges when p = 2.

Our final examples will require us to use both Raabe’s Test and what we know
about some other common types of series; Power Series and Alternating Series.

Example. Find the interval of convergence for the power series
∞∑
k=1

1·4·7· ··· ·(3k−2)
k! xk.

To begin, we use the Ratio Test to determine the radius of convergence for the
series. The Ratio Test yields the result

lim
k→∞

∣∣∣∣1 · 4 · 7 · · · · · (3k + 1)

(k + 1)!
xk+1 · k!

1 · 4 · 7 · · · · · (3k − 2) · xk

∣∣∣∣ = lim
k→∞

∣∣∣∣(3k + 1)

(k + 1)
· x
∣∣∣∣ = 3|x|.

This tells us that the series converges when |3x| < 1. This means that the series converges
when the inequality −1

3 < x < 1
3 is true. Now we must test the endpoints of this interval

for convergence at these points.

First, we consider when x = 1
3 . This results in

∞∑
k=1

1 · 4 · 7 · · · · · (3k − 2)

k!
·
(

1

3

)k
.
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Letting ak = 1·4·7· ··· ·(3k−2)
k!·3k and applying Raabe’s Test we then have

lim
k→∞

k

(
ak
ak+1

− 1

)
= lim

k→∞
k

(
(k + 1)

(3k + 1)
· (3)− 1

)
= lim

k→∞
k

(
3k + 3

3k + 1
− 1

)
= lim

k→∞
k

(
2

3k + 1

)
= lim

k→∞

(
2k

3k + 1

)
=

2

3
.

Therefore the series diverges when x = 1
3 by Raabe’s Test.

Now we consider the case where x = −1
3 . The series

∞∑
k=1

ak (−1)k has negative terms,

so we cannot use Raabe’s Test. We now turn to the Alternating Series Test where ak is
the same as above. The Alternating Series Test tells us that if {ak} is decreasing and the
terms go to 0 then the series converges. In our above results, ρ = 2

3 > 0 so by Corollary 1,
the sequence {ak} goes to 0. Additionally, ak is always positive and so the sequence must

be decreasing. Therefore, the series
∞∑
k=1

1··4·7·...·(3k−2)
k! ·

(
− 1

3

)k
converges by the Alternating

Series Test. Hence, the interval of convergence for the power series
∞∑
k=1

1·4·7·...·(3k−2)
k! xk is[

− 1
3 ,

1
3

)
.

So far, our discussion on infinite series has only touched on tests that give us
information on whether the series converges or not. If we find that a series converges, these
tests do not give us a good indication as to what the sum of the series is. However, in our
last example we will illustrate how we can use the information that Raabe’s Test gives us
to find the sum of a series.

Example. Find the sum of the series
∞∑
k=1

2·4·6· ··· ·(2k)
5·7·9· ··· ·(2k+5) .

We begin by letting

ak =
2 · 4 · 6 · · · · · (2k)

5 · 7 · 9 · · · · · (2k + 5)
and bk =

2 · 4 · 6 · · · · · (2k)

3 · 5 · 7 · · · · · (2k + 3)
.

It follows that

ak =

(
3

2k + 2

)
bk+1 and bk =

(
2k + 5

2k + 2

)
bk+1.

From here, we apply Raabe’s Test to the series
∞∑
k=1

bk which give us

lim
k→∞

k

(
bk
bk+1

− 1

)
= lim

k→∞
k

(
(2k + 5)

(2k + 2)
− 1

)
= lim

k→∞

(
3k

2k + 2

)
=

3

2
.
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Thus the series
∞∑
k=1

bk converges by Raabe’s Test.

Then, we observe that

bk − ak =

(
2k + 5

2k + 2

)
bk+1 −

(
3

2k + 2

)
bk+1

=

(
2k + 2

2k + 2

)
bk+1

= bk+1.

We can use this result to conclude that

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞

n∑
k=1

(bk − bk+1) = lim
n→∞

(b1 − bn+1) = b1 =
2

15
.

Thus, the sum of the series
∞∑
k=1

2·4·6· ··· ·(2k)
5·7·9· ··· ·(2k+5) is 2

15 .

Conclusion

The scope of this project merely skims the surface of what has been done in the
field of infinite series and tests of convergence. Beyond Kummer’s Test and Raabe’s Test,
there are many more tests including Bertrand’s, Gauss’s, and Dirichlet’s which are all useful
in their own way. Tests for convergence are important to the study of infinite series because
it is often the case where knowing the property of the series is imperative to a proof or the
solution to a problem as shown in our last example.

In mathematics, some of the most useful applications of infinite series are in inte-
gration and differential equations. We also use specific infinite series such as Taylor Series
to show that calculations involving functions such as ex and sinx can be computed us-
ing addition, subtraction, multiplication, and division. Aside from mathematics, infinite
series are also useful in a wide range of fields including physics, engineering, chemistry,
computer science, and finance. In physics they are used to solve the pendulum differential
equation while in finance they are used to calculate fiscal multipliers. Infinite series also
have a wide range of uses in computer science as they are often used in generating functions.
Without infinite series and the tests we use to determine convergence, we would not be able
to advance and solve important problems in many areas of study.

In this project we were able to show some very interesting results involving infinite
series and their partial sums as well as draw some connections between series and sequences.
We introduced two advanced tests of convergence and demonstrated their usefulness as well
as their applications and relationships to one another. Further inquiry into this topic would
include the examination of other advanced tests such as the ones just mentioned and a
more rigorous investigation into the results and implications of the tests we discussed. In
conclusion, the study of infinite series and tests of convergence is not only extensive, but it
is intriguing and beautiful.
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