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Abstract

This paper serves as an introduction to the ways computers are built to
play games. We implement the basic minimax algorithm and expand on it by
finding ways to reduce the portion of the game tree that must be generated
to find the best move. We tested our algorithms on ordinary Tic-Tac-Toe,
Hex, and 3-D Tic-Tac-Toe. With our algorithms, we were able to find the
best opening move in Tic-Tac-Toe by only generating 0.34% of the nodes
in the game tree. We also explored some mathematical features of Hex and
provided proofs of them.

1 Introduction

Building computers to play board games has been a focus for mathematicians
ever since computers were invented. The first computer to beat a human opponent
in chess was built in 1956, and towards the late 1960s, computers were already
beating chess players of low-medium skill.[1] Now, it is generally recognized that
computers can beat even the most accomplished grandmaster.

Computers build a tree of different possibilities for the game and then work
backwards to find the move that will give the computer the best outcome. Al-
though computers can evaluate board positions very quickly, in a game like chess
where there are over 10'?° possible board configurations it is impossible for a
computer to search through the entire tree. The challenge for the computer is then
to find ways to avoid searching in certain parts of the tree.

Humans also look ahead a certain number of moves when playing a game, but
experienced players already know of certain theories and strategies that tell them
which parts of the tree to look. However, as computers become faster in terms of



raw processing power and humans become better at programming the computers
to search more efficiently, even the most skilled humans will be defeated.

In this project, we explore different ways to reduce the number of nodes in the
game tree that the computer has to look at in order to find the best possible move.
We start with a basic algorithm called minimax that searches through the entire
tree, then add the following components:

e Alpha-Beta Pruning
e Forced Moves

e Random Searches
e 1/-1 Termination

These algorithms serve as the building blocks of modern game-playing com-
puters. Computers that play games with large trees such as chess typically have
evaluation functions that can assess values to non-terminal nodes. This allows
them to apply the basic algorithms without reaching the bottom, which is almost
impossible with large trees. The evaluation function can even be “learned” by the
computer using neural networks [2].

We tested our algorithms on the following three games:

e Ordinary Tic-Tac-Toe
e Hex
e 3-D Tic-Tac-Toe

With these algorithms, the computer was able to find the best possible moves

in Tic-Tac-Toe, Hex on boards up to 4x4, and 3-D Tic-Tac-Toe on boards up to
3x3x3.

2 The Minimax Algorithm

We will first explore how the computer can find the best possible move given a
game tree. This algorithm is a basic concept in game theory and involves working
up from the leaf nodes. Consider the tree shown in Figure 1. The Computer is
making a move at the root A and is choosing between nodes B and C. The leaf
nodes, in green, are values that correspond to outcomes of the game. The goal
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Figure 1: An example game tree. The value of each node is determined by the
maximum of the node’s immediate children when it is the computer’s move, and
taking the minimum of the node’s immediate children when it is the human’s
move. In this way, the game is solved from the bottom up.
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for the computer is for the game to end in the outcome with the highest possible
value, while the goal for the human is the opposite. The minimax algorithm is
done by asserting a value to each of the nodes, starting from the bottom of the
tree. The value of a node when it is the computer’s turn (nodes A, D, E, F, and G)
is equal to the maximum of the values of the children, while the value of a node at
a human turn is equal to the minimum of the values of the children. With this tree,
the value of node D is equal to the maximum of 3 and 5, which is 5. Similarly, the
values of nodes E, F, and G are 2, 8, and 3, respectively. Working up the tree, the
human now chooses between the minimum of nodes D and E (5 and 2), which is
2, so the value of node B is 2. In the same way, the value of node C is 3. Finally,
the computer at A should choose the maximum value out of nodes B and C, which
is 3 for node C. So the best move for the computer at A is C.



Minimax(board, player) :
if board is a leaf node :
return the value of board
if player =1
best = -
for each child of board :
val = minimax(child, -1)
best = max(val, best)
return best
else :
best = oo
for each child of board :
val = minimax(child, -1)
best = min(val, best)
return best

Figure 2: The full minimax algorithm in pseudocode. The initial call will be
called upon the root, with player equal to 1, corresponding to the computer. The
algorithm traverses the entire game tree in post-order.

2.1 The Algorithm

From here on we will denote the computer as player 1 and the human as player
-1. The full algorithm in pseudo-code is shown in Figure 2 [3][4].

The reader can verify that this algorithm traverses the game tree in post-order
and that it follows the logic described before. The main disadvantage with this
procedure is that this algorithm requires the computer to traverse the entire tree,
which can require a lot of time and computing power. However, the algorithm
does succeed in finding the best possible move for the computer. Another thing
to note is that the algorithm assumes that the human will make the best possible
move when given the opportunity, but in reality that is not always the case. The
algorithm assumes that the human will play to make the outcome for the computer
as bad as possible, so if the human is not playing perfectly, the outcome for the
computer will be at least as good as if the human was playing perfectly.

2.2 Implications

The minimax algorithm leads to an interesting result that will be used later on
when exploring the Hex game.



Theorem 1. In any two-player, finite game with no draws, one player must have
a winning strategy.

Proof. In the minimax algorithm, the entire game tree is searched and the algo-
rithm finds the best possible move by working from the bottom up and assuming
both players are playing perfectly. Since the values of all the leaf nodes are either
Is or -1s, corresponding to wins and losses respectively, every parent node is also
either a 1 or a-1. Therefore, at the beginning of the game, the root node must have
a value of either 1 or -1. If it is a 1, then the first player has a winning strategy,
and if it is a -1, the second player has a winning strategy. [

2.3 Alpha-Beta Pruning

We will now expand upon minimax to make it so that the computer does not have
to look at the entire tree. Consider the gametree of Tic-Tac-Toe displayed in figure
4. Here, the computer is playing X’s and the human is O’s. The value of the game
is 1 for a computer win, -1 for a human win, and O for a draw. Note that the
obvious move would be for the computer to play in the left-most subtree where it
would block the human from getting three in a row along the diagonal. However,
ordinary minimax would still need to traverse the whole tree to be able to make
that decision. It would first take the minimum of the children of B, which is O,
and then compare that to the minimum of C’s children, which is -1. It would then
find the maximum of the value of B (0) to the value of C (-1). But wait! Since
C’s left child is -1, and C looks for the minimum of it’s children, the value of C is
guaranteed to be less than or equal to -1 regardless of the value of its right child.
And because -1 is less than 0, C is guaranteed to be a worse move than B just
because of C’s left child. So the computer does not even need to look at C’s other
children. This is the basis of what is called alpha-beta pruning.

Consider the following addition to the code in the minimax algorithm in Figure
3. In this algorithm, we introduce the new parameters alpha and beta:

e Alpha is the maximum value that can be attained at the current level or
above.

e Beta is the minimum value that can be attained at the current level or above.

The initial call to minimaxab will be minimaxab(board, player, —oco, c0). With
this algorithm, the for-loop is broken whenever beta is less than or equal to alpha,
meaning that the computer does have to look at the remaining children. We will



Minimaxab(board, player, alpha, beta)
if board is a leaf node :
return the value of board
if player=1:
best = -0
for each child of board :
val = minimaxab(child, -1, alpha, beta)
best = max(val, best)
alpha = max(best, alpha)
if alpha = beta :
break
return best
else :
best =
for each child of board :
val = minimaxab(child, -1)
best = min(val, best)
beta = min(best, beta)
if alpha = beta :
break
return best

Figure 3: The full algorithm for minimaxab in psuedocode, with the differences
from minimax highlighted in yellow. The additional parameters alpha and beta
are used to help prune the game tree by breaking the for-loop.

now break down exactly how the algorithm works after the initial call with the
Tic-Tac-Toe game tree in Figure 4:

e The traversal starts on node A, where it is the computer’s turn, so player is
equal to 1. Minimaxab is then called on A’s first child, node B, where player
is -1.

e Minimaxab is then called on E, the first child of node B. We call on E’s only
child, which will return a 1. E then returns 1 and val =1 at B.

e Now the computer finds min(val, best), so best = min(oo, 1) = 1.

e beta = min(beta, best) = min(oco, 1) = 1. Since alpha is still —oo, beta £
alpha, and the for loop continues.

e The computer looks at the value of B’s right child, which is 0, then compares
it to val, which is 1. Since 0 < 1, val = 0, and beta = 0. B is out of children,
so minimaxab returns 0 to node B.
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Figure 4: An example Tic-Tac-Toe game tree. With the minimaxab algorithm,
nodes H and J are pruned. While pruning just two nodes may seem like a small
accomplishment, if a node is pruned higher up in the game tree it would be a much
bigger feat.



e At node A, player = 1, so best = max(val, best) = max(0,—o0) = 0. Then
alpha = max(—o0, 0) = 0.

e Minimaxab is called on the left child of node C, with alpha = 0 and beta =
00, and with player = -1. Since at C we are starting a new for-loop, best
= 00, then val = -1, best = min(val, best) = -1, and beta = min(oco, -1) =
-1. Here beta < alpha is true, so the code breaks the for-loop and moves to
node D with the same alpha = 0.

o At D, best is still co. We call upon D’s left child, where val = -1, so best =
min(best, val) = -1, and beta = min(best, val) = -1. Since alpha is still equal
to 0, we find that beta < alpha, so for loop is broken and D’s right child is
ignored.

e Finally, A finds max(0, -1) = 0 and returns 0. A is out of children so we are
done.

In this algorithm, we were able to ignore C’s right child and D’s right child. This
may seem like a relatively small feat, but with larger trees, being able to prune
an entire subtree when near the top is a great accomplishment for the computer.
Figure 5 shows the number of board positions the two algorithms look at for the
function call at different tree depths. Actual code for the two algorithms will be
located in the appendix. Note that pruning has a much greater impact the larger
the tree is. One can expect that for games more complicated than Tic-Tac-Toe
pruning will be even more crucial to be able to find the best move while conserving
computing power.

2.4 Other Improvements

We can further improve the algorithm for Tic-Tac-Toe by adding in more features.
These include:

1. Check to see if there is a space that will immediately win the game for the
computer and play there.

2. If the game cannot be immediately won, check to see if there is a space that
the human will win at the next turn and play there to block the human from
playing there.



Effect of Pruning at Different Tree Depths

Minimaxab calls

Minimax calls

0 1 2 3 - 5 6
Tree Depth (0 = empty board)

# Spaces Filled | No Pruning Pruning | Multiple
0 549945 27662 19.9
1 61004 6112 10.0
2 7637 1779 4.29
3 997 364 2.74
4 180 110 1.63
5 352 29.5 1221
6 16.0 14.5 1.10

Figure 5: A graph showing the number of nodes generated by minimax divided by
the number of nodes generated in minimaxab at different tree depths. The table
shows the number of nodes generated by each algorithm. At the beginning of the

game when no spaces are filled, pruning improves the search algorithm by almost
20x.



3. If the algorithm finds a move that will lead to a win, stop searching and play
there since there are no better outcomes than a win.

4. Randomize the search order in the tree.

Improvements (1-3) are self-explanatory, but (4) requires some further explana-
tion.

In the ordinary minimax algorithm, child nodes are evaluated in the same order
in every part of the tree using a simple for loop. In Tic-Tac-Toe, each child node
is evaluated 1-9, starting with moves in the top left, then working left to right, top
to bottom. With randomness turned on, the order in which each of the nine chil-
dren are evaluated would be random. Of course, in ordinary minimax randomness
will not help because the entire tree must be created anyway. But with alpha-
beta pruning, the order in which the children are evaluated is important because
it could lead to more or less pruning depending on whether the computer gets
“lucky” in finding a way to short-circuit parts of the tree. In the worst case, both
random and non-random algorithms will still need to evaluate the entire tree. But
with randomness turned on, the computer has a better chance to get “lucky” by
searching through children in a random order at every node. This is because with
1/-1 termination, when the computer finds something, it stops looking. Without
randomness, it is more likely for the computer to repeat unsuccessful searches.

With all four of these features turned on, the number of nodes generated in the
opening move of a 3x3 Tic-Tac-Toe game was cut to 1,893, down from a total tree
size of 549,945 generated with ordinary minimax. However, this was assuming
that checking to see if there is a “forced move” (items 1 and 2) is done for free
and does not count as generating a node. We can still conclude that the runtime
was reduced drastically from the original minimax.

3 Hex

We will now turn to a different game: Hex. Similar to Tic-Tac-Toe, Hex is a
two-player zero-sum game played by sequentially placing tokens on a board. The
game board is shown in Figure 7. The object of the game is to connect a chain
of tokens from one side of the board to the other. In the figure, the red player is
trying to connect red tokens from the bottom right side of the board to the top left,
while the blue player is trying to connect blue tokens from the top right of the
board to the bottom left. The game can theoretically be played on a board with
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any size, but traditionally an 11x11 board is used. Some interesting mathematical
aspects of Hex are:

1. The game cannot end in a draw.
2. Having an extra piece of your own color on the board cannot hurt you.
3. The player who moves first has a winning strategy.

4. The two “acute corners” that are only connected to two hexes are not win-
ning first moves.

Statement (3) was first proved by John Nash in 1952 and relies upon (1) and (2)
as lemmas[5]. We will prove (2), (3) and (4). Statement (1) is beyond the scope
of this paper, but the proof can be found in [6]. One can think about the result by
imagining that there is a river flowing between the two sides of the board, and the
only way to dam the river is to establish a path through it.

Lemma 1. In the game of Hex, having an extra piece of one’s own color on the
board is not disadvantageous.

Proof. Suppose that a player has an extra piece at position a on the board. If a is
part of the player’s winning strategy, then on the turn when the player would play
at position a, the player plays anywhere else on the board. If a is not part of the
player’s winning strategy, then that square does not matter. 0

Theorem 2. In the game of Hex, the player who moves first has a winning strategy.

Proof. Suppose instead that the second player has a winning strategy. On turn
1, the first player plays at any random place on the board. The first player then
pretends that this piece is not there, effectively making the second player the “first”
player. The actual first player then proceeds to use the second player’s winning
strategy, playing in all of the hexes that the second player was going to play at. By
Lemma 1, the first player’s first move cannot be disadvantageous, so this strategy
prevents the second player from winning. This is a contradiction because we
assumed that the second player has a winning strategy. Since the second player
does not have a winning strategy, and the game cannot end in a draw, then by
Theorem 1 we conclude that the first player has a winning strategy. 0

Note that although this proof concludes that the first player has a winning
strategy, it does not give any indication as to what that strategy is. The proof that
acute corners are not winning opening moves involves a similar strategy-stealing
argument.
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Figure 6: Suppose white has a winning strategy by playing in the acute corner (a).
Black then plays as shown in (b). Black then pretends that the white stone is black
and that the black stone is not there (c). Black then uses white’s winning strategy
and win, a contradiction.

Theorem 3. In Hex, a move in an acute corner on the first turn is not a winning
strategy.

Proof. Suppose that playing in an acute corner on the first move is a wining strat-
egy. White plays in one of them, and black moves as shown in Figure 6b. Black
then pretends the black stone is not there, and that the white stone is black. Black
then uses white’s winning strategy as if black had played in the acute corner on
the first move. By Lemma 1, the stone that black pretends is not there cannot be
disadvantageous. So the only way for this strategy to fail is if the white stone
that black pretends is black is part of the winning strategy. However, for this to
happen, the hex labeled x must also be part of the winning strategy. If that is the
case, then black wins anyway because of the black stone that black is pretending
does not exist. This means that both black and white have a winning strategy, a
contradiction, so a first move in an acute corner is not a winning strategy. 0

The game has been completely solved in boards up to 7x7, and some openings
have been solved (meaning the best move can be found given any board position)
in an 8x8 board [2]. We applied minimaxab to hex on boards up to 4x4 with the all
of the features in the Tic-Tac-Toe program turned on. On a 3x3 board, ordinary
minimax generated 11107 nodes, while our improved minimaxab generated 57
nodes on average (an average is used due to the randomized search). With the 4x4
board, an average of 369,349 nodes were generated with the improved algorithm.
Both algorithms assumed that playing in an acute corner on the first move is not a
winning strategy. The winning opening moves on boards up to 4x4 are shown in
figure 8.
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Figure 7: An example hex board. The red player is trying to establish a chain
of tokens from the bottom right side to the top left side, while the blue player is
trying to connect the other two sides. Red has won in this game.

Figure 8: The winning opening moves on boards up to 4x4.
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Figure 9: In this game, the O’s have won with a three in a row on the left side of
the cube.

4 3-D Tic-Tac-Toe

We will now move on to study a third game, three dimensional Tic-Tac-Toe. The
rules of the game are similar to 2-D Tic-Tac-Toe in that the goal is to make three
in a row. On a computer screen, we can decompose the cube into three 2-D Tic-
Tac-Toe boards. Three in a row can be made within each of these three boards,
or involving one square in each of the three boards. An example of a winning
position is shown in Figure 9.

The game is traditionally played in a 4x4x4 configuration, but we will start
with the 3x3x3 case because it was easier for the computer to solve. Using all four
additions to the ordinary minimax algorithm used in prior games, we found the
only winning move on an empty board to be the center by evaluating 38024 board
positions on average (an average was computed because of the random search).
When searching by looking at the center first, we found this move to result in a
win by evaluating only 243 board positions on average. Both of these searches
were completed in under one second. Even though 3x3x3 Tic-Tac-Toe has 27
squares and 5x5 hex only has 25 squares, 3x3x3 Tic-Tac-Toe was much easier to
solve because there are many more forced moves.

5 Randomization Results

The effects of randomness in Tic-Tac-Toe and Hex are shown in Figure 10. We
noticed with forced moves turned on, randomness had an insignificant effect in
Tic-Tac-Toe. This is because there are so many forced moves in Tic-Tac-Toe that
pruning, does not do much. Without pruning, randomness does not help because
there is no possibility of short-circuiting the tree. When the simulation was run
without forced move functionality, randomness reduced the number of nodes eval-
uated by about 6-10% over 1000 trials. It seems that when more spaces are filled
in the board, leading to a smaller tree, randomness had less of an effect.

14



Impact of Random Search in Tic-Tac-Toe Impact of Random Search in Hex
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Figure 10: The impacts of randomness for Tic-Tac-Toe and hex. The percentage
improvement was calculated as the percentage fewer nodes that were evaluated
over 1000 trials.

In three dimensional Tic-Tac-Toe, we found randomness to have an insignifi-
cant effect. This was expected because there are even more forced moves in 3-D
Tic-Tac-Toe than in 2-D Tic-Tac-Toe due to the higher number of ways to get
three in a row.

With Hex, randomness improved the algorithm much more significantly. We
found that 58% fewer nodes were evaluated in 3x3 Hex and 88% fewer nodes
were evaluated in 4x4 Hex. We expect that in larger boards with larger trees,
randomness will have even more of an effect in reducing the runtime.

6 Other Games

The minimax algorithm and its improvements are actually not that hard to apply
to other finite board games that are similar to Tic-Tac-Toe and Hex. The only
functions that must be written are those that check the board for win conditions.
Besides that, only minor modifications must be made to the code to account for the
different board size and rules. Connect Four is a good example of another game
that could be explored using our algorithms in the future. We could also expand on
our code by writing an evaluation function that can asses values to non-terminal
nodes. Then, we could modify minimax so that if a node is in a non-terminal state
a a certain depth, the evaluation function is run on it and that node is treated as a
leaf with that value. A more sophisticated program would also try to determine
the “volatility” of different board positions and search deeper in parts of the game
tree where moves can change the state of the game more significantly.
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