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Abstract
This paper presents an exploration of the Fibonacci sequence, as well

as “multi-nacci sequences” and the Lucas sequence. We compare and con-
trast various characteristics of these sequences, in particular the existence
and repetition of prime factors. We show that for the Fibonacci sequence,
and for multi-nacci sequences with the same initial conditions, it follows
that every prime divides an infinite number of terms of the sequence. By
contrast, we show that this is not the case for the Lucas numbers. We
provide conditions for when a prime does divide a Lucas number and give
some examples of primes that do not divide any Lucas number.

1 Introduction

The Fibonacci sequence is a famous sequence of integers both in mathematics
and in popular culture. It was introduced to the Latin-speaking world in 1202,
in Fibonacci’s Liber Abaci.

Fibonacci, or, Leonardo Pisano, was an Italian mathematician born in 1175.
He grew up traveling with his merchant father and was exposed to the Hindu-
Arabic arithmetic system in North Africa. He published Liber Abaci in 1202,
which introduced the Latin-speaking world to the decimal system.

In Liber Abaci, he also introduced the Fibonacci sequence:

How many pairs of rabbits can be bred in one year from one
pair? A certain person places one pair of rabbits in a certain place
surrounded on all sides by a wall. We want to know how many pairs
can be bred from that pair in one year, assuming it is their nature
that each month they give birth to another pair, and in the second
month, each new pair can also breed (see [3]).

This situation can be represented with the rule,

Fn = Fn−1 + Fn−2,

for n ≥ 2 with F0 = 0 and F1 = 1. The first few terms of the Fibonacci sequence
are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
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Figure 1: The golden spiral

The sequence had been noted by Indian mathematicians as early as the sixth
century, but Fibonacci was the first to publish it outside of India.

The Fibonacci numbers are also known for appearing in nature. They appear
in the form of a spiral constructed from quarter circles drawn inside an array
of squares with the Fibonacci numbers as dimensions. The Fibonacci spiral,
sometimes called the golden spiral, can be seen in sunflower seeds, hurricanes,
and galaxies (see [2]).

2 Preliminaries

All of the following results can be found in [4], along with the proofs.

Fermat’s Little Theorem is a well-known and useful theorem. It is remarkably
short and sweet. We include it here for reference.

Theorem 2.1 (Fermat’s Little Theorem). Suppose that p is a prime and a is
an integer. Then

(a) ap−1 ≡ 1 (mod p) if a and p are relatively prime;

(b) ap ≡ a (mod p) for any a.

Another concept we use in our proofs are quadratic residues, which take the
idea of perfect squares and extend them to spaces Zp, where p is an odd prime.

Definition 2.1. Suppose that p is an odd prime and that b and p are relatively
prime. Then b is a quadratic residue modulo p if and only if the equation x2 ≡ b
(mod p) has a solution. If the equation has no solution, then we say that b is a
quadratic nonresidue modulo p.

This definition tells us that if b is a quadratic residue modulo p, then it
is a perfect square in Zp. We want to be able to calculate when a number is
a quadratic residue modulo p. This is easy with small values of p simply by
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squaring all the elements in Zp, but for larger values it is useful to have an
arithmetic equation. The notation that we use to say whether b is a quadratic

residue modulo p is the Legendre symbol,
(

b
p

)
, where

(
b

p

)
=

{
1 b is a quadratic residue mod p

−1 b is a quadratic nonresidue mod p.

Euler’s Criterion gives us a way to calculate
(

b
p

)
.

Theorem 2.2 (Euler’s Criterion). Suppose that p is an odd prime and that b
is an integer. If p and b are relatively prime, then(

b

p

)
= b(p−1)/2.

To reduce the work of checking quadratic residues of larger primes, we use
the following result.

Theorem 2.3 (Quadratic Reciprocity Theorem). If p and q are distinct odd
primes, then (

p

q

)(
q

p

)
≡ (−1)

1
2 (p−1)·

1
2 (q−1) (mod p).

The following corollary helps to further break down large numbers.

Corollary 2.3.1. Suppose that p is an odd prime and that n =

k∏
i=1

bi. If n and

p are relatively prime, then (
n
p

)
=

k∏
i=1

(
bi
p

)
.

Finally, we have the special case of determining whether 2 is a quadratic
residue modulo p.

Theorem 2.4. If p is an odd prime then,(
2
p

)
=

{
1, p ≡ ±1 (mod 8);

−1 p ≡ ±3 (mod 8).

To see how the Quadratic Reciprocity Theorem helps with large primes,
suppose we want to determine whether 607 is a quadratic residue of 2503. Using
the above results we obtain,(

607

2503

)
= −

(
2503

607

)
= −

(
75

607

)
= −

(
3

607

)(
25

607

)
=

(
607

3

)
=

(
1

3

)
= 1.

With these theorems in mind we continue to an exploration of the Fibonacci
numbers.
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3 Fibonacci numbers

Recall that the Fibonacci sequence is a recursive sequence where each term is
defined by

Fn = Fn−1 + Fn−2

for n ≥ 2 with the initial condition F0 = 0 and F1 = 1.

It is useful to be able to find a closed-form formula that gives the nth term
of the Fibonacci sequence so that we do not have to recursively generate every
term prior to the term that we want to calculate.

We do this by solving a second order linear difference equation. Taking our
recursive Fibonacci equation and transferring all the terms to the left-hand side
gives

Fn − Fn−1 − Fn−2 = 0.

We assume that rn solves the equation, so

rn − rn−1 − rn−2 = 0

and thus
r2 − r − 1 = 0,

which is our characteristic equation. By solving the characteristic equation, the
two roots are

r1 =
1 +
√

5

2
:= φ and r2 =

1−
√

5

2
:= 1− φ,

where φ is the golden ratio. For any c1 substituting c1r
n
1 for Fn in Fn−Fn−1−

Fn−2 yields zero and for any c2 substituting c2r
n
2 for Fn in Fn − Fn−1 − Fn−2

yields zero. This suggests our solution has the form:

Fn = c1r
n
1 + c2r

n
2 , (1)

Using our values for r1 and r2, we now have

Fn = c1 · φn + c2 · (1− φ)n.

Incorporating the initial condition of F0 = 0 means that c2 = −c1 so we have

Fn = c1(φn − (1− φ)n).

Incorporating the initial condition F1 = 1, we obtain

1 = c1(φ− (1− φ))

= c1(2φ− 1)

c1 =
1

2φ− 1
=

1√
5
.
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So our final closed-form formula for the Fibonacci sequence is:

Fn =
φn − (1− φ)

n

√
5

. (2)

Now that we have the closed-form formula for the Fibonacci sequence, we
move on to an investigation of its prime factors (see [1]).

3.1 Prime factors

An interesting question to consider is when do primes show up as factors of terms
in the Fibonacci-type sequences? Do we eventually get every prime? It turns
out every prime divides a Fibonacci number, which is a somewhat surprising
feature of the Fibonacci numbers.

Looking at the prime factors of some Fibonacci numbers we begin to notice
a pattern:

n Fn (factored)
8 3 · 7
10 5 · 11
14 13 · 29
18 23 · 17 · 19
24 25 · 32 · 7 · 23
28 3 · 13 · 29 · 281
30 23 · 5 · 11 · 31 · 61

It appears that for primes of the form p = 10k ± 1, it follows that p|Fp−1
and for primes of the form p = 10k ± 3, it follows that p|Fp+1. To show that
this is always true, we first look at some specific examples.

First we consider p|Fp−1 for p = 31. We do this by finding a formula for Fn

in Z31. We want to find solutions to the characteristic equation x2 = x + 1 in
Z31. By multiplying both sides by 4, we obtain

4x2 = 4x+ 4

4x2 − 4x+ 1 = 5

(2x− 1)2 = 5.

We can verify that a solution exists by checking that 5 is a quadratic residue
modulo 31. This is obvious since 62 ≡ 5 (mod 31).

Performing some algebra in Z31, we get (2x− 1)2 = 5 ≡ 62 ≡ 252 so 2x− 1 ≡
±25 or 2x ≡ 1± 25. Our roots are therefore α = 13 and β = −12 ≡ 19. Putting
these values back into Equation (1) yields

Fn ≡ c1 · 13n + c2 · 19n (mod 31).
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Using our initial condition F0 = 0 gives us c1 = −c2 or Fn = c1(13n − 19n).
Using the initial condition F1 = 1 gives c1(−6) = 1 or c1 = 5. We now have

Fn ≡ 5(13n − 19n) (mod 31).

Using n = 30 and Fermat’s Little Theorem we see that

F30 ≡ 5(1330 − 1930) ≡ 5(1− 1) ≡ 0 (mod 31).

Since F30 ≡ 0 (mod 31), this shows that 31 divides F30. The following theorem
generalizes this result for all primes of the form p = 10k ± 1.

Theorem 3.1. If p is a prime of the form p = 10k ± 1, then p|Fp−1.

Proof. Suppose p is a prime such that p = 10k ± 1. We want to find a solution
to the characteristic equation x2 = x + 1 in Zp. We can write x2 = x + 1
as (2x − 1)2 = 5. To show that this has a solution in Zp, we need 5 to be a
quadratic residue modulo p. Note that by the Quadratic Reciprocity Theorem,

when p = 10k + 1,

(
5

p

)
=
(p

5

)
=

(
1

5

)
= 1

and when p = 10k − 1,

(
5

p

)
=
(p

5

)
=

(
−1

5

)
=

(
4

5

)
= 1.

In either case, 5 is a quadratic residue modulo p so a solution to (2x− 1)2 = 5
exists in Zp. There are two solutions to y2 ≡ 5 (mod p), namely y and −y ≡
p− y. Note that one of these must be odd. Let y be the odd solution. Solving
the equation (2x− 1)2 = y2 yields

x =
y + 1

2
:= α and x =

1− y
2

:= β.

Note that y = α − β. We put these values back into our general Fibonacci
equation with initial condition F0 = 0 to obtain

Fn ≡ c1(αn − βn) (mod p).

Using the initial condition F1 = 1 gives 1 = c1(α− β) or c1 = (α− β)−1 = y−1.
We now have

Fn ≡ y−1(αn − βn) (mod p).

Using n = p− 1 and Fermat’s Little Theorem we see that

Fp−1 ≡ y−1(αp−1 − βp−1) ≡ y−1(1− 1) ≡ 0 (mod p).

Since Fp−1 ≡ 0 (mod p), it follows that p divides Fp−1.

We have now covered one of two cases of primes. We now look at a specific
example of a prime of the form p = 10k ± 3 for p = 13.
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Note that 5 is not a quadratic residue modulo 13, so there is no solution to
x2 = x+ 1 in Z13. Since φ is a root of x2 = x+ 1 in R, we must extend the field
Z13 to Z13(φ) = {a+ bφ|a, b ∈ Z13}.

We must verify that Z13(φ) is a field. It is easy to check that Z13 satisfies the
usual properties for addition and multiplication, except perhaps the existence
of multiplicative inverses. We must show that each nonzero element in Z13(φ)
has an inverse in Z13(φ). Each element in Z13(φ) has the form a + bφ and we
need to find an inverse of the form c+dφ such that (a+ bφ)(c+dφ) = 1. Recall
that since φ solves the characteristic equation, then φ2 = φ + 1. Multiplying
out the left side of the equation we get

(a+ bφ)(c+ dφ) = ac+ bdφ2 + (ad+ bc)φ

= ac+ bd(φ+ 1) + (ad+ bc)φ

= ac+ bd+ (ad+ bc+ bd)φ.

For this to equate to 1 + 0φ we need to solve the system of equations:

ac+ bd = 1

bc+ (a+ b)d = 0

We solve these two equations for c and d using Cramer’s Rule:

c =

∣∣∣∣1 b
0 a+ b

∣∣∣∣∣∣∣∣a a
b a+ b

∣∣∣∣ = (a+ b)(a2 + ab− b2)−1;

d =

∣∣∣∣a 1
b 0

∣∣∣∣∣∣∣∣a a
b a+ b

∣∣∣∣ = −b(a2 + ab− b2)−1.

Therefore for c + dφ to be the inverse of a + bφ we need (a2 + ab − b2)−1 to
always exist. We show that it must exist by way of contradiction.

Suppose that a2 + ab − b2 does not have an inverse. This occurs if and only
if a2 + ab − b2 = 0 which means (2a + b)2 = 5b2. However, since 5 is not a
quadratic residue modulo 13, this is a contradiction. Therefore (a2 + ab− b2)−1

exists and each nonzero element of Z13(φ) has an inverse in Z13(φ).

Lemma 3.2. For all n ∈ Z+, it follows that φn = Fn−1 + Fnφ.

Proof. We prove this by induction over n.
For our base case note that φ = F0+F1φ = 0+φ. Suppose that φn = Fn−1+Fnφ
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for some n. Then,

φn+1 = Fn−1φ+ Fnφ
2

= Fn−1φ+ Fn(1 + φ)

= Fn−1φ+ Fn + Fnφ

= Fn + (Fn−1 + Fn)φ

= Fn + Fn+1φ.

Therefore by the Principle of Mathematical Induction, φn = Fn−1 +Fnφ for all
n ∈ Z+.

So by Lemma 3.2,

φ13 = F12 + F13φ

= 144 + 233φ

≡ 1− φ (mod 13).

Since φ13 ≡ F12 + F13φ, it follows that F12 ≡ 1 and F13 ≡ −1. Therefore,
F14 ≡ F13 + F12 ≡ 0 (mod 13).

Theorem 3.3. If p is a prime of the form p = 10k ± 3, then p|Fp+1.

Proof. Suppose p is a prime of the form p = 10k±3. We want to find a solution
to x2 = x + 1 in Zp. We can write x2 = x + 1 as (2x − 1)2 = 5. First we will
show that there is no solution to (2x− 1)2 = 5 in Zp. Noting that,

when p = 10k − 3,

(
5

p

)
=
(p

5

)
=

(
2

5

)
= −1

and when p = 10k + 3,

(
5

p

)
=
(p

5

)
=

(
3

5

)
= −1,

we find that 5 is not a quadratic residue modulo p, and hence, (2x − 1)2 = 5
will not have a solution in Zp, therefore we must extend our field to Zp(φ) =
{a+ bφ|a, b ∈ Zp}.

In our specific example of p = 13, we already showed that Z13(φ) is a field.
The only necessary condition for this argument was that 5 was not a quadratic
residue modulo 13. Since 5 is not a quadratic residue modulo p, by the same
argument it follows that Zp(φ) is a field with a generic p of the form 10k ± 3.

We now rewrite (2) in Zp(φ) using inverses instead of division and using

only numbers in Zp(φ). Since φ = 1+
√
5

2 , then
√

5 = 2φ − 1. We now have the
formula:

(−1 + 2φ)Fn ≡ (φn − (1− φ)n) (mod p).

Now note that
(φp)2 = φ2p = (φ2)p = (φ+ 1)p,
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and

(φ+ 1)p =

p∑
k=0

(
p

k

)
φk = 1 +

(
p

1

)
φ+

(
p

2

)
φ2 + . . .+ φp.

Since p|
(
p
k

)
for 1 ≤ k ≤ p − 1 and we are working in Zp(φ), it follows that all

of the terms besides 1 and φp disappear, so (φ + 1)p ≡ φp + 1. It follows that
(φp)2 = φp + 1. Therefore, φp is a solution to x2 = x+ 1.

However, we already know that the only solutions to x2 = x + 1 are φ and
1− φ, so φp must be equivalent to one of them.

Suppose φp ≡ φ. Then φp − φ ≡ 0, so φ is a solution to xp − x = 0. We
know that polynomials of degree p have at most p roots in a field. Since xp ≡ x
(mod p) for all x ∈ Zp by Fermat’s Little Theorem, so we already have all p
roots. Therefore, φ is not a root and φp 6= φ. It follows that φp ≡ 1− φ.

Now note that

(1− φ)p ≡ 1− φp ≡ 1− (1− φ) ≡ φ.

Using our substitutions of φp ≡ 1− φ and (1− φ)p ≡ φ, we obtain

(−1 + 2φ)Fp+1 = (φp+1 − (1− φ)p+1)

= (φp · φ− (1− φ)p · (1− φ))

= ((1− φ) · φ− φ · (1− φ)) = 0.

It follows that p divides Fp+1.

Since all primes besides 2 and 5 are of the form 10k±1 or 10k±3, it follows
that all primes divide a Fibonacci number.

When we look at the prime factorizations of the Fibonacci terms we see that
while the above theorems tell us when a prime divides a Fibonacci number, they
do not necessarily tell us the first time that a prime divides a Fibonacci number.
For example, 17 = 20 − 3, so it is a prime of the form p = 10k ± 3. It is true
that 17|F18 but also that 17|F9. Note that 18 is a multiple of 9. The following
lemmas bring us to the result that p|Fn if and only if z(p)|n, where z(p) is the
smallest positive index such that p|Fz(p).

From here on we will define a sequence Sn such that,

Sn = Sn−1 + qSn−2,

where q is some integer and the initial conditions are S0 = 0 and S1 = 1.

Lemma 3.4. If n and r are positive integers, it follows that Sn+r = Sr+1Sn +
qSrSn−1.
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Proof. We will prove this using strong induction over r. We first show that the
equality is valid for r = 1.
Let n ∈ Z+. Note that Sn+1 = S2Sn + qS1Sn−1 = Sn + qSn−1 which is how we
define our Fibonacci-type sequences, so the equation is valid for r = 1.
Now suppose that the equality is valid for all integers up to r. That is, assume
Sn+r = Sr+1Sn + qSrSn−1. Noting that

Sn+r+1 = Sn+r + qSn+r−1

= Sr+1Sn + qSrSn−1 + q(SrSn + qSr−1Sn−1)

= Sn(Sr+1 + qSr) + qSn−1(Sr + qSr−1)

= Sr+2Sn + qSr+1Sn−1,

we find that the equation is valid for r+1. Therefore, by the Principle of Strong
Induction, Sn+r = Sr+1Sn + qSrSn−1 is valid for all r ∈ Z+.

Lemma 3.5. For each positive integer n, we find that Sn|Skn for all n, k ∈ Z+.

Proof. We prove this using induction over k. For our base case note that by
Lemma 3.4, we have

S2n = Sn+n = Sn+1Sn + qSnSn−1 = Sn(Sn+1 + qSn−1),

so Sn|S2n. Now we assume that Sn|Skn for some k and note that

S(k+1)n = Sn+kn = Skn+1Sn + qSknSn−1.

Since Sn|Skn and Sn|Sn, we see that Sn|S(k+1)n. By the Principle of Mathe-
matical Induction, it follows that Sn|Skn for all n, k ∈ Z+.

Lemma 3.6. Every pair of consecutive Fibonacci numbers Fn, Fn+1 are rela-
tively prime.

Proof. We prove this using induction. For our base case when n = 1 note
that gcd(F1, F2) = gcd(1, 1) = 1. Now we assume that gcd(Fn, Fn+1) = 1 for
some n ∈ Z+ and show that gcd(Fn+1, Fn+2) = 1. Since gcd(Fn, Fn+1) = 1,
there exist integers x and y such that Fnx + Fn+1y = 1. Also note that since
Fn+2 = Fn + Fn+1, then Fn = Fn+2 − Fn+1. Making this substitution for Fn

we have

1 = (Fn+2 − Fn+1)x+ Fn+1y

= Fn+2x− Fn+1x+ Fn+1y

= Fn+2x+ Fn+1(y − x).

Since y− x is an integer, Fn+1 and Fn+2 are relatively prime. By the Principle
of Mathematical Induction, every pair of consecutive Fibonacci numbers are
relatively prime.

Theorem 3.7. Let p be a prime. Then p|Fn if and only if z(p)|n, where z(p)
is the smallest positive index such that p|Fz(p).

Proof. The existence of z(p) is guaranteed by the well-ordering property, since
we know that the set {n : n ∈ Z+ and p|Fn} is nonempty for each prime p.
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Suppose that z(p)|n. Then p|Fn easily follows from Lemma 3.5.

Now suppose that p|Fn.By the Division Algorithm, there exist integers q and
r such that n = z(p)q + r and 0 ≤ r < z(p). Note that by Lemma 3.4,

Fn = Fz(p)q+r = Fr+1Fz(p)q + FrFz(p)q−1.

We know that p|Fn and also that p|Fz(p)q by Lemma 3.5, so it must be that
p|FrFz(p)q−1. By Lemma 3.6 we know that p does not divide Fz(p)q−1, since the
Fibonacci numbers Fz(p)q and Fz(p)q−1 are consecutive. Therefore p|Fr. Since
0 ≤ r < z(p) and z(p) is the smallest positive integer such that p|Fz(p), it must
be that r = 0. It follows that n = z(p)q, so z(p)|n.

We have now shown that not only does every prime divide a Fibonacci
number, but that every prime does so an infinite number of times.

3.2 Periodicity

We now know that in our Fibonacci sequence modulo p, the zeros repeat at
a certain interval. However, this is not necessarily the same interval that the
entire sequence repeats. For example, take the terms of Fn (mod 7):

1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5 . . .

We see that a zero appears after just 8 terms, but the entire sequence doesn’t
repeat until 16 terms. This motivates the following two theorems, which give
the period of a Fibonacci sequence modulo p.

Theorem 3.8. If p is a prime of the form 10k±1, then the Fibonacci sequence
modulo p repeats after p− 1 terms.

Proof. Once again we use the equation Fn ≡ y−1(αn − βn) (mod p) in Zp. By
Fermat’s Little Theorem,

Fn+(p−1) ≡ y−1(αn+(p−1) − βn+(p−1))

≡ y−1(αnαp−1 − βnβp−1)

≡ y−1(αn − βn) ≡ Fn (mod p).

Since Fn+(p−1) ≡ Fn (mod p), the sequence repeats after p− 1 terms.

Theorem 3.9. If p is a prime of the form 10k ± 3, where k ∈ Z+, then the
Fibonacci sequence modulo p repeats after 2(p+ 1) terms.

Proof. We use the equation Fn = (φn− (1−φ)n)(−1+2φ)−1 (mod p) in Zp(φ),
along with the equivalences φp ≡ 1− φ and (1− φ)p ≡ φ to obtain:

φp ≡ 1− φ
φp+1 ≡ −φ2 ≡ −1

φ2(p+1) ≡ 1,
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and,

(1− φ)p ≡ φ
(1− φ)p+1 ≡ −1

(1− φ)2(p+1) ≡ 1.

Using these substitutions, note that:

Fn+2(p+1) ≡ (φn+2(p+1) − (1− φ)n+2(p+1))(−1 + 2φ)−1

≡ (φnφ2(p+1) − (1− φ)n(1− φ)2(p+1))(−1 + 2φ)−1

≡ (φn − (1− φ)n)(−1 + 2φ)−1 ≡ Fn (mod p).

Since Fn+2(p+1) ≡ Fn (mod p), the sequence repeats after 2(p+ 1) terms.

Note that the above theorems give a “period” in which the Fibonacci se-
quence modulo p will repeat, but it is not necessarily the shortest period.

4 Multi-nacci numbers

The Fibonacci sequence was considered in a math problem where a mature
pair of rabbits bears one pair of baby rabbits per month. Imagine if instead, a
mature pair of rabbits bears two pairs of baby rabbits per month. Then each
month, we would count the number of pairs by the number of pairs from the
last month in addition to two pairs for each pair from two months earlier that
has now “matured.” We call this sequence the “Beta-nacci sequence” and define
it recursively by

Bn = Bn−1 + 2Bn−2

where n ≥ 2 with B0 = 0 and B1 = 1. Note that this is a version of our generic
multi-nacci sequence,

Sn = Sn−1 + qSn−2.

The first seven terms in some of these multi-nacci sequences is given in Table 1
(see [5]).

As with the Fibonacci sequence, we want to determine if every prime divides
a term of a multi-nacci sequence. We take the Gamma-nacci sequence as an
example.

The Gamma-nacci sequence is defined by

Gn = Gn−1 + 3Gn−2.

To prove that a prime p divides the Gp−1 term, we need a solution to x2−x−3 =
0 in Zp, or, (2x − 1)2 = 13. For this to have a solution, we need 13 to be a
quadratic residue in Zp. By the Division Algorithm we can write p = 13q + r

12



n Fibonacci β γ δ ε ζ

n Fn Bn Gn Dn En Zn

0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 2 3 4 5 6 7
4 3 5 7 9 11 13
5 5 11 19 29 41 55
6 8 21 40 65 96 133
7 13 43 97 181 301 463

Table 1: The first 7 terms of some multi-nacci sequences

where 0 ≤ r < 13. Using Euler’s Criterion, we want
(

13
p

)
= 1. By the Quadratic

Reciprocity Theorem, (
13

p

)
= (−1)

p−1
2 ·

13−1
2

( p
13

)
= (−1)3(p−1)

( p
13

)
=
( p

13

)
=
( r

13

)
.

Therefore we just need r to be a quadratic residue modulo 13. The quadratic
residues in Z13 are r = 1, 3, 4, 9, 10, 12. So for primes p of the form 13k ± 1,
13k± 3, and 13k± 4, p will divide the Gp−1 term. For other primes p, it follows
that r will not be a quadratic residue modulo p. This is all we need for the proof
that p divides the Gp+1 term. The following theorem generalizes the proof that
p|Gp+1 to all multi-nacci sequences.

Theorem 4.1. For sequences of the form Sn = Sn−1+qSn−2, let b = 4q+1. For
all r such that r is a quadratic residue modulo b, primes of the form p = bk+ r
divides the Sp−1 and for all other primes p > 4q + 1, it follows that p divides
the Sp+1 term.

A proof for Theorem 4.1 is identical to the proofs of Theorems 3.1 and 3.3
where b = 5.

Two special cases of the prime division are for the Beta-nacci sequence defined
by

Bn = Bn−1 + 2Bn−2,

and the Zeta-nacci sequence defined by

Zn = Zn−1 + 6Zn−2.

13



The reason that these two sequences are unique is that their characteristic equa-
tions are r2 − r − 2 = 0 and r2 − r − 6 = 0 respectively, which each have two
integer roots. This means that for p > 3 and p > 5 respectively, these equations
always have a solution in Zp, so for all p > 3 and p > 5 respectively, it is true
that p|Bp−1 and p|Zp−1.

We can also see this by using the closed form formulas for the Beta-nacci and
Zeta-nacci sequences. The closed form formula for the Beta-nacci sequence is:

Bn =
2n − (−1)n

3
.

When n = p− 1, Fermat’s Little Theorem yields

3Bp−1 ≡ 2p−1 − (−1)p−1 ≡ 1− 1 ≡ 0,

which shows that p|Bp−1.
The closed form formula for the Zeta-nacci sequence is:

Zn =
3n − (−2)n

5
.

When n = p− 1, Fermat’s Little Theorem once again yields

5Zp−1 = 3p−1 − (−2)p−1 = 3p−1 − 2p−1 ≡ 1− 1 ≡ 0 (mod p),

which shows that p|Zp−1.

5 Lucas numbers

A sequence related to the Fibonacci sequence is the Lucas sequence. It is another
sequence defined recursively where each term is given by

Ln = Ln−1 + Ln−2

but the initial conditions are L0 = 2 and L1 = 1. The first few terms of the
Lucas Sequence are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, . . .

Note that the only differences between the Lucas and Fibonacci sequences are
the initial conditions, in particular the initial condition on the 0 term.

Looking at the prime factorizations of the Lucas numbers, it appears that
some primes divide L(p−1)/2, some divide L(p+1)/2, and some do not divide any
Lucas numbers. The following theorems tell us when some primes divide a Lucas
number.

Theorem 5.1. If p is a prime of the form 20k+11 or 20k+19, then p|L(p−1)/2.
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Proof. The conditions for a prime to divide the L(p−1)/2 term of the Lucas
sequence are that 5 is a quadratic residue modulo p and that −1 is a quadratic
nonresidue modulo p. Note that −1 is a quadratic nonresidue modulo p when
p = 4k + 3 because by Euler’s Criterion,(

−1

p

)
≡ (−1)

p−1
2 ≡ −1,

since p−1
2 is odd for p = 4k + 3.

To add in the condition that 5 is a quadratic residue modulo p, we want
4k + 3 ≡ 1 (mod 5) or 4k + 3 ≡ 4 (mod 5). So, we have:

4k + 3 ≡ 1 (mod 5)

4k ≡ −2

k ≡ 2,

or,

4k + 3 ≡ 4 (mod 5)

−k ≡ 1

k ≡ 4.

So k = 5j + 2 or k = 5m+ 4 where k,m ∈ Z. We now have

p = 4(5j + 2) + 3 = 20j + 11,

or,
p = 4(5j + 4) + 3 = 20j + 19.

To get a formula for Ln in Zp we once again solve the characteristic equation
x2−x−1 = 0 or (2x−1)2 = 5. Solving the equation (2x−1)2 = y2 and choosing
the odd solution y, once again yields x = 1+y

2 , 1−y2 . The general solution for our
Lucas number formula in Zp then looks like

Ln = c1

(
1 + y

2

)n

+ c2

(
1− y

2

)n

.

To find our constants, we use the initial conditions L0 = 2 and L1 = 1 to obtain
the system of equations

2 = c1 + c2

1 = c1

(
1 + y

2

)
+ c2

(
1− y

2

)
,

which yield c1 = 1 and c2 = 1. We now have

Ln =

(
1 + y

2

)n

+

(
1− y

2

)n

.
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Using n = (p− 1)/2 we have

L(p−1)/2 =

(
1 + y

2

)(p−1)/2

+

(
1− y

2

)(p−1)/2

.

Note that by Euler’s Criterion, this is equivalent to

L(p−1)/2 =

(
1+y
2

p

)
+

(
1−y
2

p

)
.

Since −1 is a quadratic nonresidue modulo p, we see that(
1+y
2

p

)(
1−y
2

p

)
=

(
1−y2

4

p

)
=

( 1−5
4

p

)
=

(
−1

p

)
= −1.

Therefore,
( 1+y

2

p

)
and

( 1−y
2

p

)
must be of opposite signs and it follows that

L(p−1)/2 ≡ 0, as required.

Theorem 5.2. If p is a prime of the form 20k + 3 or 20k + 7, then p|L(p+1)/2.

Proof. Suppose p is a prime such that p = 20k + 3 or p = 20k + 7. To get a
formula for Ln in Zp, we want a solution to the characteristic x2 = x+ 1 in Zp.
First we show that there is no solution to (2x− 1)2 = 5 in Zp. Note that,

when p = 20k + 3,

(
5

p

)
=
(p

5

)
=

(
3

5

)
= −1

and when p = 20k + 7,

(
5

p

)
=
(p

5

)
=

(
2

5

)
= −1.

In either case, 5 is not a quadratic residue modulo p. We therefore have to do
a field extension like we did with the Fibonacci sequence. Our formula for Ln

in Zp(φ) is
Ln ≡ φn + (1− φ)n (mod p).

When we substitute n = (p + 1)/2, which is an even number, and use the
identities φp ≡ 1− φ and (1− φ)p ≡ φ we obtain:

L(p+1)/2 ≡ φ(p+1)/2 + (1− φ)(p+1)/2

L2
(p+1)/2 ≡ (φ(p+1)/2 + (1− φ)(p+1)/2)2

≡ φp+1 + 2(φ(p+1)/2(1− φ)(p+1)/2) + (1− φ)p+1

≡ φ · φp + 2(φ− φ2)(p+1)/2 + (1− φ)(1− φ)p

≡ φ · (1− φ) + 2 + (1− φ) · φ
≡ −1 + 2− 1 ≡ 0 (mod p).

It follows that p divides L(p+1)/2.
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Although we have just proved two cases of prime division in the Lucas num-
bers, not all primes divide a Lucas number. Since the only thing different about
the Lucas sequence is the initial conditions, the sequence has the same “period”
modulo p as the Fibonacci sequence. That is, for primes of the form 10k±1 the
“period” is p− 1 and for primes of the form 10k± 3 the “period” is 2(p+ 1). If
p divides a Lucas number we will see a 0 in one “period” of the Lucas sequence
modulo p.

To show that not all primes divide a Lucas number we only need to show an
example of a prime that never divides a Lucas number. We take p = 5 and note
that the period is 4. In one period of the Lucas sequence modulo 5, the terms
are

2, 1, 3, 4, . . .

Since there is no 0 in this period, which repeats for the entire sequence, then 5
does not divide a Lucas number. For our next example we use p = 13, which is
a prime of the form 10k ± 3. Therefore its period is 2(p + 1) = 28, so we only
need to look at 28 terms of the Lucas sequence modulo 13.

Observe that since Fn = (φn− (1−φ)n)(−1 + 2φ)−1 and Ln = φn + (1−φ)n,
it follows that F2n = FnLn. Therefore if 13|Ln, then 13|F2n. We know that
F7 = 13, so 7|2n, by Theorem 3.7. Since 7 does not divide 2, 7 divides n.
Therefore we only need to look at Ln (mod 13) up to 28 where n is a multiple
of 7. If we check these terms we see that L7 ≡ 3, L14 ≡ 11, and L21 ≡ 10. Since
none of these values are 0, it follows that 13 does not divide a Lucas number.

Similarly for 17, we only need to check L9, L18, and L27 in Z17. Since L9 ≡ 8,
L18 ≡ 15, and L27 ≡ 9, it follows that 17 does not divide a Lucas number.

The fact that not all primes divide a Lucas number suggests that there is some-
thing unique about the Fibonacci sequence and other multi-nacci sequences with
the same initial conditions. Particularly, to get the result that all sufficiently
large primes divide every term of a sequence Sn, it is necessary that S0 = 0.

The following fact is another interesting characteristic of the Lucas numbers.

Theorem 5.3. For all primes p, Lp ≡ 1 (mod p).

Proof. For the case when
(

5
p

)
≡ 1, we see that in Zp, the solutions to the

equation (2x − 1)2 = 5 are x = 1+y
2 , 1−y2 . Let a = 1+y

2 and b = 1+y
2 . Then by

Fermat’s Little Theorem,

Lp ≡ ap + bp ≡ a+ b ≡ 1 (mod p).

For the case when
(

5
p

)
≡ −1, we see that in Zp(φ),

Lp ≡ φp + (1− φ)p ≡ 1− φ+ φ = 1 (mod p).
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For the case when p = 5 we see that L5 = 11 ≡ 1 (mod 5). Therefore, for all
primes p, it follows that Lp ≡ 1 (mod p).

The following result combines our knowledge of the Fibonacci and Lucas
numbers.

Theorem 5.4. If z(p) is even, where z(p) is the smallest integer such that
p|Fz(p), then p|Lz(p)/2.

Proof. Suppose z(p) is even. Then z(p) = 2n for some n ∈ Z+. Note that
F2n = FnLn. Since z(p) is the smallest integer such that p|Fz(p), p does not
divide Fn. Therefore p|Ln = Lz(p)/2.

6 Conclusion

In this paper we explored characteristics of the Fibonacci numbers and multi-
nacci numbers, contrasted with the Lucas numbers. In particular we focused on
prime factors and repetition in these sequences.

There are many opportunities for future study on this topic. For example,
we could look at recursive sequences that are non-homogeneous. We also could
look at recursive sequences that depend on 3 previous terms rather than two.
Another question we left unanswered is whether or not there exists a prime p
such that z(p) = z(p2).

We explored the prime factors of Fibonacci-type sequences, and when a se-
quence repeats modulo p, but we could also investigate when m divides Sn for a
generic m that is not necessarily prime. It turns out that when m = pq, where
p and q are prime, then the “period” of the sequence modulo m is the least
common multiple of p and q. This can be used to show when a Fibonacci-type
sequence repeats in the ones digit, since this is equivalent to showing when the
sequence repeats modulo 10.

Our exploration of Fibonacci-type sequences has shown that the initial con-
dition S0 = 0 leads to many interesting results. There is much to be explored
in these numbers and they lead to many questions about other sequences.
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